pcsx2/pcsx2/SPR.cpp

532 lines
12 KiB
C++

/* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2010 PCSX2 Dev Team
*
* PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "PrecompiledHeader.h"
#include "Common.h"
#include "SPR.h"
#include "VUmicro.h"
#include "MTVU.h"
static bool spr0finished = false;
static bool spr1finished = false;
static bool spr0lastqwc = false;
static bool spr1lastqwc = false;
static u32 mfifotransferred = 0;
static void TestClearVUs(u32 madr, u32 qwc, bool isWrite)
{
if (madr >= 0x11000000 && (madr < 0x11010000))
{
if (madr < 0x11004000)
{
if(isWrite)
{
DbgCon.Warning("scratch pad clearing vu0");
CpuVU0->Clear(madr&0xfff, qwc * 16);
}
if(((madr & 0xff0) + (qwc * 16)) > 0x1000 )
{
DevCon.Warning("Warning! SPR%d Crossing in to VU0 Micro Mirror address! Start MADR = %x, End MADR = %x", isWrite ? 0 : 1, madr, madr + (qwc * 16));
}
}
else if (madr >= 0x11008000 && madr < 0x1100c000)
{
if(isWrite)
{
DbgCon.Warning("scratch pad clearing vu1");
CpuVU1->Clear(madr&0x3fff, qwc * 16);
}
}
else if (madr >= 0x11004000 && madr < 0x11008000)
{
//SPR trying to write to to VU0 Mem mirror address.
if(((madr & 0xff0) + (qwc * 16)) > 0x1000)
{
DevCon.Warning("Warning! SPR%d Crossing in to VU0 Mem Mirror address! Start MADR = %x, End MADR = %x", isWrite ? 0 : 1, madr, madr + (qwc * 16));
}
}
}
}
static void memcpy_to_spr(u32 dst, u8* src, size_t size)
{
dst &= _16kb - 1;
if (dst + size >= _16kb) {
size_t end = _16kb - dst;
memcpy(&psSu128(dst), src, end);
src += end;
memcpy(&psSu128(0) , src, size - end);
} else {
memcpy(&psSu128(dst), src, size);
}
}
static void memcpy_from_spr(u8* dst, u32 src, size_t size)
{
src &= _16kb - 1;
if (src + size >= _16kb) {
size_t end = _16kb - src;
memcpy(dst, &psSu128(src), end);
dst += end;
memcpy(dst, &psSu128(0) , size - end);
} else {
memcpy(dst, &psSu128(src), size);
}
}
int _SPR0chain()
{
tDMA_TAG *pMem;
int partialqwc = 0;
if (spr0ch.qwc == 0) return 0;
pMem = SPRdmaGetAddr(spr0ch.madr, true);
if (pMem == NULL) return -1;
if(spr0ch.madr >= dmacRegs.rbor.ADDR && spr0ch.madr < (dmacRegs.rbor.ADDR + dmacRegs.rbsr.RMSK + 16u))
{
partialqwc = spr0ch.qwc;
if ((spr0ch.madr & ~dmacRegs.rbsr.RMSK) != dmacRegs.rbor.ADDR)
Console.WriteLn("SPR MFIFO Write outside MFIFO area");
else
mfifotransferred += partialqwc;
hwMFIFOWrite(spr0ch.madr, &psSu128(spr0ch.sadr), partialqwc);
spr0ch.madr += partialqwc << 4;
spr0ch.madr = dmacRegs.rbor.ADDR + (spr0ch.madr & dmacRegs.rbsr.RMSK);
spr0ch.sadr += partialqwc << 4;
spr0ch.sadr &= 0x3FFF; // Limited to 16K
spr0ch.qwc -= partialqwc;
spr0finished = true;
}
else
{
//Taking an arbitary small value for games which like to check the QWC/MADR instead of STR, so get most of
//the cycle delay out of the way before the end.
partialqwc = spr0ch.qwc;
memcpy_from_spr((u8*)pMem, spr0ch.sadr, partialqwc*16);
// clear VU mem also!
TestClearVUs(spr0ch.madr, partialqwc, true);
spr0ch.madr += partialqwc << 4;
spr0ch.sadr += partialqwc << 4;
spr0ch.sadr &= 0x3FFF; // Limited to 16K
spr0ch.qwc -= partialqwc;
}
return (partialqwc); // bus is 1/2 the ee speed
}
__fi void SPR0chain()
{
int cycles = _SPR0chain() * BIAS;
CPU_INT(DMAC_FROM_SPR, cycles);
}
void _SPR0interleave()
{
int qwc = spr0ch.qwc;
int sqwc = dmacRegs.sqwc.SQWC;
int tqwc = dmacRegs.sqwc.TQWC;
tDMA_TAG *pMem;
if (tqwc == 0) tqwc = qwc;
//Console.WriteLn("dmaSPR0 interleave");
SPR_LOG("SPR0 interleave size=%d, tqwc=%d, sqwc=%d, addr=%lx sadr=%lx",
spr0ch.qwc, tqwc, sqwc, spr0ch.madr, spr0ch.sadr);
CPU_INT(DMAC_FROM_SPR, qwc * BIAS);
while (qwc > 0)
{
spr0ch.qwc = std::min(tqwc, qwc);
qwc -= spr0ch.qwc;
pMem = SPRdmaGetAddr(spr0ch.madr, true);
switch (dmacRegs.ctrl.MFD)
{
case MFD_VIF1:
case MFD_GIF:
hwMFIFOWrite(spr0ch.madr, &psSu128(spr0ch.sadr), spr0ch.qwc);
mfifotransferred += spr0ch.qwc;
break;
case NO_MFD:
case MFD_RESERVED:
// clear VU mem also!
TestClearVUs(spr0ch.madr, spr0ch.qwc, true);
memcpy_from_spr((u8*)pMem, spr0ch.sadr, spr0ch.qwc*16);
break;
}
spr0ch.sadr += spr0ch.qwc * 16;
spr0ch.sadr &= 0x3FFF; // Limited to 16K
spr0ch.madr += (sqwc + spr0ch.qwc) * 16;
}
spr0ch.qwc = 0;
}
static __fi void _dmaSPR0()
{
if (dmacRegs.ctrl.STS == STS_fromSPR)
{
DevCon.Warning("SPR0 stall %d", dmacRegs.ctrl.STS);
}
// Transfer Dn_QWC from SPR to Dn_MADR
switch(spr0ch.chcr.MOD)
{
case NORMAL_MODE:
{
if (dmacRegs.ctrl.STS == STS_fromSPR) // STS == fromSPR
{
DevCon.Warning("SPR stall control Normal not implemented");
}
SPR0chain();
spr0finished = true;
return;
}
case CHAIN_MODE:
{
tDMA_TAG *ptag;
bool done = false;
if (spr0ch.qwc > 0)
{
SPR0chain();
return;
}
// Destination Chain Mode
ptag = (tDMA_TAG*)&psSu32(spr0ch.sadr);
spr0ch.sadr += 16;
spr0ch.sadr &= 0x3FFF; // Limited to 16K
spr0ch.unsafeTransfer(ptag);
spr0ch.madr = ptag[1]._u32; //MADR = ADDR field + SPR
SPR_LOG("spr0 dmaChain %8.8x_%8.8x size=%d, id=%d, addr=%lx spr=%lx",
ptag[1]._u32, ptag[0]._u32, spr0ch.qwc, ptag->ID, spr0ch.madr, spr0ch.sadr);
if (dmacRegs.ctrl.STS == STS_fromSPR) // STS == fromSPR
{
Console.WriteLn("SPR stall control");
}
switch (ptag->ID)
{
case TAG_CNTS: // CNTS - Transfer QWC following the tag (Stall Control)
if (dmacRegs.ctrl.STS == STS_fromSPR) dmacRegs.stadr.ADDR = spr0ch.madr + (spr0ch.qwc * 16); //Copy MADR to DMAC_STADR stall addr register
break;
case TAG_CNT: // CNT - Transfer QWC following the tag.
done = false;
break;
case TAG_END: // End - Transfer QWC following the tag
done = true;
break;
}
SPR0chain();
if (spr0ch.chcr.TIE && ptag->IRQ) //Check TIE bit of CHCR and IRQ bit of tag
{
//Console.WriteLn("SPR0 TIE");
done = true;
}
spr0finished = done;
SPR_LOG("spr0 dmaChain complete %8.8x_%8.8x size=%d, id=%d, addr=%lx spr=%lx",
ptag[1]._u32, ptag[0]._u32, spr0ch.qwc, ptag->ID, spr0ch.madr);
break;
}
//case INTERLEAVE_MODE:
default:
{
if (dmacRegs.ctrl.STS == STS_fromSPR) // STS == fromSPR
{
Console.WriteLn("SPR stall control interleave not implemented");
}
_SPR0interleave();
spr0finished = true;
break;
}
}
}
void SPRFROMinterrupt()
{
if (!spr0finished || spr0ch.qwc > 0)
{
_dmaSPR0();
//the qwc check is simply because having data still to transfer from the packet can freak games out if they do a d.tadr == s.madr check
//and there is still data to come over (FF12 ingame menu)
if(mfifotransferred != 0 && spr0ch.qwc == 0)
{
switch (dmacRegs.ctrl.MFD)
{
case MFD_VIF1: // Most common case.
case MFD_GIF:
{
if ((spr0ch.madr & ~dmacRegs.rbsr.RMSK) != dmacRegs.rbor.ADDR) Console.WriteLn("GIF MFIFO Write outside MFIFO area");
spr0ch.madr = dmacRegs.rbor.ADDR + (spr0ch.madr & dmacRegs.rbsr.RMSK);
//Console.WriteLn("mfifoGIFtransfer %x madr %x, tadr %x", gif->chcr._u32, gif->madr, gif->tadr);
hwMFIFOResume(mfifotransferred);
mfifotransferred = 0;
break;
}
default:
break;
}
}
return;
}
spr0lastqwc = false;
spr0ch.chcr.STR = false;
hwDmacIrq(DMAC_FROM_SPR);
DMA_LOG("SPR0 DMA End");
}
void dmaSPR0() // fromSPR
{
SPR_LOG("dmaSPR0 chcr = %lx, madr = %lx, qwc = %lx, sadr = %lx",
spr0ch.chcr._u32, spr0ch.madr, spr0ch.qwc, spr0ch.sadr);
spr0finished = false; //Init
if(spr0ch.chcr.MOD == CHAIN_MODE && spr0ch.qwc > 0)
{
//DevCon.Warning(L"SPR0 QWC on Chain " + spr0ch.chcr.desc());
if (spr0ch.chcr.tag().ID == TAG_END) // but not TAG_REFE?
{ // Correct not REFE, Destination Chain doesnt have REFE!
spr0finished = true;
}
}
SPRFROMinterrupt();
}
__fi static void SPR1transfer(const void* data, int qwc)
{
if ((spr1ch.madr >= 0x11000000) && (spr1ch.madr < 0x11010000))
{
TestClearVUs(spr1ch.madr, spr1ch.qwc, false);
}
memcpy_to_spr(spr1ch.sadr, (u8*)data, qwc*16);
spr1ch.sadr += qwc * 16;
spr1ch.sadr &= 0x3FFF; // Limited to 16K
}
int _SPR1chain()
{
tDMA_TAG *pMem;
if (spr1ch.qwc == 0) return 0;
pMem = SPRdmaGetAddr(spr1ch.madr, false);
if (pMem == NULL) return -1;
int partialqwc = 0;
//Taking an arbitary small value for games which like to check the QWC/MADR instead of STR, so get most of
//the cycle delay out of the way before the end.
partialqwc = spr1ch.qwc;
SPR1transfer(pMem, partialqwc);
spr1ch.madr += partialqwc * 16;
spr1ch.qwc -= partialqwc;
hwDmacSrcTadrInc(spr1ch);
return (partialqwc);
}
__fi void SPR1chain()
{
int cycles = 0;
if(!CHECK_IPUWAITHACK)
{
cycles = _SPR1chain() * BIAS;
CPU_INT(DMAC_TO_SPR, cycles);
}
else
{
_SPR1chain();
CPU_INT(DMAC_TO_SPR, 8);
}
}
void _SPR1interleave()
{
int qwc = spr1ch.qwc;
int sqwc = dmacRegs.sqwc.SQWC;
int tqwc = dmacRegs.sqwc.TQWC;
tDMA_TAG *pMem;
if (tqwc == 0) tqwc = qwc;
SPR_LOG("SPR1 interleave size=%d, tqwc=%d, sqwc=%d, addr=%lx sadr=%lx",
spr1ch.qwc, tqwc, sqwc, spr1ch.madr, spr1ch.sadr);
CPU_INT(DMAC_TO_SPR, qwc * BIAS);
while (qwc > 0)
{
spr1ch.qwc = std::min(tqwc, qwc);
qwc -= spr1ch.qwc;
pMem = SPRdmaGetAddr(spr1ch.madr, false);
memcpy_to_spr(spr1ch.sadr, (u8*)pMem, spr1ch.qwc*16);
spr1ch.sadr += spr1ch.qwc * 16;
spr1ch.sadr &= 0x3FFF; // Limited to 16K
spr1ch.madr += (sqwc + spr1ch.qwc) * 16;
}
spr1ch.qwc = 0;
}
void _dmaSPR1() // toSPR work function
{
switch(spr1ch.chcr.MOD)
{
case NORMAL_MODE:
{
//int cycles = 0;
// Transfer Dn_QWC from Dn_MADR to SPR1
SPR1chain();
spr1finished = true;
return;
}
case CHAIN_MODE:
{
tDMA_TAG *ptag;
bool done = false;
if (spr1ch.qwc > 0)
{
SPR_LOG("spr1 Normal or in Progress size=%d, addr=%lx taddr=%lx saddr=%lx", spr1ch.qwc, spr1ch.madr, spr1ch.tadr, spr1ch.sadr);
// Transfer Dn_QWC from Dn_MADR to SPR1
SPR1chain();
return;
}
// Chain Mode
ptag = SPRdmaGetAddr(spr1ch.tadr, false); //Set memory pointer to TADR
if (!spr1ch.transfer("SPR1 Tag", ptag))
{
done = true;
spr1finished = done;
}
spr1ch.madr = ptag[1]._u32; //MADR = ADDR field + SPR
// Transfer dma tag if tte is set
if (spr1ch.chcr.TTE)
{
SPR_LOG("SPR TTE: %x_%x\n", ptag[3]._u32, ptag[2]._u32);
SPR1transfer(ptag, 1); //Transfer Tag
}
SPR_LOG("spr1 dmaChain %8.8x_%8.8x size=%d, id=%d, addr=%lx taddr=%lx saddr=%lx",
ptag[1]._u32, ptag[0]._u32, spr1ch.qwc, ptag->ID, spr1ch.madr, spr1ch.tadr, spr1ch.sadr);
done = hwDmacSrcChain(spr1ch, ptag->ID);
SPR1chain(); //Transfers the data set by the switch
if (spr1ch.chcr.TIE && ptag->IRQ) //Check TIE bit of CHCR and IRQ bit of tag
{
SPR_LOG("dmaIrq Set");
//Console.WriteLn("SPR1 TIE");
done = true;
}
spr1finished = done;
break;
}
//case INTERLEAVE_MODE:
default:
{
_SPR1interleave();
spr1finished = true;
break;
}
}
}
void dmaSPR1() // toSPR
{
SPR_LOG("dmaSPR1 chcr = 0x%x, madr = 0x%x, qwc = 0x%x\n"
" tadr = 0x%x, sadr = 0x%x",
spr1ch.chcr._u32, spr1ch.madr, spr1ch.qwc,
spr1ch.tadr, spr1ch.sadr);
spr1finished = false; //Init
if(spr1ch.chcr.MOD == CHAIN_MODE && spr1ch.qwc > 0)
{
//DevCon.Warning(L"SPR1 QWC on Chain " + spr1ch.chcr.desc());
if ((spr1ch.chcr.tag().ID == TAG_END) || (spr1ch.chcr.tag().ID == TAG_REFE) || (spr1ch.chcr.tag().IRQ && spr1ch.chcr.TIE))
{
spr1finished = true;
}
}
SPRTOinterrupt();
}
void SPRTOinterrupt()
{
SPR_LOG("SPR1 Interrupt");
if (!spr1finished || spr1ch.qwc > 0)
{
_dmaSPR1();
return;
}
DMA_LOG("SPR1 DMA End");
spr1ch.chcr.STR = false;
spr1lastqwc = false;
hwDmacIrq(DMAC_TO_SPR);
}
void SaveStateBase::sprFreeze()
{
FreezeTag("SPRdma");
Freeze(spr0finished);
Freeze(spr1finished);
Freeze(mfifotransferred);
}