pcsx2/plugins/GSdx/GSTextureCache.cpp

1979 lines
56 KiB
C++

/*
* Copyright (C) 2007-2009 Gabest
* http://www.gabest.org
*
* This Program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This Program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA.
* http://www.gnu.org/copyleft/gpl.html
*
*/
#include "stdafx.h"
#include "GSTextureCache.h"
bool s_IS_OPENGL = false;
bool GSTextureCache::m_disable_partial_invalidation = false;
GSTextureCache::GSTextureCache(GSRenderer* r)
: m_renderer(r)
{
s_IS_OPENGL = (static_cast<GSRendererType>(theApp.GetConfigI("Renderer")) == GSRendererType::OGL_HW);
if (theApp.GetConfigB("UserHacks")) {
m_spritehack = theApp.GetConfigI("UserHacks_SpriteHack");
UserHacks_HalfPixelOffset = theApp.GetConfigB("UserHacks_HalfPixelOffset");
m_preload_frame = theApp.GetConfigB("preload_frame_with_gs_data");
m_disable_partial_invalidation = theApp.GetConfigB("UserHacks_DisablePartialInvalidation");
m_can_convert_depth = !theApp.GetConfigB("UserHacks_DisableDepthSupport");
} else {
m_spritehack = 0;
UserHacks_HalfPixelOffset = false;
m_preload_frame = false;
m_disable_partial_invalidation = false;
m_can_convert_depth = true;
}
m_paltex = theApp.GetConfigB("paltex");
m_can_convert_depth &= s_IS_OPENGL; // only supported by openGL so far
m_crc_hack_level = theApp.GetConfigI("crc_hack_level");
// In theory 4MB is enough but 9MB is safer for overflow (8MB
// isn't enough in custom resolution)
// Test: onimusha 3 PAL 60Hz
m_temp = (uint8*)_aligned_malloc(9 * 1024 * 1024, 32);
}
GSTextureCache::~GSTextureCache()
{
RemoveAll();
_aligned_free(m_temp);
}
void GSTextureCache::RemovePartial()
{
//m_src.RemoveAll();
for (int type = 0; type < 2; type++)
{
for_each(m_dst[type].begin(), m_dst[type].end(), delete_object());
m_dst[type].clear();
}
}
void GSTextureCache::RemoveAll()
{
m_src.RemoveAll();
for(int type = 0; type < 2; type++)
{
for_each(m_dst[type].begin(), m_dst[type].end(), delete_object());
m_dst[type].clear();
}
}
GSTextureCache::Source* GSTextureCache::LookupDepthSource(const GIFRegTEX0& TEX0, const GIFRegTEXA& TEXA, const GSVector4i& r, bool palette)
{
if (!CanConvertDepth()) {
GL_CACHE("LookupDepthSource not supported (0x%x, F:0x%x)", TEX0.TBP0, TEX0.PSM);
throw GSDXRecoverableError();
}
const GSLocalMemory::psm_t& psm_s = GSLocalMemory::m_psm[TEX0.PSM];
Source* src = NULL;
Target* dst = NULL;
// Check only current frame, I guess it is only used as a postprocessing effect
uint32 bp = TEX0.TBP0;
uint32 psm = TEX0.PSM;
for(auto t : m_dst[DepthStencil]) {
if(!t->m_age && t->m_used && t->m_dirty.empty() && GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t->m_TEX0.PSM))
{
ASSERT(GSLocalMemory::m_psm[t->m_TEX0.PSM].depth);
dst = t;
break;
}
}
if (!dst) {
// Retry on the render target (Silent Hill 4)
for(auto t : m_dst[RenderTarget]) {
if(!t->m_age && t->m_used && t->m_dirty.empty() && GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t->m_TEX0.PSM))
{
ASSERT(GSLocalMemory::m_psm[t->m_TEX0.PSM].depth);
dst = t;
break;
}
}
}
if (dst) {
GL_CACHE("TC depth: dst %s hit: %d (0x%x, F:0x%x)", to_string(dst->m_type),
dst->m_texture ? dst->m_texture->GetID() : 0,
TEX0.TBP0, psm);
// Create a shared texture source
src = new Source(m_renderer, TEX0, TEXA, m_temp, true);
src->m_texture = dst->m_texture;
src->m_shared_texture = true;
src->m_target = true; // So renderer can check if a conversion is required
src->m_from_target = dst->m_texture; // avoid complex condition on the renderer
src->m_32_bits_fmt = dst->m_32_bits_fmt;
// Insert the texture in the hash set to keep track of it. But don't bother with
// texture cache list. It means that a new Source is created everytime we need it.
// If it is too expensive, one could cut memory allocation in Source constructor for this
// use case.
if (palette) {
const uint32* clut = m_renderer->m_mem.m_clut;
int size = psm_s.pal * sizeof(clut[0]);
src->m_palette = m_renderer->m_dev->CreateTexture(256, 1);
src->m_palette->Update(GSVector4i(0, 0, psm_s.pal, 1), clut, size);
src->m_initpalette = false;
}
m_src.m_surfaces.insert(src);
} else {
GL_CACHE("TC depth: ERROR miss (0x%x, F:0x%x)", TEX0.TBP0, psm);
// Possible ? In this case we could call LookupSource
// Or just put a basic texture
// src->m_texture = m_renderer->m_dev->CreateTexture(tw, th);
// In all cases rendering will be broken
//
// Note: might worth to check previous frame
// Note: otherwise return NULL and skip the draw
//ASSERT(0);
return LookupSource(TEX0, TEXA, r);
}
return src;
}
GSTextureCache::Source* GSTextureCache::LookupSource(const GIFRegTEX0& TEX0, const GIFRegTEXA& TEXA, const GSVector4i& r)
{
const GSLocalMemory::psm_t& psm_s = GSLocalMemory::m_psm[TEX0.PSM];
//const GSLocalMemory::psm_t& cpsm = psm.pal > 0 ? GSLocalMemory::m_psm[TEX0.CPSM] : psm;
// Until DX is fixed
if (s_IS_OPENGL) {
if(psm_s.pal > 0)
m_renderer->m_mem.m_clut.Read32(TEX0, TEXA);
} else {
GIFRegTEXA plainTEXA;
plainTEXA.AEM = 1;
plainTEXA.TA0 = 0;
plainTEXA.TA1 = 0x80;
m_renderer->m_mem.m_clut.Read32(TEX0, plainTEXA);
}
const uint32* clut = m_renderer->m_mem.m_clut;
Source* src = NULL;
list<Source*>& m = m_src.m_map[TEX0.TBP0 >> 5];
for(list<Source*>::iterator i = m.begin(); i != m.end(); i++)
{
Source* s = *i;
if (((TEX0.u32[0] ^ s->m_TEX0.u32[0]) | ((TEX0.u32[1] ^ s->m_TEX0.u32[1]) & 3)) != 0) // TBP0 TBW PSM TW TH
continue;
// Target are converted (AEM & palette) on the fly by the GPU. They don't need extra check
if (!s->m_target) {
// We request a palette texture (psm_s.pal). If the texture was
// converted by the CPU (s->m_palette == NULL), we need to ensure
// palette content is the same.
// Note: content of the palette will be uploaded at the end of the function
if (psm_s.pal > 0 && s->m_palette == NULL && !GSVector4i::compare64(clut, s->m_clut, psm_s.pal * sizeof(clut[0])))
continue;
// We request a 24/16 bit RGBA texture. Alpha expansion was done by
// the CPU. We need to check that TEXA is identical
if (psm_s.pal == 0 && psm_s.fmt > 0 && s->m_TEXA.u64 != TEXA.u64)
continue;
}
m.splice(m.begin(), m, i);
src = s;
break;
}
Target* dst = NULL;
bool half_right = false;
#ifdef DISABLE_HW_TEXTURE_CACHE
if( 0 )
#else
if(src == NULL)
#endif
{
uint32 bp = TEX0.TBP0;
uint32 psm = TEX0.PSM;
// Arc the Lad finds the wrong surface here when looking for a depth stencil.
// Since we're currently not caching depth stencils (check ToDo in CreateSource) we should not look for it here.
// (Simply not doing this code at all makes a lot of previsouly missing stuff show (but breaks pretty much everything
// else.)
for(list<Target*>::iterator i = m_dst[RenderTarget].begin(); i != m_dst[RenderTarget].end(); i++)
{
Target* t = *i;
if(t->m_used && t->m_dirty.empty()) {
// Typical bug (MGS3 blue cloud):
// 1/ RT used as 32 bits => alpha channel written
// 2/ RT used as 24 bits => no update of alpha channel
// 3/ Lookup of texture that used alpha channel as index, HasSharedBits will return false
// because of the previous draw call format
//
// Solution: consider the RT as 32 bits if the alpha was used in the past
uint32 t_psm = (t->m_dirty_alpha) ? t->m_TEX0.PSM & ~0x1 : t->m_TEX0.PSM;
if (GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t_psm)) {
if (!s_IS_OPENGL && (psm == PSM_PSMT8)) {
// OpenGL can convert the texture directly in the GPU. Not sure we want to keep this
// code for DX. It fixes effect but it is slow (MGS3)
// It is a complex to convert the code in shader. As a reference, let's do it on the CPU, it will
// be slow but
// 1/ it just works :)
// 2/ even with upscaling
// 3/ for both DX and OpenGL
// Gregory: to avoid a massive slow down for nothing, let's only enable
// this code when CRC is below the FULL level
if (m_crc_hack_level < 3)
Read(t, t->m_valid);
else
dst = t;
} else {
dst = t;
}
break;
} else if ((t->m_TEX0.TBW >= 16) && GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0 + t->m_TEX0.TBW * 0x10, t->m_TEX0.PSM)) {
// Detect half of the render target (fix snow engine game)
// Target Page (8KB) have always a width of 64 pixels
// Half of the Target is TBW/2 pages * 8KB / (1 block * 256B) = 0x10
half_right = true;
dst = t;
break;
}
}
}
// Pure depth texture format will be fetched by LookupDepthSource.
// However guess what, some games (GoW) read the depth as a standard
// color format (instead of a depth format). All pixels are scrambled
// (because color and depth don't have same location). They don't care
// pixel will be several draw calls later.
//
// Sigh... They don't help us.
if (dst == NULL && CanConvertDepth()) {
// Let's try a trick to avoid to use wrongly a depth buffer
// Unfortunately, I don't have any Arc the Lad testcase
//
// 1/ Check only current frame, I guess it is only used as a postprocessing effect
for(list<Target*>::iterator i = m_dst[DepthStencil].begin(); i != m_dst[DepthStencil].end(); i++) {
Target* t = *i;
if(!t->m_age && t->m_used && t->m_dirty.empty() && GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t->m_TEX0.PSM))
{
GL_INS("TC: Warning depth format read as color format. Pixels will be scrambled");
// Let's fetch a depth format texture. Rational, it will avoid the texture allocation and the
// rescaling of the current function.
if (psm_s.bpp > 8) {
GIFRegTEX0 depth_TEX0;
depth_TEX0.u32[0] = TEX0.u32[0] | (0x30u << 20u);
depth_TEX0.u32[1] = TEX0.u32[1];
return LookupDepthSource(depth_TEX0, TEXA, r);
} else {
return LookupDepthSource(TEX0, TEXA, r, true);
}
}
}
}
}
if(src == NULL)
{
#ifdef ENABLE_OGL_DEBUG
if (dst) {
GL_CACHE("TC: dst %s hit (%s): %d (0x%x, F:0x%x)", to_string(dst->m_type), half_right ? "half" : "full",
dst->m_texture ? dst->m_texture->GetID() : 0,
TEX0.TBP0, TEX0.PSM);
} else {
GL_CACHE("TC: src miss (0x%x, F:0x%x)", TEX0.TBP0, TEX0.PSM);
}
#endif
src = CreateSource(TEX0, TEXA, dst, half_right);
} else {
GL_CACHE("TC: src hit: %d (0x%x, F:0x%x)",
src->m_texture ? src->m_texture->GetID() : 0,
TEX0.TBP0, TEX0.PSM);
}
if (src->m_palette)
{
int size = psm_s.pal * sizeof(clut[0]);
if(src->m_initpalette || !GSVector4i::update(src->m_clut, clut, size))
{
src->m_palette->Update(GSVector4i(0, 0, psm_s.pal, 1), src->m_clut, size);
src->m_initpalette = false;
}
}
src->Update(r);
m_src.m_used = true;
return src;
}
GSTextureCache::Target* GSTextureCache::LookupTarget(const GIFRegTEX0& TEX0, int w, int h, int type, bool used)
{
const GSLocalMemory::psm_t& psm_s = GSLocalMemory::m_psm[TEX0.PSM];
uint32 bp = TEX0.TBP0;
Target* dst = NULL;
for(list<Target*>::iterator i = m_dst[type].begin(); i != m_dst[type].end(); i++)
{
Target* t = *i;
if(bp == t->m_TEX0.TBP0)
{
m_dst[type].splice(m_dst[type].begin(), m_dst[type], i);
dst = t;
dst->m_32_bits_fmt |= (psm_s.bpp != 16);
dst->m_TEX0 = TEX0;
break;
}
}
if (dst) {
GL_CACHE("TC: Lookup Target(%s) %dx%d, hit: %d (0x%x, F:0x%x)", to_string(type), w, h, dst->m_texture->GetID(), bp, TEX0.PSM);
dst->Update();
dst->m_dirty_alpha |= (psm_s.trbpp != 24);
} else if (CanConvertDepth()) {
int rev_type = (type == DepthStencil) ? RenderTarget : DepthStencil;
GSVector4 sRect(0, 0, 1, 1);
GSVector4 dRect(0, 0, w, h);
// Depth stencil/RT can be an older RT/DS but only check recent RT/DS to avoid to pick
// some bad data.
for(list<Target*>::iterator i = m_dst[rev_type].begin(); i != m_dst[rev_type].end(); i++)
{
Target* t = *i;
if(!t->m_age && bp == t->m_TEX0.TBP0)
{
dst = CreateTarget(TEX0, w, h, type);
dst->m_32_bits_fmt = t->m_32_bits_fmt;
int shader;
bool fmt_16_bits = (psm_s.bpp == 16 && GSLocalMemory::m_psm[t->m_TEX0.PSM].bpp == 16);
if (type == DepthStencil) {
GL_CACHE("TC: Lookup Target(Depth) %dx%d, hit Color (0x%x, F:0x%x was F:0x%x)", w, h, bp, TEX0.PSM, t->m_TEX0.PSM);
shader = (fmt_16_bits) ? ShaderConvert_RGB5A1_TO_FLOAT16 : ShaderConvert_RGBA8_TO_FLOAT32 + psm_s.fmt;
} else {
GL_CACHE("TC: Lookup Target(Color) %dx%d, hit Depth (0x%x, F:0x%x was F:0x%x)", w, h, bp, TEX0.PSM, t->m_TEX0.PSM);
shader = (fmt_16_bits) ? ShaderConvert_FLOAT16_TO_RGB5A1 : ShaderConvert_FLOAT32_TO_RGBA8;
}
m_renderer->m_dev->StretchRect(t->m_texture, sRect, dst->m_texture, dRect, shader, false);
break;
}
}
}
if(dst == NULL)
{
GL_CACHE("TC: Lookup Target(%s) %dx%d, miss (0x%x, F:0x%x)", to_string(type), w, h, bp, TEX0.PSM);
dst = CreateTarget(TEX0, w, h, type);
// In theory new textures contain invalidated data. Still in theory a new target
// must contains the content of the GS memory.
// In practice, TC will wrongly invalidate some RT. For example due to write on the alpha
// channel but colors is still valid. Unfortunately TC doesn't support the upload of data
// in target.
//
// Cleaning the code here will likely break several games. However it might reduce
// the noise in draw call debugging. It is the main reason to enable it on debug build.
//
// From a performance point of view, it might cost a little on big upscaling
// but normally few RT are miss so it must remain reasonable.
if (s_IS_OPENGL) {
if (m_preload_frame && TEX0.TBW > 0) {
GL_INS("Preloading the RT DATA");
// RT doesn't have height but if we use a too big value, we will read outside of the GS memory.
int page0 = TEX0.TBP0 >> 5;
int max_page = (MAX_PAGES - page0);
int max_h = 32 * max_page / TEX0.TBW;
// h is likely smaller than w (true most of the time). Reduce the upload size (speed)
max_h = std::min<int>(max_h, TEX0.TBW * 64);
dst->m_dirty.push_back(GSDirtyRect(GSVector4i(0, 0, TEX0.TBW * 64, max_h), TEX0.PSM));
dst->Update();
} else {
#ifdef ENABLE_OGL_DEBUG
switch (type) {
case RenderTarget: m_renderer->m_dev->ClearRenderTarget(dst->m_texture, 0); break;
case DepthStencil: m_renderer->m_dev->ClearDepth(dst->m_texture, 0); break;
default:break;
}
#endif
}
}
}
if(m_renderer->CanUpscale())
{
int multiplier = m_renderer->GetUpscaleMultiplier();
if(multiplier > 1)
{
dst->m_texture->SetScale(GSVector2((float)multiplier, (float)multiplier));
}
else // Custom resolution hack
{
GSVector4i fr = m_renderer->GetFrameRect();
int ww = (int)(fr.left + m_renderer->GetDisplayRect().width());
int hh = (int)(fr.top + m_renderer->GetDisplayRect().height());
// Gregory: I'm sure this sillyness is related to the usage of a 32bits
// buffer as a 16 bits format. In this case the height of the buffer is
// multiplyed by 2 (Hence a scissor bigger than the RT)
// This vp2 fix doesn't work most of the time
if(hh < 512 && m_renderer->m_context->SCISSOR.SCAY1 == 511) // vp2
{
hh = 512;
}
if(ww && hh)
{
dst->m_texture->SetScale(GSVector2((float)w / ww, (float)h / hh));
}
}
}
if(used)
{
dst->m_used = true;
}
return dst;
}
GSTextureCache::Target* GSTextureCache::LookupTarget(const GIFRegTEX0& TEX0, int w, int h, int real_h)
{
uint32 bp = TEX0.TBP0;
Target* dst = NULL;
#if 0
// Dump the list of targets for debug
for(auto t : m_dst[RenderTarget]) {
GL_INS("TC: frame 0x%x -> 0x%x : %d (age %d)", t->m_TEX0.TBP0, t->m_end_block, t->m_texture->GetID(), t->m_age);
}
#endif
// Let's try to find a perfect frame that contains valid data
for(auto t : m_dst[RenderTarget]) {
if(bp == t->m_TEX0.TBP0 && t->m_end_block > bp) {
dst = t;
GL_CACHE("TC: Lookup Frame %dx%d, perfect hit: %d (0x%x -> 0x%x)", w, h, dst->m_texture->GetID(), bp, t->m_end_block);
break;
}
}
// 2nd try ! Try to find a frame that include the bp
if (dst == NULL) {
for(auto t : m_dst[RenderTarget]) {
if (t->m_TEX0.TBP0 < bp && bp < t->m_end_block) {
dst = t;
GL_CACHE("TC: Lookup Frame %dx%d, inclusive hit: %d (0x%x, took 0x%x -> 0x%x)", w, h, t->m_texture->GetID(), bp, t->m_TEX0.TBP0, t->m_end_block);
break;
}
}
}
// 3rd try ! Try to find a frame that doesn't contain valid data (honestly I'm not sure we need to do it)
if (dst == NULL) {
for(auto t : m_dst[RenderTarget]) {
if(bp == t->m_TEX0.TBP0) {
dst = t;
GL_CACHE("TC: Lookup Frame %dx%d, empty hit: %d (0x%x -> 0x%x)", w, h, dst->m_texture->GetID(), bp, t->m_end_block);
break;
}
}
}
#if 0
for(list<Target*>::iterator i = m_dst[RenderTarget].begin(); i != m_dst[RenderTarget].end(); i++)
{
Target* t = *i;
if(bp == t->m_TEX0.TBP0)
{
dst = t;
GL_CACHE("TC: Lookup Frame %dx%d, perfect hit: %d (0x%x -> 0x%x)", w, h, dst->m_texture->GetID(), bp, t->m_end_block);
break;
}
else
{
// HACK: try to find something close to the base pointer
if(t->m_TEX0.TBP0 <= bp && bp < t->m_TEX0.TBP0 + 0xe00UL && (!dst || t->m_TEX0.TBP0 >= dst->m_TEX0.TBP0))
{
GL_CACHE("TC: Lookup Frame %dx%d, close hit: %d (0x%x, took 0x%x -> 0x%x)", w, h, t->m_texture->GetID(), bp, t->m_TEX0.TBP0, t->m_end_block);
dst = t;
}
}
}
#endif
if(dst == NULL)
{
GL_CACHE("TC: Lookup Frame %dx%d, miss (0x%x)", w, h, bp);
dst = CreateTarget(TEX0, w, h, RenderTarget);
m_renderer->m_dev->ClearRenderTarget(dst->m_texture, 0); // new frame buffers after reset should be cleared, don't display memory garbage
if (m_preload_frame) {
// Load GS data into frame. Game can directly uploads a background or the full image in
// "CTRC" buffer. It will also avoid various black screen issue in gs dump.
//
// Code is more or less an equivalent of the SW renderer
//
// Option is hidden and not enabled by default to avoid any regression
dst->m_dirty.push_back(GSDirtyRect(GSVector4i(0, 0, TEX0.TBW * 64, real_h), TEX0.PSM));
dst->Update();
}
}
else
{
dst->Update();
}
dst->m_used = true;
return dst;
}
// Goal: Depth And Target at the same address is not possible. On GS it is
// the same memory but not on the Dx/GL. Therefore a write to the Depth/Target
// must invalidate the Target/Depth respectively
void GSTextureCache::InvalidateVideoMemType(int type, uint32 bp)
{
if (!CanConvertDepth())
return;
for(list<Target*>::iterator i = m_dst[type].begin(); i != m_dst[type].end(); i++)
{
Target* t = *i;
if(bp == t->m_TEX0.TBP0)
{
GL_CACHE("TC: InvalidateVideoMemType: Remove Target(%s) %d (0x%x)", to_string(type),
t->m_texture ? t->m_texture->GetID() : 0,
t->m_TEX0.TBP0);
m_dst[type].erase(i);
delete t;
break;
}
}
}
// Goal: invalidate data sent to the GPU when the source (GS memory) is modified
// Called each time you want to write to the GS memory
void GSTextureCache::InvalidateVideoMem(GSOffset* off, const GSVector4i& rect, bool target)
{
if(!off) return; // Fixme. Crashes Dual Hearts, maybe others as well. Was fine before r1549.
uint32 bp = off->bp;
uint32 bw = off->bw;
uint32 psm = off->psm;
if(!target)
{
// Remove Source that have same BP as the render target (color&dss)
// rendering will dirty the copy
const list<Source*>& m = m_src.m_map[bp >> 5];
for(list<Source*>::const_iterator i = m.begin(); i != m.end(); )
{
list<Source*>::const_iterator j = i++;
Source* s = *j;
if(GSUtil::HasSharedBits(bp, psm, s->m_TEX0.TBP0, s->m_TEX0.PSM))
{
m_src.RemoveAt(s);
}
}
uint32 bbp = bp + bw * 0x10;
if (bw >= 16 && bbp < 16384) {
// Detect half of the render target (fix snow engine game)
// Target Page (8KB) have always a width of 64 pixels
// Half of the Target is TBW/2 pages * 8KB / (1 block * 256B) = 0x10
const list<Source*>& m = m_src.m_map[bbp >> 5];
for(list<Source*>::const_iterator i = m.begin(); i != m.end(); )
{
list<Source*>::const_iterator j = i++;
Source* s = *j;
if(GSUtil::HasSharedBits(bbp, psm, s->m_TEX0.TBP0, s->m_TEX0.PSM))
{
m_src.RemoveAt(s);
}
}
}
}
GSVector4i r;
uint32* pages = (uint32*)m_temp;
off->GetPages(rect, pages, &r);
bool found = false;
for(const uint32* p = pages; *p != GSOffset::EOP; p++)
{
uint32 page = *p;
const list<Source*>& m = m_src.m_map[page];
for(list<Source*>::const_iterator i = m.begin(); i != m.end(); )
{
list<Source*>::const_iterator j = i++;
Source* s = *j;
if(GSUtil::HasSharedBits(psm, s->m_TEX0.PSM))
{
uint32* RESTRICT valid = s->m_valid;
bool b = bp == s->m_TEX0.TBP0;
if(!s->m_target)
{
if (m_disable_partial_invalidation && s->m_repeating) {
m_src.RemoveAt(s);
} else {
// Invalidate data of input texture
if(s->m_repeating)
{
// Note: very hot path on snowbling engine game
vector<GSVector2i>& l = s->m_p2t[page];
for(vector<GSVector2i>::iterator k = l.begin(); k != l.end(); k++)
{
valid[k->x] &= k->y;
}
}
else
{
valid[page] = 0;
}
s->m_complete = false;
found |= b;
}
}
else
{
// render target used as input texture
// TODO
if(b)
{
m_src.RemoveAt(s);
}
}
}
}
}
if(!target) return;
for(int type = 0; type < 2; type++)
{
for(list<Target*>::iterator i = m_dst[type].begin(); i != m_dst[type].end(); )
{
list<Target*>::iterator j = i++;
Target* t = *j;
// GH: (I think) this code is completely broken. Typical issue:
// EE write an alpha channel into 32 bits texture
// Results: the target is deleted (because HasCompatibleBits is false)
//
// Major issues are expected if the game try to reuse the target
// If we dirty the RT, it will likely upload partially invalid data.
// (The color on the previous example)
if(GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t->m_TEX0.PSM))
{
if(!found && GSUtil::HasCompatibleBits(psm, t->m_TEX0.PSM))
{
GL_CACHE("TC: Dirty Target(%s) %d (0x%x) r(%d,%d,%d,%d)", to_string(type),
t->m_texture ? t->m_texture->GetID() : 0,
t->m_TEX0.TBP0, r.x, r.y, r.z, r.w);
t->m_dirty.push_back(GSDirtyRect(r, psm));
t->m_TEX0.TBW = bw;
}
else
{
m_dst[type].erase(j);
GL_CACHE("TC: Remove Target(%s) %d (0x%x)", to_string(type),
t->m_texture ? t->m_texture->GetID() : 0,
t->m_TEX0.TBP0);
delete t;
continue;
}
} else if (bp == t->m_TEX0.TBP0) {
// EE writes the ALPHA channel. Mark it as invalid for
// the texture cache. Otherwise it will generate a wrong
// hit on the texture cache.
// Game: Conflict - Desert Storm (flickering)
t->m_dirty_alpha = false;
}
// GH: Try to detect texture write that will overlap with a target buffer
if(GSUtil::HasSharedBits(psm, t->m_TEX0.PSM)) {
if (bp < t->m_TEX0.TBP0)
{
uint32 rowsize = bw * 8192;
uint32 offset = (uint32)((t->m_TEX0.TBP0 - bp) * 256);
if(rowsize > 0 && offset % rowsize == 0)
{
int y = GSLocalMemory::m_psm[psm].pgs.y * offset / rowsize;
if(r.bottom > y)
{
GL_CACHE("TC: Dirty After Target(%s) %d (0x%x)", to_string(type),
t->m_texture ? t->m_texture->GetID() : 0,
t->m_TEX0.TBP0);
// TODO: do not add this rect above too
t->m_dirty.push_back(GSDirtyRect(GSVector4i(r.left, r.top - y, r.right, r.bottom - y), psm));
t->m_TEX0.TBW = bw;
continue;
}
}
}
// FIXME: this code "fixes" black FMV issue with rule of rose.
#if 1
// Greg: I'm not sure the 'bw' equality is required but it won't hurt too much
if (t->m_TEX0.TBW == bw && t->Inside(bp, bw, psm, rect)) {
uint32 rowsize = bw * 8192u;
uint32 offset = (uint32)((bp - t->m_TEX0.TBP0) * 256);
if(rowsize > 0 && offset % rowsize == 0) {
GL_CACHE("TC: Dirty in the middle of Target(%s) %d (0x%x)", to_string(type),
t->m_texture ? t->m_texture->GetID() : 0,
t->m_TEX0.TBP0);
int y = GSLocalMemory::m_psm[psm].pgs.y * offset / rowsize;
t->m_dirty.push_back(GSDirtyRect(GSVector4i(r.left, r.top + y, r.right, r.bottom + y), psm));
t->m_TEX0.TBW = bw;
continue;
}
}
#endif
}
}
}
}
// Goal: retrive the data from the GPU to the GS memory.
// Called each time you want to read from the GS memory
void GSTextureCache::InvalidateLocalMem(GSOffset* off, const GSVector4i& r)
{
uint32 bp = off->bp;
uint32 psm = off->psm;
//uint32 bw = off->bw;
// No depth handling please.
if (psm == PSM_PSMZ32 || psm == PSM_PSMZ24 || psm == PSM_PSMZ16 || psm == PSM_PSMZ16S) {
GL_INS("ERROR: InvalidateLocalMem depth format isn't supported (%d,%d to %d,%d)", r.x, r.y, r.z, r.w);
if (m_can_convert_depth) {
for(auto t : m_dst[DepthStencil]) {
if(GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t->m_TEX0.PSM)) {
// Read the full depth buffer for easy testing
Read(t, t->m_valid);
}
}
}
return;
}
// This is a shorter but potentially slower version of the below, commented out code.
// It works for all the games mentioned below and fixes a couple of other ones as well
// (Busen0: Wizardry and Chaos Legion).
// Also in a few games the below code ran the Grandia3 case when it shouldn't :p
for(list<Target*>::iterator i = m_dst[RenderTarget].begin(); i != m_dst[RenderTarget].end(); )
{
list<Target*>::iterator j = i++;
Target* t = *j;
if (t->m_TEX0.PSM != PSM_PSMZ32 && t->m_TEX0.PSM != PSM_PSMZ24 && t->m_TEX0.PSM != PSM_PSMZ16 && t->m_TEX0.PSM != PSM_PSMZ16S)
{
if(GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t->m_TEX0.PSM))
{
// GH Note: Read will do a StretchRect and then will sizzle data to the GS memory
// t->m_valid will do the full target texture whereas r.intersect(t->m_valid) will be limited
// to the useful part for the transfer.
// 1/ Logically intersect must be enough, except if we miss some call to InvalidateLocalMem
// or it need the depth part too
// 2/ Read function is slow but I suspect the swizzle part to be costly. Maybe a compute shader
// that do the swizzle at the same time of the Stretching could save CPU computation.
// note: r.rintersect breaks Wizardry and Chaos Legion
// Read(t, t->m_valid) works in all tested games but is very slow in GUST titles ><
if (GSTextureCache::m_disable_partial_invalidation) {
Read(t, r.rintersect(t->m_valid));
} else {
if (r.x == 0 && r.y == 0) // Full screen read?
Read(t, t->m_valid);
else // Block level read?
Read(t, r.rintersect(t->m_valid));
}
}
} else {
GL_INS("ERROR: InvalidateLocalMem target is a depth format");
}
}
//GSTextureCache::Target* rt2 = NULL;
//int ymin = INT_MAX;
//for(list<Target*>::iterator i = m_dst[RenderTarget].begin(); i != m_dst[RenderTarget].end(); )
//{
// list<Target*>::iterator j = i++;
// Target* t = *j;
// if (t->m_TEX0.PSM != PSM_PSMZ32 && t->m_TEX0.PSM != PSM_PSMZ24 && t->m_TEX0.PSM != PSM_PSMZ16 && t->m_TEX0.PSM != PSM_PSMZ16S)
// {
// if(GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t->m_TEX0.PSM))
// {
// if(GSUtil::HasCompatibleBits(psm, t->m_TEX0.PSM))
// {
// Read(t, r.rintersect(t->m_valid));
// return;
// }
// else if(psm == PSM_PSMCT32 && (t->m_TEX0.PSM == PSM_PSMCT16 || t->m_TEX0.PSM == PSM_PSMCT16S))
// {
// // ffx-2 riku changing to her default (shoots some reflecting glass at the end), 16-bit rt read as 32-bit
// Read(t, GSVector4i(r.left, r.top, r.right, r.top + (r.bottom - r.top) * 2).rintersect(t->m_valid));
// return;
// }
// else
// {
// if (psm == PSM_PSMT4HH && t->m_TEX0.PSM == PSM_PSMCT32)
// {
// // Silent Hill Origins shadows: Read 8 bit using only the HIGH bits (4 bit) texture as 32 bit.
// Read(t, r.rintersect(t->m_valid));
// return;
// }
// else
// {
// //printf("Trashing render target. We have a %d type texture and we are trying to write into a %d type texture\n", t->m_TEX0.PSM, psm);
// m_dst[RenderTarget].erase(j);
// delete t;
// }
// }
// }
// // Grandia3, FFX, FFX-2 pause menus. t->m_TEX0.TBP0 magic number checks because otherwise kills xs2 videos
// if( (GSUtil::HasSharedBits(psm, t->m_TEX0.PSM) && (bp > t->m_TEX0.TBP0) )
// && ((t->m_TEX0.TBP0 == 0) || (t->m_TEX0.TBP0==3328) || (t->m_TEX0.TBP0==3584) ))
// {
// //printf("first : %d-%d child : %d-%d\n", psm, bp, t->m_TEX0.PSM, t->m_TEX0.TBP0);
// uint32 rowsize = bw * 8192;
// uint32 offset = (uint32)((bp - t->m_TEX0.TBP0) * 256);
// if(rowsize > 0 && offset % rowsize == 0)
// {
// int y = GSLocalMemory::m_psm[psm].pgs.y * offset / rowsize;
// if(y < ymin && y < 512)
// {
// rt2 = t;
// ymin = y;
// }
// }
// }
// }
//}
//if(rt2)
//{
// Read(rt2, GSVector4i(r.left, r.top + ymin, r.right, r.bottom + ymin));
//}
// TODO: ds
}
// Hack: remove Target that are strictly included in current rt. Typically uses for FMV
// For example, game is rendered at 0x800->0x1000, fmv will be uploaded to 0x0->0x2800
// FIXME In theory, we ought to report the data from the sub rt to the main rt. But let's
// postpone it for later.
void GSTextureCache::InvalidateVideoMemSubTarget(GSTextureCache::Target* rt)
{
if (!rt)
return;
for(list<Target*>::iterator i = m_dst[RenderTarget].begin(); i != m_dst[RenderTarget].end(); ) {
list<Target*>::iterator j = i++;
Target* t = *j;
if ((t->m_TEX0.TBP0 > rt->m_TEX0.TBP0) && (t->m_end_block < rt->m_end_block) && (t->m_TEX0.TBW == rt->m_TEX0.TBW)
&& (t->m_TEX0.TBP0 < t->m_end_block)) {
GL_INS("InvalidateVideoMemSubTarget: rt 0x%x -> 0x%x, sub rt 0x%x -> 0x%x",
rt->m_TEX0.TBP0, rt->m_end_block, t->m_TEX0.TBP0, t->m_end_block);
m_dst[RenderTarget].erase(j);
delete t;
}
}
}
void GSTextureCache::IncAge()
{
int maxage = m_src.m_used ? 3 : 30;
// You can't use m_map[page] because Source* are duplicated on several pages.
for(hash_set<Source*>::iterator i = m_src.m_surfaces.begin(); i != m_src.m_surfaces.end(); )
{
hash_set<Source*>::iterator j = i++;
Source* s = *j;
if(s->m_shared_texture) {
// Shared textures are temporary only added in the hash set but not in the texture
// cache list therefore you can't use RemoveAt
m_src.m_surfaces.erase(s);
delete s;
} else if(++s->m_age > maxage) {
m_src.RemoveAt(s);
}
}
m_src.m_used = false;
// Clearing of Rendertargets causes flickering in many scene transitions.
// Sigh, this seems to be used to invalidate surfaces. So set a huge maxage to avoid flicker,
// but still invalidate surfaces. (Disgaea 2 fmv when booting the game through the BIOS)
// Original maxage was 4 here, Xenosaga 2 needs at least 240, else it flickers on scene transitions.
maxage = 400; // ffx intro scene changes leave the old image untouched for a couple of frames and only then start using it
for(int type = 0; type < 2; type++)
{
for(list<Target*>::iterator i = m_dst[type].begin(); i != m_dst[type].end(); )
{
list<Target*>::iterator j = i++;
Target* t = *j;
// This variable is used to detect the texture shuffle effect. There is a high
// probability that game will do it on the current RT.
// Variable is cleared here to avoid issue with game that uses a 16 bits
// render target
if (t->m_age > 0) {
// GoW2 uses the effect at the start of the frame
t->m_32_bits_fmt = false;
}
if(++t->m_age > maxage)
{
m_dst[type].erase(j);
GL_CACHE("TC: Remove Target(%s): %d (0x%x) due to age", to_string(type),
t->m_texture ? t->m_texture->GetID() : 0,
t->m_TEX0.TBP0);
delete t;
}
}
}
}
//Fixme: Several issues in here. Not handling depth stencil, pitch conversion doesnt work.
GSTextureCache::Source* GSTextureCache::CreateSource(const GIFRegTEX0& TEX0, const GIFRegTEXA& TEXA, Target* dst, bool half_right)
{
const GSLocalMemory::psm_t& psm = GSLocalMemory::m_psm[TEX0.PSM];
Source* src = new Source(m_renderer, TEX0, TEXA, m_temp);
if (src == NULL) throw GSDXErrorOOM();
int tw = 1 << TEX0.TW;
int th = 1 << TEX0.TH;
//int tp = TEX0.TBW << 6;
bool hack = false;
if(m_spritehack && (TEX0.PSM == PSM_PSMT8 || TEX0.PSM == PSM_PSMT8H))
{
src->m_spritehack_t = true;
if(m_spritehack == 2 && TEX0.CPSM != PSM_PSMCT16)
src->m_spritehack_t = false;
}
else
src->m_spritehack_t = false;
if (dst)
{
// TODO: clean up this mess
int shader = dst->m_type != RenderTarget ? ShaderConvert_FLOAT32_TO_RGBA8 : ShaderConvert_COPY;
bool is_8bits = TEX0.PSM == PSM_PSMT8 && s_IS_OPENGL;
if (is_8bits) {
GL_INS("Reading RT as a packed-indexed 8 bits format");
shader = ShaderConvert_RGBA_TO_8I;
}
#ifdef ENABLE_OGL_DEBUG
if (TEX0.PSM == PSM_PSMT4) {
GL_INS("ERROR: Reading RT as a packed-indexed 4 bits format is not supported");
}
#endif
if (GSLocalMemory::m_psm[TEX0.PSM].bpp > 8) {
src->m_32_bits_fmt = dst->m_32_bits_fmt;
}
// Keep a trace of origin of the texture
src->m_target = true;
src->m_from_target = dst->m_texture;
dst->Update();
GSTexture* tmp = NULL;
if (dst->m_texture->IsMSAA())
{
tmp = dst->m_texture;
dst->m_texture = m_renderer->m_dev->Resolve(dst->m_texture);
}
// do not round here!!! if edge becomes a black pixel and addressing mode is clamp => everything outside the clamped area turns into black (kh2 shadows)
int w = (int)(dst->m_texture->GetScale().x * tw);
int h = (int)(dst->m_texture->GetScale().y * th);
if (is_8bits) {
// Unscale 8 bits textures, quality won't be nice but format is really awful
w = tw;
h = th;
}
GSVector2i dstsize = dst->m_texture->GetSize();
// pitch conversion
if(dst->m_TEX0.TBW != TEX0.TBW) // && dst->m_TEX0.PSM == TEX0.PSM
{
// This is so broken :p
////Better not do the code below, "fixes" like every game that ever gets here..
////Edit: Ratchet and Clank needs this to show most of it's graphics at all.
////Someone else fix this please, I can't :p
////delete src; return NULL;
//// sfex3 uses this trick (bw: 10 -> 5, wraps the right side below the left)
//ASSERT(dst->m_TEX0.TBW > TEX0.TBW); // otherwise scale.x need to be reduced to make the larger texture fit (TODO)
//src->m_texture = m_renderer->m_dev->CreateRenderTarget(dstsize.x, dstsize.y, false);
//GSVector4 size = GSVector4(dstsize).xyxy();
//GSVector4 scale = GSVector4(dst->m_texture->GetScale()).xyxy();
//int blockWidth = 64;
//int blockHeight = TEX0.PSM == PSM_PSMCT32 || TEX0.PSM == PSM_PSMCT24 ? 32 : 64;
//GSVector4i br(0, 0, blockWidth, blockHeight);
//int sw = (int)dst->m_TEX0.TBW << 6;
//int dw = (int)TEX0.TBW << 6;
//int dh = 1 << TEX0.TH;
//if(sw != 0)
//for(int dy = 0; dy < dh; dy += blockHeight)
//{
// for(int dx = 0; dx < dw; dx += blockWidth)
// {
// int off = dy * dw / blockHeight + dx;
// int sx = off % sw;
// int sy = off / sw;
// GSVector4 sRect = GSVector4(GSVector4i(sx, sy).xyxy() + br) * scale / size;
// GSVector4 dRect = GSVector4(GSVector4i(dx, dy).xyxy() + br) * scale;
// m_renderer->m_dev->StretchRect(dst->m_texture, sRect, src->m_texture, dRect);
// // TODO: this is quite a lot of StretchRect, do it with one Draw
// }
//}
}
else if(tw < 1024)
{
// FIXME: timesplitters blurs the render target by blending itself over a couple of times
hack = true;
//if(tw == 256 && th == 128 && (TEX0.TBP0 == 0 || TEX0.TBP0 == 0x00e00))
//{
// delete src;
// return NULL;
//}
}
// width/height conversion
GSVector2 scale = dst->m_texture->GetScale();
GSVector4 dRect(0, 0, w, h);
// Lengthy explanation of the rescaling code.
// Here an example in 2x:
// RT is 1280x1024 but only contains 512x448 valid data (so 256x224 pixels without upscaling)
//
// PS2 want to read it back as a 1024x1024 pixels (they don't care about the extra pixels)
// So in theory we need to shrink a 2048x2048 RT into a 1024x1024 texture. Obviously the RT is
// too small.
//
// So we will only limit the resize to the available data in RT.
// Therefore we will resize the RT from 1280x1024 to 1280x1024/2048x2048 % of the new texture
// size (which is 1280x1024) (i.e. 800x512)
// From the rendering point of view. UV coordinate will be normalized on the real GS texture size
// This way it can be used on an upscaled texture without extra scaling factor (only requirement is
// to have same proportion)
//
// FIXME: The scaling will create a bad offset. For example if texture coordinate start at 0.5 (pixel 0)
// At 2x it will become 0.5/128 * 256 = 1 (pixel 1)
// I think it is the purpose of the UserHacks_HalfPixelOffset below. However implementation is less
// than ideal.
// 1/ It suppose games have an half pixel offset on texture coordinate which could be wrong
// 2/ It doesn't support rescaling of the RT (tw = 1024)
// Maybe it will be more easy to just round the UV value in the Vertex Shader
if (!is_8bits) {
// 8 bits handling is special due to unscaling. It is better to not execute this code
if (w > dstsize.x)
{
scale.x = (float)dstsize.x / tw;
dRect.z = (float)dstsize.x * scale.x / dst->m_texture->GetScale().x;
w = dstsize.x;
}
if (h > dstsize.y)
{
scale.y = (float)dstsize.y / th;
dRect.w = (float)dstsize.y * scale.y / dst->m_texture->GetScale().y;
h = dstsize.y;
}
}
GSVector4 sRect(0, 0, w, h);
GSTexture* sTex = src->m_texture ? src->m_texture : dst->m_texture;
GSTexture* dTex = m_renderer->m_dev->CreateRenderTarget(w, h, false);
// GH: by default (m_paltex == 0) GSdx converts texture to the 32 bit format
// However it is different here. We want to reuse a Render Target as a texture.
// Because the texture is already on the GPU, CPU can't convert it.
if (psm.pal > 0) {
src->m_palette = m_renderer->m_dev->CreateTexture(256, 1);
}
// Disable linear filtering for various GS post-processing effect
// 1/ Palette is used to interpret the alpha channel of the RT as an index.
// Star Ocean 3 uses it to emulate a stencil buffer.
// 2/ Z formats are a bad idea to interpolate (discontinuties).
// 3/ 16 bits buffer is used to move data from a channel to another.
//
// I keep linear filtering for standard color even if I'm not sure that it is
// working correctly.
// Indeed, texture is reduced so you need to read all covered pixels (9 in 3x)
// to correctly interpolate the value. Linear interpolation is likely acceptable
// only in 2x scaling
//
// Src texture will still be bilinear interpolated so I'm really not sure
// that we need to do it here too.
//
// Future note: instead to do
// RT 2048x2048 -> T 1024x1024 -> RT 2048x2048
// We can maybe sample directly a bigger texture
// RT 2048x2048 -> T 2048x2048 -> RT 2048x2048
// Pro: better quality. Copy instead of StretchRect (must be faster)
// Cons: consume more memory
//
// In distant future: investigate to reuse the RT directly without any
// copy. Likely a speed boost and memory usage reduction.
bool linear = (TEX0.PSM == PSM_PSMCT32 || TEX0.PSM == PSM_PSMCT24);
if(!src->m_texture)
{
src->m_texture = dTex;
}
if ((sRect == dRect).alltrue() && !shader)
{
if (half_right) {
// You typically hit this code in snow engine game. Dstsize is the size of of Dx/GL RT
// which is arbitrary set to 1280 (biggest RT used by GS). h/w are based on the input texture
// so the only reliable way to find the real size of the target is to use the TBW value.
float real_width = dst->m_TEX0.TBW * 64u * dst->m_texture->GetScale().x;
m_renderer->m_dev->CopyRect(sTex, dTex, GSVector4i((int)(real_width/2.0f), 0, (int)real_width, h));
} else {
m_renderer->m_dev->CopyRect(sTex, dTex, GSVector4i(0, 0, w, h)); // <= likely wrong dstsize.x could be bigger than w
}
}
else
{
// Different size or not the same format
sRect.z /= sTex->GetWidth();
sRect.w /= sTex->GetHeight();
if (half_right) {
sRect.x = sRect.z/2.0f;
}
m_renderer->m_dev->StretchRect(sTex, sRect, dTex, dRect, shader, linear);
}
if(dTex != src->m_texture)
{
m_renderer->m_dev->Recycle(src->m_texture);
src->m_texture = dTex;
}
if( src->m_texture )
src->m_texture->SetScale(scale);
else
ASSERT(0);
if(tmp != NULL)
{
// tmp is the texture before a MultiSample resolve
m_renderer->m_dev->Recycle(dst->m_texture);
dst->m_texture = tmp;
}
// Offset hack. Can be enabled via GSdx options.
// The offset will be used in Draw().
float modx = 0.0f;
float mody = 0.0f;
if(UserHacks_HalfPixelOffset && hack)
{
switch(m_renderer->GetUpscaleMultiplier())
{
case 2: modx = 2.2f; mody = 2.2f; dst->m_texture->LikelyOffset = true; break;
case 3: modx = 3.1f; mody = 3.1f; dst->m_texture->LikelyOffset = true; break;
case 4: modx = 4.2f; mody = 4.2f; dst->m_texture->LikelyOffset = true; break;
case 5: modx = 5.3f; mody = 5.3f; dst->m_texture->LikelyOffset = true; break;
case 6: modx = 6.2f; mody = 6.2f; dst->m_texture->LikelyOffset = true; break;
case 8: modx = 8.2f; mody = 8.2f; dst->m_texture->LikelyOffset = true; break;
default: modx = 0.0f; mody = 0.0f; dst->m_texture->LikelyOffset = false; break;
}
}
dst->m_texture->OffsetHack_modx = modx;
dst->m_texture->OffsetHack_mody = mody;
}
else
{
if (m_paltex && psm.pal > 0)
{
src->m_texture = m_renderer->m_dev->CreateTexture(tw, th, Get8bitFormat());
src->m_palette = m_renderer->m_dev->CreateTexture(256, 1);
}
else
src->m_texture = m_renderer->m_dev->CreateTexture(tw, th);
}
if(src->m_texture == NULL)
{
delete src;
throw GSDXErrorOOM();
}
if(psm.pal > 0)
{
memcpy(src->m_clut, (const uint32*)m_renderer->m_mem.m_clut, psm.pal * sizeof(uint32));
}
m_src.Add(src, TEX0, m_renderer->m_context->offset.tex);
return src;
}
GSTextureCache::Target* GSTextureCache::CreateTarget(const GIFRegTEX0& TEX0, int w, int h, int type)
{
Target* t = new Target(m_renderer, TEX0, m_temp, CanConvertDepth());
if (t == NULL) throw GSDXErrorOOM();
// FIXME: initial data should be unswizzled from local mem in Update() if dirty
t->m_type = type;
if(type == RenderTarget)
{
t->m_texture = m_renderer->m_dev->CreateRenderTarget(w, h, true);
t->m_used = true; // FIXME
}
else if(type == DepthStencil)
{
t->m_texture = m_renderer->m_dev->CreateDepthStencil(w, h, true);
}
if(t->m_texture == NULL)
{
delete t;
throw GSDXErrorOOM();
}
m_dst[type].push_front(t);
return t;
}
void GSTextureCache::PrintMemoryUsage()
{
#ifdef ENABLE_OGL_DEBUG
uint32 tex = 0;
uint32 tex_rt = 0;
uint32 rt = 0;
uint32 dss = 0;
for(hash_set<Source*>::iterator i = m_src.m_surfaces.begin(); i != m_src.m_surfaces.end(); i++) {
Source* s = *i;
if (s && !s->m_shared_texture) {
if (s->m_target)
tex_rt += s->m_texture->GetMemUsage();
else
tex += s->m_texture->GetMemUsage();
}
}
for(list<Target*>::iterator i = m_dst[RenderTarget].begin(); i != m_dst[RenderTarget].end(); i++) {
Target* t = *i;
if (t)
rt += t->m_texture->GetMemUsage();
}
for(list<Target*>::iterator i = m_dst[DepthStencil].begin(); i != m_dst[DepthStencil].end(); i++) {
Target* t = *i;
if (t)
dss += t->m_texture->GetMemUsage();
}
GL_PERF("MEM: RO Tex %dMB. RW Tex %dMB. Target %dMB. Depth %dMB", tex >> 20u, tex_rt >> 20u, rt >> 20u, dss >> 20u);
#endif
}
// GSTextureCache::Surface
GSTextureCache::Surface::Surface(GSRenderer* r, uint8* temp)
: m_renderer(r)
, m_texture(NULL)
, m_age(0)
, m_temp(temp)
, m_32_bits_fmt(false)
, m_shared_texture(false)
{
m_TEX0.TBP0 = 0x3fff;
}
GSTextureCache::Surface::~Surface()
{
// Shared textures are pointers copy. Therefore no allocation
// to recycle.
if (!m_shared_texture)
m_renderer->m_dev->Recycle(m_texture);
}
void GSTextureCache::Surface::Update()
{
m_age = 0;
}
// GSTextureCache::Source
GSTextureCache::Source::Source(GSRenderer* r, const GIFRegTEX0& TEX0, const GIFRegTEXA& TEXA, uint8* temp, bool dummy_container)
: Surface(r, temp)
, m_palette(NULL)
, m_initpalette(true)
, m_target(false)
, m_complete(false)
, m_spritehack_t(false)
, m_p2t(NULL)
, m_from_target(NULL)
{
m_TEX0 = TEX0;
m_TEXA = TEXA;
if (dummy_container) {
// Dummy container only contain a m_texture that is a pointer to another source.
m_write.rect = NULL;
m_write.count = 0;
m_clut = NULL;
m_repeating = false;
} else {
memset(m_valid, 0, sizeof(m_valid));
m_clut = (uint32*)_aligned_malloc(256 * sizeof(uint32), 32);
memset(m_clut, 0, 256*sizeof(uint32));
m_write.rect = (GSVector4i*)_aligned_malloc(3 * sizeof(GSVector4i), 32);
m_write.count = 0;
m_repeating = m_TEX0.IsRepeating();
if(m_repeating)
{
m_p2t = r->m_mem.GetPage2TileMap(m_TEX0);
}
}
}
GSTextureCache::Source::~Source()
{
m_renderer->m_dev->Recycle(m_palette);
_aligned_free(m_clut);
_aligned_free(m_write.rect);
}
void GSTextureCache::Source::Update(const GSVector4i& rect)
{
Surface::Update();
if(m_complete || m_target)
{
return;
}
const GSVector2i& bs = GSLocalMemory::m_psm[m_TEX0.PSM].bs;
int tw = std::max<int>(1 << m_TEX0.TW, bs.x);
int th = std::max<int>(1 << m_TEX0.TH, bs.y);
GSVector4i r = rect.ralign<Align_Outside>(bs);
if(r.eq(GSVector4i(0, 0, tw, th)))
{
m_complete = true; // lame, but better than nothing
}
const GSOffset* off = m_renderer->m_context->offset.tex;
uint32 blocks = 0;
if(m_repeating)
{
for(int y = r.top; y < r.bottom; y += bs.y)
{
uint32 base = off->block.row[y >> 3];
for(int x = r.left, i = (y << 7) + x; x < r.right; x += bs.x, i += bs.x)
{
uint32 block = base + off->block.col[x >> 3];
if(block < MAX_BLOCKS)
{
uint32 addr = i >> 3;
uint32 row = addr >> 5;
uint32 col = 1 << (addr & 31);
if((m_valid[row] & col) == 0)
{
m_valid[row] |= col;
Write(GSVector4i(x, y, x + bs.x, y + bs.y));
blocks++;
}
}
}
}
}
else
{
for(int y = r.top; y < r.bottom; y += bs.y)
{
uint32 base = off->block.row[y >> 3];
for(int x = r.left; x < r.right; x += bs.x)
{
uint32 block = base + off->block.col[x >> 3];
if(block < MAX_BLOCKS)
{
uint32 row = block >> 5;
uint32 col = 1 << (block & 31);
if((m_valid[row] & col) == 0)
{
m_valid[row] |= col;
Write(GSVector4i(x, y, x + bs.x, y + bs.y));
blocks++;
}
}
}
}
}
if(blocks > 0)
{
m_renderer->m_perfmon.Put(GSPerfMon::Unswizzle, bs.x * bs.y * blocks << (m_palette ? 2 : 0));
Flush(m_write.count);
}
}
void GSTextureCache::Source::Write(const GSVector4i& r)
{
m_write.rect[m_write.count++] = r;
while(m_write.count >= 2)
{
GSVector4i& a = m_write.rect[m_write.count - 2];
GSVector4i& b = m_write.rect[m_write.count - 1];
if((a == b.zyxw()).mask() == 0xfff0)
{
a.right = b.right; // extend right
m_write.count--;
}
else if((a == b.xwzy()).mask() == 0xff0f)
{
a.bottom = b.bottom; // extend down
m_write.count--;
}
else
{
break;
}
}
if(m_write.count > 2)
{
Flush(1);
}
}
void GSTextureCache::Source::Flush(uint32 count)
{
// This function as written will not work for paletted formats copied from framebuffers
// because they are 8 or 4 bit formats on the GS and the GS local memory module reads
// these into an 8 bit format while the D3D surfaces are 32 bit.
// However the function is never called for these cases. This is just for information
// should someone wish to use this function for these cases later.
const GSLocalMemory::psm_t& psm = GSLocalMemory::m_psm[m_TEX0.PSM];
int tw = 1 << m_TEX0.TW;
int th = 1 << m_TEX0.TH;
GSVector4i tr(0, 0, tw, th);
int pitch = max(tw, psm.bs.x) * sizeof(uint32);
GSLocalMemory& mem = m_renderer->m_mem;
const GSOffset* off = m_renderer->m_context->offset.tex;
GSLocalMemory::readTexture rtx = psm.rtx;
GIFRegTEXA plainTEXA;
// Until DX is fixed
if (s_IS_OPENGL) {
plainTEXA = m_TEXA;
} else {
plainTEXA.AEM = 1;
plainTEXA.TA0 = 0;
plainTEXA.TA1 = 0x80;
}
if(m_palette)
{
pitch >>= 2;
rtx = psm.rtxP;
}
uint8* buff = m_temp;
for(uint32 i = 0; i < count; i++)
{
GSVector4i r = m_write.rect[i];
if((r > tr).mask() & 0xff00)
{
(mem.*rtx)(off, r, buff, pitch, m_TEXA);
m_texture->Update(r.rintersect(tr), buff, pitch);
}
else
{
GSTexture::GSMap m;
if(m_texture->Map(m, &r))
{
(mem.*rtx)(off, r, m.bits, m.pitch, plainTEXA);
m_texture->Unmap();
}
else
{
(mem.*rtx)(off, r, buff, pitch, plainTEXA);
m_texture->Update(r, buff, pitch);
}
}
}
if(count < m_write.count)
{
// Warning src and destination overlap. Memmove must be used instead of memcpy
memmove(&m_write.rect[0], &m_write.rect[count], (m_write.count - count) * sizeof(m_write.rect[0]));
}
m_write.count -= count;
}
// GSTextureCache::Target
GSTextureCache::Target::Target(GSRenderer* r, const GIFRegTEX0& TEX0, uint8* temp, bool depth_supported)
: Surface(r, temp)
, m_type(-1)
, m_used(false)
, m_depth_supported(depth_supported)
{
m_TEX0 = TEX0;
m_32_bits_fmt |= (GSLocalMemory::m_psm[TEX0.PSM].trbpp != 16);
m_dirty_alpha = GSLocalMemory::m_psm[TEX0.PSM].trbpp != 24;
m_valid = GSVector4i::zero();
}
void GSTextureCache::Target::Update()
{
Surface::Update();
// FIXME: the union of the rects may also update wrong parts of the render target (but a lot faster :)
// GH: it must be doable
// 1/ rescale the new t to the good size
// 2/ copy each rectangle (rescale the rectangle) (use CopyRect or multiple vertex)
// Alternate
// 1/ uses multiple vertex rectangle
GSVector2i t_size = m_texture->GetSize();
GSVector2 t_scale = m_texture->GetScale();
t_size.x = (int)((float)t_size.x/max(1.0f, t_scale.x));
t_size.y = (int)((float)t_size.y/max(1.0f, t_scale.y));
// Don't load above the GS memory
int max_y_blocks = (MAX_BLOCKS - m_TEX0.TBP0) / max(1u, m_TEX0.TBW);
int max_y = (max_y_blocks >> 5) * GSLocalMemory::m_psm[m_TEX0.PSM].pgs.y;
t_size.y = std::min(t_size.y, max_y);
GSVector4i r = m_dirty.GetDirtyRectAndClear(m_TEX0, t_size);
if (r.rempty()) return;
// No handling please
if ((m_type == DepthStencil) && !m_depth_supported) {
// do the most likely thing a direct write would do, clear it
GL_INS("ERROR: Update DepthStencil dummy");
if((m_renderer->m_game.flags & CRC::ZWriteMustNotClear) == 0)
m_renderer->m_dev->ClearDepth(m_texture, 0);
return;
} else if (m_type == DepthStencil && m_renderer->m_game.title == CRC::FFX2) {
GL_INS("ERROR: bad invalidation detected, depth buffer will be cleared");
// FFX2 menu. Invalidation of the depth is wrongly done and only the first
// page is invalidated. Technically a CRC hack will be better but I don't expect
// any games to only upload a single page of data for the depth.
//
// FFX2 menu got another bug. I'm not sure the top-left is properly written or not. It
// could be a gsdx transfer bug too due to unaligned-page transfer.
//
// So the quick and dirty solution is just to clean the depth buffer.
m_renderer->m_dev->ClearDepth(m_texture, 0);
return;
}
int w = r.width();
int h = r.height();
GIFRegTEXA TEXA;
TEXA.AEM = 1;
TEXA.TA0 = 0;
TEXA.TA1 = 0x80;
GSTexture* t = m_renderer->m_dev->CreateTexture(w, h);
if (t == NULL) return;
const GSOffset* off = m_renderer->m_mem.GetOffset(m_TEX0.TBP0, m_TEX0.TBW, m_TEX0.PSM);
GSTexture::GSMap m;
if(t->Map(m))
{
m_renderer->m_mem.ReadTexture(off, r, m.bits, m.pitch, TEXA);
t->Unmap();
}
else
{
int pitch = ((w + 3) & ~3) * 4;
m_renderer->m_mem.ReadTexture(off, r, m_temp, pitch, TEXA);
t->Update(r.rsize(), m_temp, pitch);
}
// m_renderer->m_perfmon.Put(GSPerfMon::Unswizzle, w * h * 4);
// Copy the new GS memory content into the destination texture.
if(m_type == RenderTarget)
{
GL_INS("ERROR: Update RenderTarget 0x%x", m_TEX0.TBP0);
m_renderer->m_dev->StretchRect(t, m_texture, GSVector4(r) * GSVector4(m_texture->GetScale()).xyxy());
}
else if(m_type == DepthStencil)
{
GL_INS("ERROR: Update DepthStencil 0x%x", m_TEX0.TBP0);
// FIXME linear or not?
m_renderer->m_dev->StretchRect(t, m_texture, GSVector4(r) * GSVector4(m_texture->GetScale()).xyxy(), ShaderConvert_RGBA8_TO_FLOAT32);
}
m_renderer->m_dev->Recycle(t);
}
void GSTextureCache::Target::UpdateValidity(const GSVector4i& rect)
{
m_valid = m_valid.runion(rect);
uint32 nb_block = m_TEX0.TBW * m_valid.height();
if (m_TEX0.PSM == PSM_PSMCT16)
nb_block >>= 1;
m_end_block = m_TEX0.TBP0 + nb_block;
//fprintf(stderr, "S: 0x%x E:0x%x\n", m_TEX0.TBP0, m_end_block);
}
bool GSTextureCache::Target::Inside(uint32 bp, uint32 bw, uint32 psm, const GSVector4i& rect)
{
uint32 block = GSLocalMemory::m_psm[psm].bn(rect.x, rect.y, bp, bw);
return bp > m_TEX0.TBP0 && block < m_end_block;
}
// GSTextureCache::SourceMap
void GSTextureCache::SourceMap::Add(Source* s, const GIFRegTEX0& TEX0, GSOffset* off)
{
m_surfaces.insert(s);
if(s->m_target)
{
// TODO
// GH: I don't know why but it seems we only consider the first page for a render target
m_map[TEX0.TBP0 >> 5].push_front(s);
return;
}
// Remaining code will compute a list of pages that are dirty (in a similar fashion as GSOffset::GetPages)
// (Maybe GetPages could be used instead, perf opt?)
// The source pointer will be stored/duplicated in all m_map[array of pages]
uint32* pages = GetPagesCoverage(TEX0, off);
for(size_t i = 0; i < countof(m_pages); i++)
{
if(uint32 p = pages[i])
{
list<Source*>* m = &m_map[i << 5];
unsigned long j;
while(_BitScanForward(&j, p))
{
p ^= 1 << j;
m[j].push_front(s);
}
}
}
}
uint32* GSTextureCache::SourceMap::GetPagesCoverage(const GIFRegTEX0& TEX0, GSOffset* off)
{
// Performance note:
// GSOffset is a hash lookup of the following parameter TB0, TBW, PSM
// Coverage adds TW and Th (8bits). Therefore GSOffset was extended with a small array.
// Avoid the hash map overhead (memory and lookup)
int index = (TEX0.u64 >> 26) & 0xFF;
if (off->coverages[index])
return off->coverages[index];
// Aligned on 64 bytes to store the full bitmap in a single cache line
uint32* pages = (uint32*)_aligned_malloc(MAX_PAGES/8, 64);
off->coverages[index] = pages;
((GSVector4i*)pages)[0] = GSVector4i::zero();
((GSVector4i*)pages)[1] = GSVector4i::zero();
((GSVector4i*)pages)[2] = GSVector4i::zero();
((GSVector4i*)pages)[3] = GSVector4i::zero();
// Remaining code will compute a list of pages that are dirty (in a similar fashion as GSOffset::GetPages)
// (Maybe GetPages could be used instead, perf opt?)
// The source pointer will be stored/duplicated in all m_map[array of pages]
const GSLocalMemory::psm_t& psm = GSLocalMemory::m_psm[TEX0.PSM];
GSVector2i bs = (TEX0.TBP0 & 31) == 0 ? psm.pgs : psm.bs;
int tw = 1 << TEX0.TW;
int th = 1 << TEX0.TH;
for(int y = 0; y < th; y += bs.y)
{
uint32 base = off->block.row[y >> 3];
for(int x = 0; x < tw; x += bs.x)
{
uint32 page = (base + off->block.col[x >> 3]) >> 5;
if(page < MAX_PAGES)
{
pages[page >> 5] |= 1 << (page & 31);
}
}
}
return pages;
}
void GSTextureCache::SourceMap::RemoveAll()
{
for_each(m_surfaces.begin(), m_surfaces.end(), delete_object());
m_surfaces.clear();
for(size_t i = 0; i < countof(m_map); i++)
{
m_map[i].clear();
}
}
void GSTextureCache::SourceMap::RemoveAt(Source* s)
{
m_surfaces.erase(s);
GL_CACHE("TC: Remove Src Texture: %d (0x%x)",
s->m_texture ? s->m_texture->GetID() : 0,
s->m_TEX0.TBP0);
// Source (except render target) is duplicated for each page they use.
for(size_t start = s->m_TEX0.TBP0 >> 5, end = s->m_target ? start : countof(m_map) - 1; start <= end; start++)
{
list<Source*>& m = m_map[start];
for(list<Source*>::iterator i = m.begin(); i != m.end(); )
{
list<Source*>::iterator j = i++;
if(*j == s) {m.erase(j); break;}
}
}
delete s;
}