pcsx2/bin/resources/shaders/vulkan/tfx.glsl

1303 lines
29 KiB
GLSL

//////////////////////////////////////////////////////////////////////
// Vertex Shader
//////////////////////////////////////////////////////////////////////
#if defined(VERTEX_SHADER) || defined(GEOMETRY_SHADER)
layout(std140, set = 0, binding = 0) uniform cb0
{
vec2 VertexScale;
vec2 VertexOffset;
vec2 TextureScale;
vec2 TextureOffset;
vec2 PointSize;
uint MaxDepth;
uint pad_cb0;
};
#endif
#ifdef VERTEX_SHADER
layout(location = 0) in vec2 a_st;
layout(location = 1) in uvec4 a_c;
layout(location = 2) in float a_q;
layout(location = 3) in uvec2 a_p;
layout(location = 4) in uint a_z;
layout(location = 5) in uvec2 a_uv;
layout(location = 6) in vec4 a_f;
layout(location = 0) out VSOutput
{
vec4 t;
vec4 ti;
#if VS_IIP != 0
vec4 c;
#else
flat vec4 c;
#endif
} vsOut;
void main()
{
// Clamp to max depth, gs doesn't wrap
float z = min(a_z, MaxDepth);
// pos -= 0.05 (1/320 pixel) helps avoiding rounding problems (integral part of pos is usually 5 digits, 0.05 is about as low as we can go)
// example: ceil(afterseveralvertextransformations(y = 133)) => 134 => line 133 stays empty
// input granularity is 1/16 pixel, anything smaller than that won't step drawing up/left by one pixel
// example: 133.0625 (133 + 1/16) should start from line 134, ceil(133.0625 - 0.05) still above 133
gl_Position = vec4(a_p, z, 1.0f) - vec4(0.05f, 0.05f, 0, 0);
gl_Position.xy = gl_Position.xy * vec2(VertexScale.x, -VertexScale.y) - vec2(VertexOffset.x, -VertexOffset.y);
gl_Position.z *= exp2(-32.0f); // integer->float depth
gl_Position.y = -gl_Position.y;
#if VS_TME
vec2 uv = a_uv - TextureOffset;
vec2 st = a_st - TextureOffset;
// Integer nomalized
vsOut.ti.xy = uv * TextureScale;
#if VS_FST
// Integer integral
vsOut.ti.zw = uv;
#else
// float for post-processing in some games
vsOut.ti.zw = st / TextureScale;
#endif
// Float coords
vsOut.t.xy = st;
vsOut.t.w = a_q;
#else
vsOut.t = vec4(0.0f, 0.0f, 0.0f, 1.0f);
vsOut.ti = vec4(0.0f);
#endif
#if VS_POINT_SIZE
gl_PointSize = float(VS_POINT_SIZE_VALUE);
#endif
vsOut.c = a_c;
vsOut.t.z = a_f.r;
}
#endif
#ifdef GEOMETRY_SHADER
layout(location = 0) in VSOutput
{
vec4 t;
vec4 ti;
#if GS_IIP != 0
vec4 c;
#else
flat vec4 c;
#endif
} gsIn[];
layout(location = 0) out GSOutput
{
vec4 t;
vec4 ti;
#if GS_IIP != 0
vec4 c;
#else
flat vec4 c;
#endif
} gsOut;
void WriteVertex(vec4 pos, vec4 t, vec4 ti, vec4 c)
{
#if GS_FORWARD_PRIMID
gl_PrimitiveID = gl_PrimitiveIDIn;
#endif
gl_Position = pos;
gsOut.t = t;
gsOut.ti = ti;
gsOut.c = c;
EmitVertex();
}
//////////////////////////////////////////////////////////////////////
// Geometry Shader
//////////////////////////////////////////////////////////////////////
#if GS_PRIM == 0 && GS_POINT == 0
layout(points) in;
layout(points, max_vertices = 1) out;
void main()
{
WriteVertex(gl_in[0].gl_Position, gsIn[0].t, gsIn[0].ti, gsIn[0].c);
EndPrimitive();
}
#elif GS_PRIM == 0 && GS_POINT == 1
layout(points) in;
layout(triangle_strip, max_vertices = 4) out;
void main()
{
// Transform a point to a NxN sprite
// Get new position
vec4 lt_p = gl_in[0].gl_Position;
vec4 rb_p = gl_in[0].gl_Position + vec4(PointSize.x, PointSize.y, 0.0f, 0.0f);
vec4 lb_p = rb_p;
vec4 rt_p = rb_p;
lb_p.x = lt_p.x;
rt_p.y = lt_p.y;
WriteVertex(lt_p, gsIn[0].t, gsIn[0].ti, gsIn[0].c);
WriteVertex(lb_p, gsIn[0].t, gsIn[0].ti, gsIn[0].c);
WriteVertex(rt_p, gsIn[0].t, gsIn[0].ti, gsIn[0].c);
WriteVertex(rb_p, gsIn[0].t, gsIn[0].ti, gsIn[0].c);
EndPrimitive();
}
#elif GS_PRIM == 1 && GS_LINE == 0
layout(lines) in;
layout(line_strip, max_vertices = 2) out;
void main()
{
#if GS_IIP == 0
WriteVertex(gl_in[0].gl_Position, gsIn[0].t, gsIn[0].ti, gsIn[1].c);
WriteVertex(gl_in[1].gl_Position, gsIn[1].t, gsIn[1].ti, gsIn[1].c);
#else
WriteVertex(gl_in[0].gl_Position, gsIn[0].t, gsIn[0].ti, gsIn[0].c);
WriteVertex(gl_in[1].gl_Position, gsIn[1].t, gsIn[1].ti, gsIn[1].c);
#endif
EndPrimitive();
}
#elif GS_PRIM == 1 && GS_LINE == 1
layout(lines) in;
layout(triangle_strip, max_vertices = 4) out;
void main()
{
// Transform a line to a thick line-sprite
vec4 left_t = gsIn[0].t;
vec4 left_ti = gsIn[0].ti;
vec4 left_c = gsIn[0].c;
vec4 right_t = gsIn[1].t;
vec4 right_ti = gsIn[1].ti;
vec4 right_c = gsIn[1].c;
vec4 lt_p = gl_in[0].gl_Position;
vec4 rt_p = gl_in[1].gl_Position;
// Potentially there is faster math
vec2 line_vector = normalize(rt_p.xy - lt_p.xy);
vec2 line_normal = vec2(line_vector.y, -line_vector.x);
vec2 line_width = (line_normal * PointSize) / 2.0;
lt_p.xy -= line_width;
rt_p.xy -= line_width;
vec4 lb_p = gl_in[0].gl_Position + vec4(line_width, 0.0, 0.0);
vec4 rb_p = gl_in[1].gl_Position + vec4(line_width, 0.0, 0.0);
#if GS_IIP == 0
left_c = right_c;
#endif
WriteVertex(lt_p, left_t, left_ti, left_c);
WriteVertex(lb_p, left_t, left_ti, left_c);
WriteVertex(rt_p, right_t, right_ti, right_c);
WriteVertex(rb_p, right_t, right_ti, right_c);
EndPrimitive();
}
#elif GS_PRIM == 2
layout(triangles) in;
layout(triangle_strip, max_vertices = 3) out;
void main()
{
#if GS_IIP == 0
WriteVertex(gl_in[0].gl_Position, gsIn[0].t, gsIn[0].ti, gsIn[2].c);
WriteVertex(gl_in[1].gl_Position, gsIn[1].t, gsIn[1].ti, gsIn[2].c);
WriteVertex(gl_in[2].gl_Position, gsIn[2].t, gsIn[2].ti, gsIn[2].c);
#else
WriteVertex(gl_in[0].gl_Position, gsIn[0].t, gsIn[0].ti, gsIn[0].c);
WriteVertex(gl_in[1].gl_Position, gsIn[1].t, gsIn[1].ti, gsIn[0].c);
WriteVertex(gl_in[2].gl_Position, gsIn[2].t, gsIn[2].ti, gsIn[0].c);
#endif
EndPrimitive();
}
#elif GS_PRIM == 3
layout(lines) in;
layout(triangle_strip, max_vertices = 4) out;
void main()
{
vec4 lt_p = gl_in[0].gl_Position;
vec4 lt_t = gsIn[0].t;
vec4 lt_ti = gsIn[0].ti;
vec4 lt_c = gsIn[0].c;
vec4 rb_p = gl_in[1].gl_Position;
vec4 rb_t = gsIn[1].t;
vec4 rb_ti = gsIn[1].ti;
vec4 rb_c = gsIn[1].c;
// flat depth
lt_p.z = rb_p.z;
// flat fog and texture perspective
lt_t.zw = rb_t.zw;
// flat color
lt_c = rb_c;
// Swap texture and position coordinate
vec4 lb_p = rb_p;
vec4 lb_t = rb_t;
vec4 lb_ti = rb_ti;
vec4 lb_c = rb_c;
lb_p.x = lt_p.x;
lb_t.x = lt_t.x;
lb_ti.x = lt_ti.x;
lb_ti.z = lt_ti.z;
vec4 rt_p = rb_p;
vec4 rt_t = rb_t;
vec4 rt_ti = rb_ti;
vec4 rt_c = rb_c;
rt_p.y = lt_p.y;
rt_t.y = lt_t.y;
rt_ti.y = lt_ti.y;
rt_ti.w = lt_ti.w;
WriteVertex(lt_p, lt_t, lt_ti, lt_c);
WriteVertex(lb_p, lb_t, lb_ti, lb_c);
WriteVertex(rt_p, rt_t, rt_ti, rt_c);
WriteVertex(rb_p, rb_t, rb_ti, rb_c);
EndPrimitive();
}
#endif
#endif
#ifdef FRAGMENT_SHADER
#define FMT_32 0
#define FMT_24 1
#define FMT_16 2
#ifndef VS_TME
#define VS_TME 1
#define VS_FST 1
#endif
#ifndef GS_IIP
#define GS_IIP 0
#define GS_PRIM 3
#define GS_POINT 0
#define GS_LINE 0
#endif
#ifndef PS_FST
#define PS_FST 0
#define PS_WMS 0
#define PS_WMT 0
#define PS_ADJS 0
#define PS_ADJT 0
#define PS_FMT FMT_32
#define PS_AEM 0
#define PS_TFX 0
#define PS_TCC 1
#define PS_ATST 1
#define PS_FOG 0
#define PS_BLEND_HW 0
#define PS_A_MASKED 0
#define PS_FBA 0
#define PS_FBMASK 0
#define PS_LTF 1
#define PS_TCOFFSETHACK 0
#define PS_POINT_SAMPLER 0
#define PS_SHUFFLE 0
#define PS_READ_BA 0
#define PS_READ16_SRC 0
#define PS_DFMT 0
#define PS_DEPTH_FMT 0
#define PS_PAL_FMT 0
#define PS_CHANNEL_FETCH 0
#define PS_TALES_OF_ABYSS_HLE 0
#define PS_URBAN_CHAOS_HLE 0
#define PS_SCALE_FACTOR 1.0
#define PS_HDR 0
#define PS_COLCLIP 0
#define PS_BLEND_A 0
#define PS_BLEND_B 0
#define PS_BLEND_C 0
#define PS_BLEND_D 0
#define PS_FIXED_ONE_A 0
#define PS_PABE 0
#define PS_DITHER 0
#define PS_ZCLAMP 0
#define PS_FEEDBACK_LOOP 0
#define PS_TEX_IS_FB 0
#endif
#define SW_BLEND (PS_BLEND_A || PS_BLEND_B || PS_BLEND_D)
#define SW_BLEND_NEEDS_RT (PS_BLEND_A == 1 || PS_BLEND_B == 1 || PS_BLEND_C == 1 || PS_BLEND_D == 1)
#define SW_AD_TO_HW (PS_BLEND_C == 1 && PS_A_MASKED)
#define PS_FEEDBACK_LOOP_IS_NEEDED (PS_TEX_IS_FB == 1 || PS_FBMASK || SW_BLEND_NEEDS_RT || (PS_DATE >= 5))
layout(std140, set = 0, binding = 1) uniform cb1
{
vec3 FogColor;
float AREF;
vec4 WH;
vec2 TA;
float MaxDepthPS;
float Af;
uvec4 FbMask;
vec4 HalfTexel;
vec4 MinMax;
vec4 STRange;
ivec4 ChannelShuffle;
vec2 TC_OffsetHack;
vec2 STScale;
mat4 DitherMatrix;
};
layout(location = 0) in VSOutput
{
vec4 t;
vec4 ti;
#if PS_IIP != 0
vec4 c;
#else
flat vec4 c;
#endif
} vsIn;
#if !defined(DISABLE_DUAL_SOURCE) && !PS_NO_COLOR1
layout(location = 0, index = 0) out vec4 o_col0;
layout(location = 0, index = 1) out vec4 o_col1;
#elif !PS_NO_COLOR
layout(location = 0) out vec4 o_col0;
#endif
layout(set = 1, binding = 0) uniform sampler2D Texture;
layout(set = 1, binding = 1) uniform texture2D Palette;
#if PS_FEEDBACK_LOOP_IS_NEEDED
#ifndef DISABLE_TEXTURE_BARRIER
layout(input_attachment_index = 0, set = 2, binding = 0) uniform subpassInput RtSampler;
vec4 sample_from_rt() { return subpassLoad(RtSampler); }
#else
layout(set = 2, binding = 0) uniform texture2D RtSampler;
vec4 sample_from_rt() { return texelFetch(RtSampler, ivec2(gl_FragCoord.xy), 0); }
#endif
#endif
#if PS_DATE > 0
layout(set = 2, binding = 1) uniform texture2D PrimMinTexture;
#endif
vec4 sample_c(vec2 uv)
{
#if PS_TEX_IS_FB
return sample_from_rt();
#else
#if PS_POINT_SAMPLER
// Weird issue with ATI/AMD cards,
// it looks like they add 127/128 of a texel to sampling coordinates
// occasionally causing point sampling to erroneously round up.
// I'm manually adjusting coordinates to the centre of texels here,
// though the centre is just paranoia, the top left corner works fine.
// As of 2018 this issue is still present.
uv = (trunc(uv * WH.zw) + vec2(0.5, 0.5)) / WH.zw;
#endif
#if !PS_ADJS && !PS_ADJT
uv *= STScale;
#else
#if PS_ADJS
uv.x = (uv.x - STRange.x) * STRange.z;
#else
uv.x = uv.x * STScale.x;
#endif
#if PS_ADJT
uv.y = (uv.y - STRange.y) * STRange.w;
#else
uv.y = uv.y * STScale.y;
#endif
#endif
#if PS_AUTOMATIC_LOD == 1
return texture(Texture, uv);
#elif PS_MANUAL_LOD == 1
// FIXME add LOD: K - ( LOG2(Q) * (1 << L))
float K = MinMax.x;
float L = MinMax.y;
float bias = MinMax.z;
float max_lod = MinMax.w;
float gs_lod = K - log2(abs(vsIn.t.w)) * L;
// FIXME max useful ?
//float lod = max(min(gs_lod, max_lod) - bias, 0.0f);
float lod = min(gs_lod, max_lod) - bias;
return textureLod(Texture, uv, lod);
#else
return textureLod(Texture, uv, 0); // No lod
#endif
#endif
}
vec4 sample_p(uint idx)
{
return texelFetch(Palette, ivec2(int(idx), 0), 0);
}
vec4 sample_p_norm(float u)
{
return sample_p(uint(u * 255.5f));
}
vec4 clamp_wrap_uv(vec4 uv)
{
vec4 tex_size = WH.xyxy;
#if PS_WMS == PS_WMT
{
#if PS_WMS == 2
{
uv = clamp(uv, MinMax.xyxy, MinMax.zwzw);
}
#elif PS_WMS == 3
{
#if PS_FST == 0
// wrap negative uv coords to avoid an off by one error that shifted
// textures. Fixes Xenosaga's hair issue.
uv = fract(uv);
#endif
uv = vec4((uvec4(uv * tex_size) & floatBitsToUint(MinMax.xyxy)) | floatBitsToUint(MinMax.zwzw)) / tex_size;
}
#endif
}
#else
{
#if PS_WMS == 2
{
uv.xz = clamp(uv.xz, MinMax.xx, MinMax.zz);
}
#elif PS_WMS == 3
{
#if PS_FST == 0
uv.xz = fract(uv.xz);
#endif
uv.xz = vec2((uvec2(uv.xz * tex_size.xx) & floatBitsToUint(MinMax.xx)) | floatBitsToUint(MinMax.zz)) / tex_size.xx;
}
#endif
#if PS_WMT == 2
{
uv.yw = clamp(uv.yw, MinMax.yy, MinMax.ww);
}
#elif PS_WMT == 3
{
#if PS_FST == 0
uv.yw = fract(uv.yw);
#endif
uv.yw = vec2((uvec2(uv.yw * tex_size.yy) & floatBitsToUint(MinMax.yy)) | floatBitsToUint(MinMax.ww)) / tex_size.yy;
}
#endif
}
#endif
return uv;
}
mat4 sample_4c(vec4 uv)
{
mat4 c;
c[0] = sample_c(uv.xy);
c[1] = sample_c(uv.zy);
c[2] = sample_c(uv.xw);
c[3] = sample_c(uv.zw);
return c;
}
uvec4 sample_4_index(vec4 uv)
{
vec4 c;
c.x = sample_c(uv.xy).a;
c.y = sample_c(uv.zy).a;
c.z = sample_c(uv.xw).a;
c.w = sample_c(uv.zw).a;
// Denormalize value
uvec4 i = uvec4(c * 255.5f);
#if PS_PAL_FMT == 1
// 4HL
return i & 0xFu;
#elif PS_PAL_FMT == 2
// 4HH
return i >> 4u;
#else
// 8
return i;
#endif
}
mat4 sample_4p(uvec4 u)
{
mat4 c;
c[0] = sample_p(u.x);
c[1] = sample_p(u.y);
c[2] = sample_p(u.z);
c[3] = sample_p(u.w);
return c;
}
int fetch_raw_depth(ivec2 xy)
{
#if PS_TEX_IS_FB
vec4 col = sample_from_rt();
#else
vec4 col = texelFetch(Texture, xy, 0);
#endif
return int(col.r * exp2(32.0f));
}
vec4 fetch_raw_color(ivec2 xy)
{
#if PS_TEX_IS_FB
return sample_from_rt();
#else
return texelFetch(Texture, xy, 0);
#endif
}
vec4 fetch_c(ivec2 uv)
{
return texelFetch(Texture, uv, 0);
}
//////////////////////////////////////////////////////////////////////
// Depth sampling
//////////////////////////////////////////////////////////////////////
ivec2 clamp_wrap_uv_depth(ivec2 uv)
{
ivec4 mask = floatBitsToInt(MinMax) << 4;
#if (PS_WMS == PS_WMT)
{
#if (PS_WMS == 2)
{
uv = clamp(uv, mask.xy, mask.zw);
}
#elif (PS_WMS == 3)
{
uv = (uv & mask.xy) | mask.zw;
}
#endif
}
#else
{
#if (PS_WMS == 2)
{
uv.x = clamp(uv.x, mask.x, mask.z);
}
#elif (PS_WMS == 3)
{
uv.x = (uv.x & mask.x) | mask.z;
}
#endif
#if (PS_WMT == 2)
{
uv.y = clamp(uv.y, mask.y, mask.w);
}
#elif (PS_WMT == 3)
{
uv.y = (uv.y & mask.y) | mask.w;
}
#endif
}
#endif
return uv;
}
vec4 sample_depth(vec2 st, ivec2 pos)
{
vec2 uv_f = vec2(clamp_wrap_uv_depth(ivec2(st))) * vec2(PS_SCALE_FACTOR) * vec2(1.0f / 16.0f);
ivec2 uv = ivec2(uv_f);
vec4 t = vec4(0.0f);
#if (PS_TALES_OF_ABYSS_HLE == 1)
{
// Warning: UV can't be used in channel effect
int depth = fetch_raw_depth(pos);
// Convert msb based on the palette
t = texelFetch(Palette, ivec2((depth >> 8) & 0xFF, 0), 0) * 255.0f;
}
#elif (PS_URBAN_CHAOS_HLE == 1)
{
// Depth buffer is read as a RGB5A1 texture. The game try to extract the green channel.
// So it will do a first channel trick to extract lsb, value is right-shifted.
// Then a new channel trick to extract msb which will shifted to the left.
// OpenGL uses a vec32 format for the depth so it requires a couple of conversion.
// To be faster both steps (msb&lsb) are done in a single pass.
// Warning: UV can't be used in channel effect
int depth = fetch_raw_depth(pos);
// Convert lsb based on the palette
t = texelFetch(Palette, ivec2(depth & 0xFF, 0), 0) * 255.0f;
// Msb is easier
float green = float(((depth >> 8) & 0xFF) * 36.0f);
green = min(green, 255.0f);
t.g += green;
}
#elif (PS_DEPTH_FMT == 1)
{
// Based on ps_convert_float32_rgba8 of convert
// Convert a vec32 depth texture into a RGBA color texture
uint d = uint(fetch_c(uv).r * exp2(32.0f));
t = vec4(uvec4((d & 0xFFu), ((d >> 8) & 0xFFu), ((d >> 16) & 0xFFu), (d >> 24)));
}
#elif (PS_DEPTH_FMT == 2)
{
// Based on ps_convert_float16_rgb5a1 of convert
// Convert a vec32 (only 16 lsb) depth into a RGB5A1 color texture
uint d = uint(fetch_c(uv).r * exp2(32.0f));
t = vec4(uvec4((d & 0x1Fu), ((d >> 5) & 0x1Fu), ((d >> 10) & 0x1Fu), (d >> 15) & 0x01u)) * vec4(8.0f, 8.0f, 8.0f, 128.0f);
}
#elif (PS_DEPTH_FMT == 3)
{
// Convert a RGBA/RGB5A1 color texture into a RGBA/RGB5A1 color texture
t = fetch_c(uv) * 255.0f;
}
#endif
#if (PS_AEM_FMT == FMT_24)
{
t.a = ((PS_AEM == 0) || any(bvec3(t.rgb))) ? 255.0f * TA.x : 0.0f;
}
#elif (PS_AEM_FMT == FMT_16)
{
t.a = t.a >= 128.0f ? 255.0f * TA.y : ((PS_AEM == 0) || any(bvec3(t.rgb))) ? 255.0f * TA.x : 0.0f;
}
#endif
return t;
}
//////////////////////////////////////////////////////////////////////
// Fetch a Single Channel
//////////////////////////////////////////////////////////////////////
vec4 fetch_red(ivec2 xy)
{
vec4 rt;
#if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2)
int depth = (fetch_raw_depth(xy)) & 0xFF;
rt = vec4(float(depth) / 255.0f);
#else
rt = fetch_raw_color(xy);
#endif
return sample_p_norm(rt.r) * 255.0f;
}
vec4 fetch_green(ivec2 xy)
{
vec4 rt;
#if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2)
int depth = (fetch_raw_depth(xy) >> 8) & 0xFF;
rt = vec4(float(depth) / 255.0f);
#else
rt = fetch_raw_color(xy);
#endif
return sample_p_norm(rt.g) * 255.0f;
}
vec4 fetch_blue(ivec2 xy)
{
vec4 rt;
#if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2)
int depth = (fetch_raw_depth(xy) >> 16) & 0xFF;
rt = vec4(float(depth) / 255.0f);
#else
rt = fetch_raw_color(xy);
#endif
return sample_p_norm(rt.b) * 255.0f;
}
vec4 fetch_alpha(ivec2 xy)
{
vec4 rt = fetch_raw_color(xy);
return sample_p_norm(rt.a) * 255.0f;
}
vec4 fetch_rgb(ivec2 xy)
{
vec4 rt = fetch_raw_color(xy);
vec4 c = vec4(sample_p_norm(rt.r).r, sample_p_norm(rt.g).g, sample_p_norm(rt.b).b, 1.0);
return c * 255.0f;
}
vec4 fetch_gXbY(ivec2 xy)
{
#if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2)
int depth = fetch_raw_depth(xy);
int bg = (depth >> (8 + ChannelShuffle.w)) & 0xFF;
return vec4(bg);
#else
ivec4 rt = ivec4(fetch_raw_color(xy) * 255.0);
int green = (rt.g >> ChannelShuffle.w) & ChannelShuffle.z;
int blue = (rt.b << ChannelShuffle.y) & ChannelShuffle.x;
return vec4(float(green | blue));
#endif
}
vec4 sample_color(vec2 st)
{
#if PS_TCOFFSETHACK
st += TC_OffsetHack.xy;
#endif
vec4 t;
mat4 c;
vec2 dd;
#if PS_LTF == 0 && PS_AEM_FMT == FMT_32 && PS_PAL_FMT == 0 && PS_WMS < 2 && PS_WMT < 2
{
c[0] = sample_c(st);
}
#else
{
vec4 uv;
#if PS_LTF
{
uv = st.xyxy + HalfTexel;
dd = fract(uv.xy * WH.zw);
#if PS_FST == 0
{
dd = clamp(dd, vec2(0.0f), vec2(0.9999999f));
}
#endif
}
#else
{
uv = st.xyxy;
}
#endif
uv = clamp_wrap_uv(uv);
#if PS_PAL_FMT != 0
c = sample_4p(sample_4_index(uv));
#else
c = sample_4c(uv);
#endif
}
#endif
for (uint i = 0; i < 4; i++)
{
#if (PS_AEM_FMT == FMT_24)
c[i].a = (PS_AEM == 0 || any(bvec3(c[i].rgb))) ? TA.x : 0.0f;
#elif (PS_AEM_FMT == FMT_16)
c[i].a = (c[i].a >= 0.5) ? TA.y : ((PS_AEM == 0 || any(bvec3(c[i].rgb))) ? TA.x : 0.0f);
#endif
}
#if PS_LTF
{
t = mix(mix(c[0], c[1], dd.x), mix(c[2], c[3], dd.x), dd.y);
}
#else
{
t = c[0];
}
#endif
return trunc(t * 255.0f + 0.05f);
}
vec4 tfx(vec4 T, vec4 C)
{
vec4 C_out;
vec4 FxT = trunc(trunc(C) * T / 128.0f);
#if (PS_TFX == 0)
C_out = FxT;
#elif (PS_TFX == 1)
C_out = T;
#elif (PS_TFX == 2)
C_out.rgb = FxT.rgb + C.a;
C_out.a = T.a + C.a;
#elif (PS_TFX == 3)
C_out.rgb = FxT.rgb + C.a;
C_out.a = T.a;
#else
C_out = C;
#endif
#if (PS_TCC == 0)
C_out.a = C.a;
#endif
#if (PS_TFX == 0) || (PS_TFX == 2) || (PS_TFX == 3)
// Clamp only when it is useful
C_out = min(C_out, 255.0f);
#endif
return C_out;
}
void atst(vec4 C)
{
float a = C.a;
#if (PS_ATST == 0)
{
// nothing to do
}
#elif (PS_ATST == 1)
{
if (a > AREF) discard;
}
#elif (PS_ATST == 2)
{
if (a < AREF) discard;
}
#elif (PS_ATST == 3)
{
if (abs(a - AREF) > 0.5f) discard;
}
#elif (PS_ATST == 4)
{
if (abs(a - AREF) < 0.5f) discard;
}
#endif
}
vec4 fog(vec4 c, float f)
{
#if PS_FOG
c.rgb = trunc(mix(FogColor, c.rgb, f));
#endif
return c;
}
vec4 ps_color()
{
#if PS_FST == 0
vec2 st = vsIn.t.xy / vsIn.t.w;
vec2 st_int = vsIn.ti.zw / vsIn.t.w;
#else
vec2 st = vsIn.ti.xy;
vec2 st_int = vsIn.ti.zw;
#endif
#if PS_CHANNEL_FETCH == 1
vec4 T = fetch_red(ivec2(gl_FragCoord.xy));
#elif PS_CHANNEL_FETCH == 2
vec4 T = fetch_green(ivec2(gl_FragCoord.xy));
#elif PS_CHANNEL_FETCH == 3
vec4 T = fetch_blue(ivec2(gl_FragCoord.xy));
#elif PS_CHANNEL_FETCH == 4
vec4 T = fetch_alpha(ivec2(gl_FragCoord.xy));
#elif PS_CHANNEL_FETCH == 5
vec4 T = fetch_rgb(ivec2(gl_FragCoord.xy));
#elif PS_CHANNEL_FETCH == 6
vec4 T = fetch_gXbY(ivec2(gl_FragCoord.xy));
#elif PS_DEPTH_FMT > 0
vec4 T = sample_depth(st_int, ivec2(gl_FragCoord.xy));
#else
vec4 T = sample_color(st);
#endif
vec4 C = tfx(T, vsIn.c);
atst(C);
C = fog(C, vsIn.t.z);
return C;
}
void ps_fbmask(inout vec4 C)
{
#if PS_FBMASK
vec4 RT = trunc(sample_from_rt() * 255.0f + 0.1f);
C = vec4((uvec4(C) & ~FbMask) | (uvec4(RT) & FbMask));
#endif
}
void ps_dither(inout vec3 C)
{
#if PS_DITHER
ivec2 fpos;
#if PS_DITHER == 2
fpos = ivec2(gl_FragCoord.xy);
#else
fpos = ivec2(gl_FragCoord.xy / float(PS_SCALE_FACTOR));
#endif
float value = DitherMatrix[fpos.y & 3][fpos.x & 3];
#if PS_ROUND_INV
C -= value;
#else
C += value;
#endif
#endif
}
void ps_color_clamp_wrap(inout vec3 C)
{
// When dithering the bottom 3 bits become meaningless and cause lines in the picture
// so we need to limit the color depth on dithered items
#if SW_BLEND || PS_DITHER || PS_FBMASK
#if PS_DFMT == FMT_16 && PS_BLEND_MIX == 0 && PS_ROUND_INV
C += 7.0f; // Need to round up, not down since the shader will invert
#endif
// Correct the Color value based on the output format
#if PS_COLCLIP == 0 && PS_HDR == 0
// Standard Clamp
C = clamp(C, vec3(0.0f), vec3(255.0f));
#endif
// FIXME rouding of negative float?
// compiler uses trunc but it might need floor
// Warning: normally blending equation is mult(A, B) = A * B >> 7. GPU have the full accuracy
// GS: Color = 1, Alpha = 255 => output 1
// GPU: Color = 1/255, Alpha = 255/255 * 255/128 => output 1.9921875
#if PS_DFMT == FMT_16 && PS_BLEND_MIX == 0
// In 16 bits format, only 5 bits of colors are used. It impacts shadows computation of Castlevania
C = vec3(ivec3(C) & ivec3(0xF8));
#elif PS_COLCLIP == 1 || PS_HDR == 1
C = vec3(ivec3(C) & ivec3(0xFF));
#endif
#endif
}
void ps_blend(inout vec4 Color, inout vec4 As_rgba)
{
float As = As_rgba.a;
#if SW_BLEND
// PABE
#if PS_PABE
// No blending so early exit
if (As < 1.0f)
return;
#endif
#if PS_FEEDBACK_LOOP_IS_NEEDED
vec4 RT = trunc(sample_from_rt() * 255.0f + 0.1f);
#else
// Not used, but we define it to make the selection below simpler.
vec4 RT = vec4(0.0f);
#endif
// FIXME FMT_16 case
// FIXME Ad or Ad * 2?
float Ad = RT.a / 128.0f;
// Let the compiler do its jobs !
vec3 Cd = RT.rgb;
vec3 Cs = Color.rgb;
#if PS_BLEND_A == 0
vec3 A = Cs;
#elif PS_BLEND_A == 1
vec3 A = Cd;
#else
vec3 A = vec3(0.0f);
#endif
#if PS_BLEND_B == 0
vec3 B = Cs;
#elif PS_BLEND_B == 1
vec3 B = Cd;
#else
vec3 B = vec3(0.0f);
#endif
#if PS_BLEND_C == 0
float C = As;
#elif PS_BLEND_C == 1
float C = Ad;
#else
float C = Af;
#endif
#if PS_BLEND_D == 0
vec3 D = Cs;
#elif PS_BLEND_D == 1
vec3 D = Cd;
#else
vec3 D = vec3(0.0f);
#endif
// As/Af clamp alpha for Blend mix
// We shouldn't clamp blend mix with blend hw 1 as we want alpha higher
float C_clamped = C;
#if PS_BLEND_MIX > 0 && PS_BLEND_HW != 1
C_clamped = min(C_clamped, 1.0f);
#endif
#if PS_BLEND_A == PS_BLEND_B
Color.rgb = D;
// In blend_mix, HW adds on some alpha factor * dst.
// Truncating here wouldn't quite get the right result because it prevents the <1 bit here from combining with a <1 bit in dst to form a ≥1 amount that pushes over the truncation.
// Instead, apply an offset to convert HW's round to a floor.
// Since alpha is in 1/128 increments, subtracting (0.5 - 0.5/128 == 127/256) would get us what we want if GPUs blended in full precision.
// But they don't. Details here: https://github.com/PCSX2/pcsx2/pull/6809#issuecomment-1211473399
// Based on the scripts at the above link, the ideal choice for Intel GPUs is 126/256, AMD 120/256. Nvidia is a lost cause.
// 124/256 seems like a reasonable compromise, providing the correct answer 99.3% of the time on Intel (vs 99.6% for 126/256), and 97% of the time on AMD (vs 97.4% for 120/256).
#elif PS_BLEND_MIX == 2
Color.rgb = ((A - B) * C_clamped + D) + (124.0f/256.0f);
#elif PS_BLEND_MIX == 1
Color.rgb = ((A - B) * C_clamped + D) - (124.0f/256.0f);
#else
Color.rgb = trunc((A - B) * C + D);
#endif
#if PS_BLEND_HW == 1
// As or Af
As_rgba.rgb = vec3(C);
// Subtract 1 for alpha to compensate for the changed equation,
// if c.rgb > 255.0f then we further need to adjust alpha accordingly,
// we pick the lowest overflow from all colors because it's the safest,
// we divide by 255 the color because we don't know Cd value,
// changed alpha should only be done for hw blend.
vec3 alpha_compensate = max(vec3(1.0f), Color.rgb / vec3(255.0f));
As_rgba.rgb -= alpha_compensate;
#elif PS_BLEND_HW == 2
// Compensate slightly for Cd*(As + 1) - Cs*As.
// The initial factor we chose is 1 (0.00392)
// as that is the minimum color Cd can be,
// then we multiply by alpha to get the minimum
// blended value it can be.
float color_compensate = 1.0f * (C + 1.0f);
Color.rgb -= vec3(color_compensate);
#elif PS_BLEND_HW == 3
// As, Ad or Af clamped.
As_rgba.rgb = vec3(C_clamped);
// Cs*(Alpha + 1) might overflow, if it does then adjust alpha value
// that is sent on second output to compensate.
vec3 overflow_check = (Color.rgb - vec3(255.0f)) / 255.0f;
vec3 alpha_compensate = max(vec3(0.0f), overflow_check);
As_rgba.rgb -= alpha_compensate;
#endif
#else
#if PS_BLEND_HW == 1
// Needed for Cd * (As/Ad/F + 1) blending modes
Color.rgb = vec3(255.0f);
#elif PS_BLEND_HW == 2
// Cd*As,Cd*Ad or Cd*F
#if PS_BLEND_C == 2
float Alpha = Af;
#else
float Alpha = As;
#endif
Color.rgb = max(vec3(0.0f), (Alpha - vec3(1.0f)));
Color.rgb *= vec3(255.0f);
#elif PS_BLEND_HW == 3
// Needed for Cs*Ad, Cs*Ad + Cd, Cd - Cs*Ad
// Multiply Color.rgb by (255/128) to compensate for wrong Ad/255 value when rgb are below 128.
// When any color channel is higher than 128 then adjust the compensation automatically
// to give us more accurate colors, otherwise they will be wrong.
// The higher the value (>128) the lower the compensation will be.
float max_color = max(max(Color.r, Color.g), Color.b);
float color_compensate = 255.0f / max(128.0f, max_color);
Color.rgb *= vec3(color_compensate);
#endif
#endif
}
void main()
{
#if PS_SCANMSK & 2
// fail depth test on prohibited lines
if ((int(gl_FragCoord.y) & 1) == (PS_SCANMSK & 1))
discard;
#endif
#if PS_DATE >= 5
#if PS_WRITE_RG == 1
// Pseudo 16 bits access.
float rt_a = sample_from_rt().g;
#else
float rt_a = sample_from_rt().a;
#endif
#if (PS_DATE & 3) == 1
// DATM == 0: Pixel with alpha equal to 1 will failed
bool bad = (127.5f / 255.0f) < rt_a;
#elif (PS_DATE & 3) == 2
// DATM == 1: Pixel with alpha equal to 0 will failed
bool bad = rt_a < (127.5f / 255.0f);
#endif
if (bad) {
discard;
}
#endif // PS_DATE >= 5
#if PS_DATE == 3
int stencil_ceil = int(texelFetch(PrimMinTexture, ivec2(gl_FragCoord.xy), 0).r);
// Note gl_PrimitiveID == stencil_ceil will be the primitive that will update
// the bad alpha value so we must keep it.
if (gl_PrimitiveID > stencil_ceil) {
discard;
}
#endif
vec4 C = ps_color();
#if PS_SHUFFLE
uvec4 denorm_c = uvec4(C);
uvec2 denorm_TA = uvec2(vec2(TA.xy) * 255.0f + 0.5f);
#if PS_READ16_SRC
C.rb = vec2(float((denorm_c.r >> 3) | (((denorm_c.g >> 3) & 0x7u) << 5)));
if ((denorm_c.a & 0x80u) != 0u)
C.ga = vec2(float((denorm_c.g >> 6) | ((denorm_c.b >> 3) << 2) | (denorm_TA.y & 0x80u)));
else
C.ga = vec2(float((denorm_c.g >> 6) | ((denorm_c.b >> 3) << 2) | (denorm_TA.x & 0x80u)));
#else
// Mask will take care of the correct destination
#if PS_READ_BA
C.rb = C.bb;
#else
C.rb = C.rr;
#endif
#if PS_READ_BA
if ((denorm_c.a & 0x80u) != 0u)
C.ga = vec2(float((denorm_c.a & 0x7Fu) | (denorm_TA.y & 0x80u)));
else
C.ga = vec2(float((denorm_c.a & 0x7Fu) | (denorm_TA.x & 0x80u)));
#else
if ((denorm_c.g & 0x80u) != 0u)
C.ga = vec2(float((denorm_c.g & 0x7Fu) | (denorm_TA.y & 0x80u)));
else
C.ga = vec2(float((denorm_c.g & 0x7Fu) | (denorm_TA.x & 0x80u)));
#endif
#endif
#endif
// Must be done before alpha correction
// AA (Fixed one) will output a coverage of 1.0 as alpha
#if PS_FIXED_ONE_A
C.a = 128.0f;
#endif
#if (SW_AD_TO_HW)
vec4 RT = trunc(subpassLoad(RtSampler) * 255.0f + 0.1f);
vec4 alpha_blend = vec4(RT.a / 128.0f);
#else
vec4 alpha_blend = vec4(C.a / 128.0f);
#endif
// Correct the ALPHA value based on the output format
#if (PS_DFMT == FMT_16)
float A_one = 128.0f; // alpha output will be 0x80
C.a = (PS_FBA != 0) ? A_one : step(128.0f, C.a) * A_one;
#elif (PS_DFMT == FMT_32) && (PS_FBA != 0)
if(C.a < 128.0f) C.a += 128.0f;
#endif
// Get first primitive that will write a failling alpha value
#if PS_DATE == 1
// DATM == 0
// Pixel with alpha equal to 1 will failed (128-255)
o_col0 = (C.a > 127.5f) ? vec4(gl_PrimitiveID) : vec4(0x7FFFFFFF);
#elif PS_DATE == 2
// DATM == 1
// Pixel with alpha equal to 0 will failed (0-127)
o_col0 = (C.a < 127.5f) ? vec4(gl_PrimitiveID) : vec4(0x7FFFFFFF);
#else
ps_blend(C, alpha_blend);
ps_dither(C.rgb);
// Color clamp/wrap needs to be done after sw blending and dithering
ps_color_clamp_wrap(C.rgb);
ps_fbmask(C);
#if !PS_NO_COLOR
#if PS_HDR == 1
o_col0 = vec4(C.rgb / 65535.0f, C.a / 255.0f);
#else
o_col0 = C / 255.0f;
#endif
#if !defined(DISABLE_DUAL_SOURCE) && !PS_NO_COLOR1
o_col1 = alpha_blend;
#endif
#if PS_NO_ABLEND
// write alpha blend factor into col0
o_col0.a = alpha_blend.a;
#endif
#if PS_ONLY_ALPHA
// rgb isn't used
o_col0.rgb = vec3(0.0f);
#endif
#endif
#if PS_ZCLAMP
gl_FragDepth = min(gl_FragCoord.z, MaxDepthPS);
#endif
#endif // PS_DATE
}
#endif