pcsx2/plugins/zerospu2/zerospu2.cpp

1601 lines
38 KiB
C++

/* ZeroSPU2
* Copyright (C) 2006-2007 zerofrog
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "zerospu2.h"
#include <assert.h>
#include <stdlib.h>
#ifdef _WIN32
#include "svnrev.h"
#endif
#include "SoundTouch/SoundTouch.h"
#include "SoundTouch/WavFile.h"
char libraryName[256];
FILE *spu2Log;
Config conf;
ADMA Adma4;
ADMA Adma7;
u32 MemAddr[2];
u32 g_nSpuInit = 0;
u16 interrupt = 0;
s8 *spu2regs = NULL;
u16* spu2mem = NULL;
u16* pSpuIrq[2] = {NULL};
u32 dwNewChannel2[2] = {0}; // keeps track of what channels that have been turned on
u32 dwEndChannel2[2] = {0}; // keeps track of what channels have ended
u32 dwNoiseVal=1; // global noise generator
bool g_bPlaySound = true; // if true, will output sound, otherwise no
s32 iFMod[NSSIZE];
s32 s_buffers[NSSIZE][2]; // left and right buffers
// mixer thread variables
static bool s_bThreadExit = true;
static s32 s_nDropPacket = 0;
string s_strIniPath( "inis/" );
#ifdef _WIN32
LARGE_INTEGER g_counterfreq;
extern HWND hWMain;
HANDLE s_threadSPU2 = NULL;
DWORD WINAPI SPU2ThreadProc(LPVOID);
#else
#include <pthread.h>
pthread_t s_threadSPU2;
void* SPU2ThreadProc(void*);
#endif
static AUDIOBUFFER s_pAudioBuffers[NSPACKETS];
static s32 s_nCurBuffer = 0, s_nQueuedBuffers = 0;
static s16* s_pCurOutput = NULL;
static u32 g_startcount=0xffffffff;
static u32 g_packetcount=0;
// time stretch variables
soundtouch::SoundTouch* pSoundTouch=NULL;
WavOutFile* g_pWavRecord=NULL; // used for recording
static u64 s_GlobalTimeStamp = 0;
static s32 s_nDurations[64]={0};
static s32 s_nCurDuration=0;
static s32 s_nTotalDuration=0;
s32 SPUCycles = 0, SPUWorkerCycles = 0;
s32 SPUStartCycle[2];
s32 SPUTargetCycle[2];
s32 g_logsound=0;
int ADMASWrite(int c);
void InitADSR();
// functions of main emu, called on spu irq
void (*irqCallbackSPU2)()=0;
void (*irqCallbackDMA4)()=0;
void (*irqCallbackDMA7)()=0;
uptr g_pDMABaseAddr=0;
const s32 f[5][2] = {
{ 0, 0 },
{ 60, 0 },
{ 115, -52 },
{ 98, -55 },
{ 122, -60 } };
u32 RateTable[160];
// channels and voices
VOICE_PROCESSED voices[SPU_NUMBER_VOICES+1]; // +1 for modulation
static void InitLibraryName()
{
#ifdef _WIN32
#ifdef PUBLIC
// Public Release!
// Output a simplified string that's just our name:
strcpy( libraryName, "ZeroSPU2" );
#elif defined( SVN_REV_UNKNOWN )
// Unknown revision.
// Output a name that includes devbuild status but not
// subversion revision tags:
strcpy( libraryName, "ZeroSPU2"
# ifdef PCSX2_DEBUG
"-Debug"
# elif defined( ZEROSPU2_DEVBUILD )
"-Dev"
# endif
);
#else
// Use TortoiseSVN's SubWCRev utility's output
// to label the specific revision:
sprintf_s( libraryName, "ZeroSPU2 r%d%s"
# ifdef PCSX2_DEBUG
"-Debug"
# elif defined( ZEROSPU2_DEVBUILD )
"-Dev"
# endif
,SVN_REV,
SVN_MODS ? "m" : ""
);
#endif
#else
// I'll hook in svn version code later. --arcum42
strcpy( libraryName, "ZeroSPU2 Playground"
# ifdef PCSX2_DEBUG
"-Debug"
# elif defined( ZEROSPU2_DEVBUILD )
"-Dev"
# endif
);
# endif
}
u32 CALLBACK PS2EgetLibType()
{
return PS2E_LT_SPU2;
}
char* CALLBACK PS2EgetLibName()
{
InitLibraryName();
return libraryName;
}
u32 CALLBACK PS2EgetLibVersion2(u32 type)
{
return (SPU2_MINOR<<24) | (SPU2_VERSION<<16) | (SPU2_REVISION<<8) | SPU2_BUILD;
}
void __Log(char *fmt, ...)
{
va_list list;
if (!conf.Log || spu2Log == NULL) return;
va_start(list, fmt);
vfprintf(spu2Log, fmt, list);
va_end(list);
}
void __LogToConsole(const char *fmt, ...)
{
va_list list;
va_start(list, fmt);
if (!conf.Log || spu2Log == NULL)
vfprintf(spu2Log, fmt, list);
printf("ZeroSPU2: ");
vprintf(fmt, list);
va_end(list);
}
void CALLBACK SPU2setSettingsDir(const char* dir)
{
s_strIniPath = (dir==NULL) ? "inis/" : dir;
}
s32 CALLBACK SPU2init()
{
LOG_CALLBACK("SPU2init()\n");
spu2Log = fopen("logs/spu2.txt", "w");
if (spu2Log) setvbuf(spu2Log, NULL, _IONBF, 0);
SPU2_LOG("Spu2 null version %d,%d\n",SPU2_REVISION,SPU2_BUILD);
SPU2_LOG("SPU2init\n");
#ifdef _WIN32
QueryPerformanceFrequency(&g_counterfreq);
#endif
spu2regs = (s8*)malloc(0x10000);
spu2mem = (u16*)malloc(0x200000); // 2Mb
memset(spu2regs, 0, 0x10000);
memset(spu2mem, 0, 0x200000);
if ((spu2mem == NULL) || (spu2regs == NULL))
{
SysMessage("Error allocating Memory\n");
return -1;
}
memset(dwEndChannel2, 0, sizeof(dwEndChannel2));
memset(dwNewChannel2, 0, sizeof(dwNewChannel2));
memset(iFMod, 0, sizeof(iFMod));
memset(s_buffers, 0, sizeof(s_buffers));
InitADSR();
memset(voices, 0, sizeof(voices));
// last 24 channels have higher mem offset
for (s32 i = 0; i < 24; ++i)
voices[i+24].memoffset = 0x400;
// init each channel
for (u32 i = 0; i < ArraySize(voices); ++i) {
voices[i].chanid = i;
voices[i].pLoop = voices[i].pStart = voices[i].pCurr = (u8*)spu2mem;
voices[i].pvoice = (_SPU_VOICE*)((u8*)spu2regs+voices[i].memoffset)+(i%24);
voices[i].ADSRX.SustainLevel = 1024; // -> init sustain
}
return 0;
}
s32 CALLBACK SPU2open(void *pDsp)
{
LOG_CALLBACK("SPU2open()\n");
#ifdef _WIN32
hWMain = pDsp == NULL ? NULL : *(HWND*)pDsp;
if (!IsWindow(hWMain))
hWMain=GetActiveWindow();
#endif
LoadConfig();
SPUCycles = SPUWorkerCycles = 0;
interrupt = 0;
SPUStartCycle[0] = SPUStartCycle[1] = 0;
SPUTargetCycle[0] = SPUTargetCycle[1] = 0;
s_nDropPacket = 0;
if ( conf.options & OPTION_TIMESTRETCH )
{
pSoundTouch = new soundtouch::SoundTouch();
pSoundTouch->setSampleRate(SAMPLE_RATE);
pSoundTouch->setChannels(2);
pSoundTouch->setTempoChange(0);
pSoundTouch->setSetting(SETTING_USE_QUICKSEEK, 0);
pSoundTouch->setSetting(SETTING_USE_AA_FILTER, 1);
}
//conf.Log = 1;
g_bPlaySound = !(conf.options&OPTION_MUTE);
if ( g_bPlaySound && SetupSound() != 0 )
{
SysMessage("ZeroSPU2: Failed to initialize sound");
g_bPlaySound = false;
}
if ( g_bPlaySound ) {
// initialize the audio buffers
for (u32 i = 0; i < ArraySize(s_pAudioBuffers); ++i)
{
s_pAudioBuffers[i].pbuf = (u8*)_aligned_malloc(4*NSSIZE*NSFRAMES, 16); // 4 bytes for each sample
s_pAudioBuffers[i].len = 0;
}
s_nCurBuffer = 0;
s_nQueuedBuffers = 0;
s_pCurOutput = (s16*)s_pAudioBuffers[0].pbuf;
assert( s_pCurOutput != NULL);
for (s32 i = 0; i < ArraySize(s_nDurations); ++i)
{
s_nDurations[i] = NSFRAMES*1000;
}
s_nTotalDuration = ArraySize(s_nDurations)*NSFRAMES*1000;
s_nCurDuration = 0;
// launch the thread
s_bThreadExit = false;
#ifdef _WIN32
s_threadSPU2 = CreateThread(NULL, 0, SPU2ThreadProc, NULL, 0, NULL);
if ( s_threadSPU2 == NULL )
{
return -1;
}
#else
if ( pthread_create(&s_threadSPU2, NULL, SPU2ThreadProc, NULL) != 0 )
{
SysMessage("ZeroSPU2: Failed to create spu2thread\n");
return -1;
}
#endif
}
g_nSpuInit = 1;
return 0;
}
void CALLBACK SPU2close()
{
LOG_CALLBACK("SPU2close()\n");
g_nSpuInit = 0;
if ( g_bPlaySound && !s_bThreadExit ) {
s_bThreadExit = true;
printf("ZeroSPU2: Waiting for thread... ");
#ifdef _WIN32
WaitForSingleObject(s_threadSPU2, INFINITE);
CloseHandle(s_threadSPU2); s_threadSPU2 = NULL;
#else
pthread_join(s_threadSPU2, NULL);
#endif
printf("done\n");
}
RemoveSound();
delete g_pWavRecord; g_pWavRecord = NULL;
delete pSoundTouch; pSoundTouch = NULL;
for (u32 i = 0; i < ArraySize(s_pAudioBuffers); ++i)
{
_aligned_free(s_pAudioBuffers[i].pbuf);
}
memset(s_pAudioBuffers, 0, sizeof(s_pAudioBuffers));
}
void CALLBACK SPU2shutdown()
{
LOG_CALLBACK("SPU2shutdown()\n");
free(spu2regs); spu2regs = NULL;
free(spu2mem); spu2mem = NULL;
if (spu2Log) fclose(spu2Log);
}
void CALLBACK SPU2async(u32 cycle)
{
//LOG_CALLBACK("SPU2async()\n");
SPUCycles += cycle;
if (interrupt & (1<<2))
{
if (SPUCycles - SPUStartCycle[1] >= SPUTargetCycle[1])
{
interrupt &= ~(1<<2);
irqCallbackDMA7();
}
}
if (interrupt & (1<<1))
{
if (SPUCycles - SPUStartCycle[0] >= SPUTargetCycle[0])
{
interrupt &= ~(1<<1);
irqCallbackDMA4();
}
}
if ( g_nSpuInit )
{
while( SPUCycles-SPUWorkerCycles > 0 && CYCLES_PER_MS < SPUCycles-SPUWorkerCycles )
{
SPU2Worker();
SPUWorkerCycles += CYCLES_PER_MS;
}
}
else
SPUWorkerCycles = SPUCycles;
}
void InitADSR() // INIT ADSR
{
u32 r,rs,rd;
s32 i;
memset(RateTable,0,sizeof(u32)*160); // build the rate table according to Neill's rules (see at bottom of file)
r=3;rs=1;rd=0;
for (i=32;i<160;i++) // we start at pos 32 with the real values... everything before is 0
{
if (r<0x3FFFFFFF)
{
r+=rs;
rd++;
if (rd==5)
{
rd=1;
rs*=2;
}
}
if (r>0x3FFFFFFF) r=0x3FFFFFFF;
RateTable[i]=r;
}
}
s32 MixADSR(VOICE_PROCESSED* pvoice) // MIX ADSR
{
u32 rateadd[8] = { 0, 4, 6, 8, 9, 10, 11, 12 };
if (pvoice->bStop) // should be stopped:
{
if (pvoice->ADSRX.ReleaseModeExp) // do release
{
s32 temp = ((pvoice->ADSRX.EnvelopeVol>>28)&0x7);
pvoice->ADSRX.EnvelopeVol-=RateTable[(4*(pvoice->ADSRX.ReleaseRate^0x1F)) - 0x18 + rateadd[temp] + 32];
}
else
{
pvoice->ADSRX.EnvelopeVol-=RateTable[(4*(pvoice->ADSRX.ReleaseRate^0x1F)) - 0x0C + 32];
}
// bIgnoreLoop sets EnvelopeVol to 0 anyways, so we can use one if statement rather then two.
if ((pvoice->ADSRX.EnvelopeVol<0) || (pvoice->bIgnoreLoop == 0))
{
pvoice->ADSRX.EnvelopeVol=0;
pvoice->bOn=false;
pvoice->pStart= (u8*)(spu2mem+pvoice->iStartAddr);
pvoice->pLoop= (u8*)(spu2mem+pvoice->iStartAddr);
pvoice->pCurr= (u8*)(spu2mem+pvoice->iStartAddr);
pvoice->bStop = true;
pvoice->bIgnoreLoop = false;
//pvoice->bReverb=0;
//pvoice->bNoise=0;
}
pvoice->ADSRX.lVolume=pvoice->ADSRX.EnvelopeVol>>21;
return pvoice->ADSRX.lVolume;
}
else // not stopped yet?
{
s32 temp = ((pvoice->ADSRX.EnvelopeVol>>28)&0x7);
switch (pvoice->ADSRX.State)
{
case 0: // -> attack
if (pvoice->ADSRX.AttackModeExp)
{
if (pvoice->ADSRX.EnvelopeVol<0x60000000)
pvoice->ADSRX.EnvelopeVol += RateTable[(pvoice->ADSRX.AttackRate^0x7F) - 0x10 + 32];
else
pvoice->ADSRX.EnvelopeVol += RateTable[(pvoice->ADSRX.AttackRate^0x7F) - 0x18 + 32];
}
else
{
pvoice->ADSRX.EnvelopeVol += RateTable[(pvoice->ADSRX.AttackRate^0x7F) - 0x10 + 32];
}
if (pvoice->ADSRX.EnvelopeVol<0)
{
pvoice->ADSRX.EnvelopeVol=0x7FFFFFFF;
pvoice->ADSRX.State=1;
}
break;
case 1: // -> decay
pvoice->ADSRX.EnvelopeVol-=RateTable[(4*(pvoice->ADSRX.DecayRate^0x1F)) - 0x18+ rateadd[temp] + 32];
if (pvoice->ADSRX.EnvelopeVol<0) pvoice->ADSRX.EnvelopeVol=0;
if (((pvoice->ADSRX.EnvelopeVol>>27)&0xF) <= pvoice->ADSRX.SustainLevel)
pvoice->ADSRX.State=2;
break;
case 2: // -> sustain
if (pvoice->ADSRX.SustainIncrease)
{
if ((pvoice->ADSRX.SustainModeExp) && (pvoice->ADSRX.EnvelopeVol>=0x60000000))
pvoice->ADSRX.EnvelopeVol+=RateTable[(pvoice->ADSRX.SustainRate^0x7F) - 0x18 + 32];
else
pvoice->ADSRX.EnvelopeVol+=RateTable[(pvoice->ADSRX.SustainRate^0x7F) - 0x10 + 32];
if (pvoice->ADSRX.EnvelopeVol<0) pvoice->ADSRX.EnvelopeVol=0x7FFFFFFF;
}
else
{
if (pvoice->ADSRX.SustainModeExp)
pvoice->ADSRX.EnvelopeVol-=RateTable[((pvoice->ADSRX.SustainRate^0x7F)) - 0x1B +rateadd[temp] + 32];
else
pvoice->ADSRX.EnvelopeVol-=RateTable[((pvoice->ADSRX.SustainRate^0x7F)) - 0x0F + 32];
if (pvoice->ADSRX.EnvelopeVol<0) pvoice->ADSRX.EnvelopeVol=0;
}
break;
default:
// This should never happen.
return 0;
}
pvoice->ADSRX.lVolume=pvoice->ADSRX.EnvelopeVol>>21;
return pvoice->ADSRX.lVolume;
}
return 0;
}
void MixChannels(s32 core)
{
// mix all channels
s32 c_offset = 0x0400 * core;
s32 dma, left_vol, right_vol;
ADMA *Adma;
if (core == 0)
{
Adma = &Adma4;
dma = 4;
left_vol = REG_C0_BVOLL;
right_vol = REG_C0_BVOLR;
}
else
{
Adma = &Adma7;
dma = 7;
left_vol = REG_C1_BVOLL;
right_vol = REG_C1_BVOLR;
}
if ((spu2Ru16(REG_C0_MMIX + c_offset) & 0xF0) && (spu2Ru16(REG_C0_ADMAS + c_offset) & (0x1 + core)))
{
for (s32 ns=0;ns<NSSIZE;ns++)
{
if ((spu2Ru16(REG_C0_MMIX + c_offset) & 0x80))
s_buffers[ns][0] += (((s16*)spu2mem)[0x2000 + c_offset +Adma->Index]*(s32)spu2Ru16(left_vol))>>16;
if ((spu2Ru16(REG_C0_MMIX + c_offset) & 0x40))
s_buffers[ns][1] += (((s16*)spu2mem)[0x2200 + c_offset +Adma->Index]*(s32)spu2Ru16(right_vol))>>16;
Adma->Index +=1;
MemAddr[core] += 4;
if (Adma->Index == 128 || Adma->Index == 384)
{
if (ADMASWrite(core))
{
if (interrupt & (0x2 * (core + 1)))
{
interrupt &= ~(0x2 * (core + 1));
WARN_LOG("Stopping double interrupt DMA7\n");
}
if (core == 0)
irqCallbackDMA4();
else
irqCallbackDMA7();
}
if (core == 1) Adma->Enabled = 2;
}
if (Adma->Index == 512)
{
if ( Adma->Enabled == 2 ) Adma->Enabled = 0;
Adma->Index = 0;
}
}
}
}
// simulate SPU2 for 1ms
void SPU2Worker()
{
u8* start;
u32 nSample;
s32 ch, predict_nr, shift_factor, flags;
// assume s_buffers are zeroed out
if ( dwNewChannel2[0] || dwNewChannel2[1] )
s_pAudioBuffers[s_nCurBuffer].newchannels++;
VOICE_PROCESSED* pChannel=voices;
for (ch=0; ch < SPU_NUMBER_VOICES; ch++, pChannel++) // loop em all... we will collect 1 ms of sound of each playing channel
{
if (pChannel->bNew)
{
pChannel->StartSound(); // start new sound
dwEndChannel2[ch/24]&=~(1<<(ch%24)); // clear end channel bit
dwNewChannel2[ch/24]&=~(1<<(ch%24)); // clear channel bit
}
if (!pChannel->bOn) continue;
if (pChannel->iActFreq!=pChannel->iUsedFreq) // new psx frequency?
pChannel->VoiceChangeFrequency();
// loop until 1 ms of data is reached
s32 ns = 0;
while(ns<NSSIZE)
{
s32 s_1, s_2, fa;
// fmod freq channel
if (pChannel->bFMod==1 && iFMod[ns]) pChannel->FModChangeFrequency(ns);
while(pChannel->spos >= 0x10000 )
{
if (pChannel->iSBPos == 28) // 28 reached?
{
start=pChannel->pCurr; // set up the current pos
// special "stop" sign - fixme - an *unsigned* -1?
if (start == (u8*)-1) //!pChannel->bOn
{
pChannel->bOn=false; // -> turn everything off
pChannel->ADSRX.lVolume=0;
pChannel->ADSRX.EnvelopeVol=0;
goto ENDX; // -> and done for this channel
}
predict_nr=(s32)start[0];
shift_factor=predict_nr&0xf;
predict_nr >>= 4;
flags=(s32)start[1];
start += 2;
pChannel->iSBPos=0;
// decode the 16byte packet
s_1=pChannel->s_1;
s_2=pChannel->s_2;
for (nSample=0; nSample<28; ++start)
{
s32 s;
s32 d = (s32)*start;
s = ((d & 0xf)<<12);
if (s & 0x8000) s |= 0xffff0000;
fa = (s >> shift_factor);
fa += ((s_1 * f[predict_nr][0]) >> 6) + ((s_2 * f[predict_nr][1]) >> 6);
s_2 = s_1;
s_1 = fa;
pChannel->SB[nSample++]=fa;
s = ((d & 0xf0) << 8);
if (s & 0x8000) s|=0xffff0000;
fa = (s>>shift_factor);
fa += ((s_1 * f[predict_nr][0])>>6) + ((s_2 * f[predict_nr][1]) >> 6);
s_2 = s_1;
s_1 = fa;
pChannel->SB[nSample++]=fa;
}
// irq occurs no matter what core access the address
for (s32 core = 0; core < 2; ++core)
{
if (((SPU_CONTROL_*)(spu2regs + (0x400 * core) + REG_C0_CTRL))->irq) // some callback and irq active?
{
// if irq address reached or irq on looping addr, when stop/loop flag is set
u8* pirq = (u8*)pSpuIrq[core];
if ((pirq > (start - 16) && pirq <= start) || ((flags & 1) && (pirq > (pChannel->pLoop - 16) && pirq <= pChannel->pLoop)))
{
IRQINFO |= 4<<core;
SPU2_LOG("SPU2Worker:interrupt\n");
irqCallbackSPU2();
}
}
}
// flag handler
if ((flags&4) && (!pChannel->bIgnoreLoop))
pChannel->pLoop=start-16; // loop address
if (flags&1) // 1: stop/loop
{
// We play this block out first...
dwEndChannel2[ch/24]|=(1<<(ch%24));
if (flags!=3 || pChannel->pLoop==NULL)
{ // and checking if pLoop is set avoids crashes, yeah
start = (u8*)-1;
pChannel->bStop = true;
pChannel->bIgnoreLoop = false;
}
else
{
start = pChannel->pLoop;
}
}
pChannel->pCurr=start; // store values for next cycle
pChannel->s_1=s_1;
pChannel->s_2=s_2;
}
fa=pChannel->SB[pChannel->iSBPos++]; // get sample data
pChannel->StoreInterpolationVal(fa);
pChannel->spos -= 0x10000;
}
if (pChannel->bNoise)
fa=pChannel->iGetNoiseVal(); // get noise val
else
fa=pChannel->iGetInterpolationVal(); // get sample val
s32 sval = (MixADSR(pChannel) * fa) / 1023; // mix adsr
if (pChannel->bFMod == 2) // fmod freq channel
{
iFMod[ns] = sval; // -> store 1T sample data, use that to do fmod on next channel
}
else
{
if (pChannel->bVolumeL)
s_buffers[ns][0]+=(sval * pChannel->leftvol)>>14;
if (pChannel->bVolumeR)
s_buffers[ns][1]+=(sval * pChannel->rightvol)>>14;
}
// go to the next packet
ns++;
pChannel->spos += pChannel->sinc;
}
ENDX:
;
}
// mix all channels
MixChannels(0);
MixChannels(1);
if ( g_bPlaySound )
{
assert( s_pCurOutput != NULL);
for (s32 ns=0; ns<NSSIZE; ns++)
{
// clamp and write
clampandwrite16(s_pCurOutput[0],s_buffers[ns][0]);
clampandwrite16(s_pCurOutput[1],s_buffers[ns][1]);
s_pCurOutput += 2;
s_buffers[ns][0] = 0;
s_buffers[ns][1] = 0;
}
// check if end reached
if ((uptr)s_pCurOutput - (uptr)s_pAudioBuffers[s_nCurBuffer].pbuf >= 4 * NSSIZE * NSFRAMES)
{
if ( conf.options & OPTION_RECORDING )
{
static s32 lastrectime = 0;
if (timeGetTime() - lastrectime > 5000)
{
WARN_LOG("ZeroSPU2: recording\n");
lastrectime = timeGetTime();
}
LogRawSound(s_pAudioBuffers[s_nCurBuffer].pbuf, 4, s_pAudioBuffers[s_nCurBuffer].pbuf+2, 4, NSSIZE*NSFRAMES);
}
if ( s_nQueuedBuffers >= ArraySize(s_pAudioBuffers)-1 )
{
//ZeroSPU2: dropping packets! game too fast
s_nDropPacket += NSFRAMES;
s_GlobalTimeStamp = GetMicroTime();
}
else {
// submit to final mixer
#ifdef ZEROSPU2_DEVBUILD
if ( g_logsound )
LogRawSound(s_pAudioBuffers[s_nCurBuffer].pbuf, 4, s_pAudioBuffers[s_nCurBuffer].pbuf+2, 4, NSSIZE*NSFRAMES);
#endif
if ( g_startcount == 0xffffffff )
{
g_startcount = timeGetTime();
g_packetcount = 0;
}
if ( conf.options & OPTION_TIMESTRETCH )
{
u64 newtime = GetMicroTime();
if ( s_GlobalTimeStamp == 0 )
s_GlobalTimeStamp = newtime-NSFRAMES*1000;
u32 newtotal = s_nTotalDuration-s_nDurations[s_nCurDuration];
u32 duration = (u32)(newtime-s_GlobalTimeStamp);
s_nDurations[s_nCurDuration] = duration;
s_nTotalDuration = newtotal + duration;
s_nCurDuration = (s_nCurDuration+1)%ArraySize(s_nDurations);
s_GlobalTimeStamp = newtime;
s_pAudioBuffers[s_nCurBuffer].timestamp = timeGetTime();
s_pAudioBuffers[s_nCurBuffer].avgtime = s_nTotalDuration/ArraySize(s_nDurations);
}
s_pAudioBuffers[s_nCurBuffer].len = 4*NSSIZE*NSFRAMES;
InterlockedExchangeAdd((long*)&s_nQueuedBuffers, 1);
s_nCurBuffer = (s_nCurBuffer+1)%ArraySize(s_pAudioBuffers);
s_pAudioBuffers[s_nCurBuffer].newchannels = 0; // reset
}
// restart
s_pCurOutput = (s16*)s_pAudioBuffers[s_nCurBuffer].pbuf;
}
}
}
// resamples pStereoSamples
void ResampleLinear(s16* pStereoSamples, s32 oldsamples, s16* pNewSamples, s32 newsamples)
{
for (s32 i = 0; i < newsamples; ++i)
{
s32 io = i * oldsamples;
s32 old = io / newsamples;
s32 rem = io - old * newsamples;
old *= 2;
s32 newsampL = pStereoSamples[old] * (newsamples - rem) + pStereoSamples[old+2] * rem;
s32 newsampR = pStereoSamples[old+1] * (newsamples - rem) + pStereoSamples[old+3] * rem;
pNewSamples[2 * i] = newsampL / newsamples;
pNewSamples[2 * i + 1] = newsampR / newsamples;
}
}
static __aligned16 s16 s_ThreadBuffer[NSSIZE*NSFRAMES*2*5];
// SoundTouch's INTEGER system is broken these days, so we'll need this to do float conversions...
static __aligned16 float s_floatBuffer[NSSIZE*NSFRAMES*2*5];
// communicates with the audio hardware
#ifdef _WIN32
DWORD WINAPI SPU2ThreadProc(LPVOID)
#else
void* SPU2ThreadProc(void* lpParam)
#endif
{
s32 nReadBuf = 0;
while (!s_bThreadExit)
{
if (!(conf.options&OPTION_REALTIME))
{
while(s_nQueuedBuffers< 3 && !s_bThreadExit)
{
//Sleeping
Sleep(1);
if ( s_bThreadExit )
return NULL;
}
while( SoundGetBytesBuffered() > 72000 )
{
//Bytes buffered
Sleep(1);
if ( s_bThreadExit ) return NULL;
}
}
else
{
while(s_nQueuedBuffers< 1 && !s_bThreadExit)
{
//Sleeping
Sleep(1);
}
}
//s32 ps2delay = timeGetTime() - s_pAudioBuffers[nReadBuf].timestamp;
s32 NewSamples = s_pAudioBuffers[nReadBuf].avgtime;
if ( (conf.options & OPTION_TIMESTRETCH) )
{
s32 bytesbuf = SoundGetBytesBuffered();
if ( bytesbuf < 8000 )
NewSamples += 1000;
// check the current timestamp, if too far apart, speed up audio
else if ( bytesbuf > 40000 )
{
//WARN_LOG("making faster %d\n", timeGetTime() - s_pAudioBuffers[nReadBuf].timestamp);
NewSamples -= (bytesbuf-40000)/10;//*(ps2delay-NewSamples*8/1000);
}
if ( s_nDropPacket > 0 )
{
s_nDropPacket--;
NewSamples -= 1000;
}
NewSamples *= NSSIZE;
NewSamples /= 1000;
NewSamples = min(NewSamples, NSFRAMES * NSSIZE * 3);
s32 oldsamples = s_pAudioBuffers[nReadBuf].len / 4;
if ((nReadBuf & 3) == 0) // wow, this if statement makes the whole difference
pSoundTouch->setTempoChange(100.0f*(float)oldsamples/(float)NewSamples - 100.0f);
for( s32 sx=0; sx<oldsamples*2; sx++ )
s_floatBuffer[sx] = ((s16*)s_pAudioBuffers[nReadBuf].pbuf)[sx]/65536.0f;
pSoundTouch->putSamples(s_floatBuffer, oldsamples);
// extract 2*NSFRAMES ms at a time
s32 nOutSamples;
do
{
nOutSamples = pSoundTouch->receiveSamples(s_floatBuffer, NSSIZE * NSFRAMES * 5);
if ( nOutSamples > 0 )
{
for( s32 sx=0; sx<nOutSamples*2; sx++ )
s_ThreadBuffer[sx] = (s16)(s_floatBuffer[sx]*65536.0f);
SoundFeedVoiceData((u8*)s_ThreadBuffer, nOutSamples * 4);
}
} while (nOutSamples != 0);
}
else
SoundFeedVoiceData(s_pAudioBuffers[nReadBuf].pbuf, s_pAudioBuffers[nReadBuf].len);
// don't go to the next buffer unless there is more data buffered
nReadBuf = (nReadBuf+1)%ArraySize(s_pAudioBuffers);
InterlockedExchangeAdd((long*)&s_nQueuedBuffers, -1);
if ( s_bThreadExit ) break;
}
return NULL;
}
// turn channels on
void SoundOn(s32 start,s32 end,u16 val) // SOUND ON PSX COMAND
{
for (s32 ch=start;ch<end;ch++,val>>=1) // loop channels
{
if ((val&1) && voices[ch].pStart) // mmm... start has to be set before key on !?!
{
voices[ch].bNew=true;
voices[ch].bIgnoreLoop = false;
dwNewChannel2[ch/24]|=(1<<(ch%24)); // clear end channel bit
}
}
}
// turn channels off
void SoundOff(s32 start,s32 end,u16 val) // SOUND OFF PSX COMMAND
{
for (s32 ch=start;ch<end;ch++,val>>=1) // loop channels
{
if (val&1) voices[ch].bStop=true; // && s_chan[i].bOn) mmm...
}
}
void FModOn(s32 start,s32 end,u16 val) // FMOD ON PSX COMMAND
{
s32 ch;
for (ch=start;ch<end;ch++,val>>=1) // loop channels
{
if (val&1)
{ // -> fmod on/off
if (ch>0)
{
voices[ch].bFMod=1; // --> sound channel
voices[ch-1].bFMod=2; // --> freq channel
}
}
else
voices[ch].bFMod=0; // --> turn off fmod
}
}
void VolumeOn(s32 start,s32 end,u16 val,s32 iRight) // VOLUME ON PSX COMMAND
{
s32 ch;
for (ch=start;ch<end;ch++,val>>=1) // loop channels
{
if (val&1)
{ // -> reverb on/off
if (iRight)
voices[ch].bVolumeR = true;
else
voices[ch].bVolumeL = true;
}
else
{
if (iRight)
voices[ch].bVolumeR = false;
else
voices[ch].bVolumeL = false;
}
}
}
void CALLBACK SPU2write(u32 mem, u16 value)
{
LOG_CALLBACK("SPU2write()\n");
u32 spuaddr;
SPU2_LOG("SPU2 write mem %x value %x\n", mem, value);
assert(C0_SPUADDR() < 0x100000);
assert(C1_SPUADDR() < 0x100000);
spu2Ru16(mem) = value;
u32 r = mem & 0xffff;
// channel info
if ((r<0x0180) || (r>=0x0400 && r<0x0580)) // u32s are always >= 0.
{
s32 ch=0;
if (r >= 0x400)
ch = ((r - 0x400) >> 4) + 24;
else
ch = (r >> 4);
VOICE_PROCESSED* pvoice = &voices[ch];
switch(r & 0x0f)
{
case 0:
case 2:
pvoice->SetVolume(mem & 0x2);
break;
case 4:
{
s32 NP;
if (value> 0x3fff)
NP=0x3fff; // get pitch val
else
NP=value;
pvoice->pvoice->pitch = NP;
NP = (SAMPLE_RATE * NP) / 4096L; // calc frequency
if (NP<1) NP = 1; // some security
pvoice->iActFreq = NP; // store frequency
break;
}
case 6:
{
pvoice->ADSRX.AttackModeExp=(value&0x8000)?1:0;
pvoice->ADSRX.AttackRate = ((value>>8) & 0x007f);
pvoice->ADSRX.DecayRate = (((value>>4) & 0x000f));
pvoice->ADSRX.SustainLevel = (value & 0x000f);
break;
}
case 8:
pvoice->ADSRX.SustainModeExp = (value&0x8000)?1:0;
pvoice->ADSRX.SustainIncrease= (value&0x4000)?0:1;
pvoice->ADSRX.SustainRate = ((value>>6) & 0x007f);
pvoice->ADSRX.ReleaseModeExp = (value&0x0020)?1:0;
pvoice->ADSRX.ReleaseRate = ((value & 0x001f));
break;
}
return;
}
// more channel info
if ((r>=0x01c0 && r<0x02E0)||(r>=0x05c0 && r<0x06E0))
{
s32 ch=0;
u32 rx=r;
if (rx>=0x400)
{
ch=24;
rx-=0x400;
}
ch += ((rx-0x1c0)/12);
rx -= (ch%24)*12;
VOICE_PROCESSED* pvoice = &voices[ch];
switch(rx)
{
case REG_VA_SSA:
pvoice->iStartAddr=(((u32)value&0x3f)<<16)|(pvoice->iStartAddr&0xFFFF);
pvoice->pStart=(u8*)(spu2mem+pvoice->iStartAddr);
break;
case 0x1C2:
pvoice->iStartAddr=(pvoice->iStartAddr & 0x3f0000) | (value & 0xFFFF);
pvoice->pStart=(u8*)(spu2mem+pvoice->iStartAddr);
break;
case REG_VA_LSAX:
pvoice->iLoopAddr =(((u32)value&0x3f)<<16)|(pvoice->iLoopAddr&0xFFFF);
pvoice->pLoop=(u8*)(spu2mem+pvoice->iLoopAddr);
pvoice->bIgnoreLoop=pvoice->iLoopAddr>0;
break;
case 0x1C6:
pvoice->iLoopAddr=(pvoice->iLoopAddr& 0x3f0000) | (value & 0xFFFF);
pvoice->pLoop=(u8*)(spu2mem+pvoice->iLoopAddr);
pvoice->bIgnoreLoop=pvoice->iLoopAddr>0;
break;
case REG_VA_NAX:
// unused... check if it gets written as well
pvoice->iNextAddr=(((u32)value&0x3f)<<16)|(pvoice->iNextAddr&0xFFFF);
break;
case 0x1CA:
// unused... check if it gets written as well
pvoice->iNextAddr=(pvoice->iNextAddr & 0x3f0000) | (value & 0xFFFF);
break;
}
return;
}
// process non-channel data
switch(mem & 0xffff)
{
case REG_C0_SPUDATA:
spuaddr = C0_SPUADDR();
spu2mem[spuaddr] = value;
spuaddr++;
if ((spu2Ru16(REG_C0_CTRL)&0x40) && (C0_IRQA() == spuaddr))
{
IRQINFO |= 4;
SPU2_LOG("SPU2write:C0_CPUDATA interrupt\n");
irqCallbackSPU2();
}
if (spuaddr>0xFFFFE) spuaddr = 0x2800;
C0_SPUADDR_SET(spuaddr);
spu2Ru16(REG_C0_SPUSTAT)&=~0x80;
spu2Ru16(REG_C0_CTRL)&=~0x30;
break;
case REG_C1_SPUDATA:
spuaddr = C1_SPUADDR();
spu2mem[spuaddr] = value;
spuaddr++;
if ((spu2Ru16(REG_C1_CTRL)&0x40) && (C1_IRQA() == spuaddr))
{
IRQINFO |= 8;
SPU2_LOG("SPU2write:C1_CPUDATA interrupt\n");
irqCallbackSPU2();
}
if (spuaddr>0xFFFFE) spuaddr = 0x2800;
C1_SPUADDR_SET(spuaddr);
spu2Ru16(REG_C1_SPUSTAT)&=~0x80;
spu2Ru16(REG_C1_CTRL)&=~0x30;
break;
case REG_C0_IRQA_HI:
case REG_C0_IRQA_LO:
pSpuIrq[0] = spu2mem + C0_IRQA();
break;
case REG_C1_IRQA_HI:
case REG_C1_IRQA_LO:
pSpuIrq[1] = spu2mem + C1_IRQA();
break;
case REG_C0_SPUADDR_HI:
case REG_C1_SPUADDR_HI:
spu2Ru16(mem) = value&0xf;
break;
case REG_C0_CTRL:
spu2Ru16(mem) = value;
// clear interrupt
if (!(value & 0x40)) IRQINFO &= ~0x4;
break;
case REG_C1_CTRL:
spu2Ru16(mem) = value;
// clear interrupt
if (!(value & 0x40)) IRQINFO &= ~0x8;
break;
// Could probably simplify
case REG_C0_SPUON1: SoundOn(0,16,value); break;
case REG_C0_SPUON2: SoundOn(16,24,value); break;
case REG_C1_SPUON1: SoundOn(24,40,value); break;
case REG_C1_SPUON2: SoundOn(40,48,value); break;
case REG_C0_SPUOFF1: SoundOff(0,16,value); break;
case REG_C0_SPUOFF2: SoundOff(16,24,value); break;
case REG_C1_SPUOFF1: SoundOff(24,40,value); break;
case REG_C1_SPUOFF2: SoundOff(40,48,value); break;
// According to manual all bits are cleared by writing an arbitary value
case REG_C0_END1: dwEndChannel2[0] &= 0x00ff0000; break;
case REG_C0_END2: dwEndChannel2[0] &= 0x0000ffff; break;
case REG_C1_END1: dwEndChannel2[1] &= 0x00ff0000; break;
case REG_C1_END2: dwEndChannel2[1] &= 0x0000ffff; break;
case REG_C0_FMOD1: FModOn(0,16,value); break;
case REG_C0_FMOD2: FModOn(16,24,value); break;
case REG_C1_FMOD1: FModOn(24,40,value); break;
case REG_C1_FMOD2: FModOn(40,48,value); break;
case REG_C0_VMIXL1: VolumeOn(0,16,value,0); break;
case REG_C0_VMIXL2: VolumeOn(16,24,value,0); break;
case REG_C1_VMIXL1: VolumeOn(24,40,value,0); break;
case REG_C1_VMIXL2: VolumeOn(40,48,value,0); break;
case REG_C0_VMIXR1: VolumeOn(0,16,value,1); break;
case REG_C0_VMIXR2: VolumeOn(16,24,value,1); break;
case REG_C1_VMIXR1: VolumeOn(24,40,value,1); break;
case REG_C1_VMIXR2: VolumeOn(40,48,value,1); break;
}
assert( C0_SPUADDR() < 0x100000);
assert( C1_SPUADDR() < 0x100000);
}
u16 CALLBACK SPU2read(u32 mem)
{
LOG_CALLBACK("SPU2read()\n");
u32 spuaddr;
u16 ret = 0;
u32 r = mem & 0xffff; // register
// channel info
// if the register is any of the regs before core 0, or is somewhere between core 0 and 1...
if ((r < 0x0180) || (r >= 0x0400 && r < 0x0580)) // u32s are always >= 0.
{
s32 ch = 0;
if (r >= 0x400)
ch=((r - 0x400) >> 4) + 24;
else
ch = (r >> 4);
VOICE_PROCESSED* pvoice = &voices[ch];
if ((r&0x0f) == 10) return (u16)(pvoice->ADSRX.EnvelopeVol >> 16);
}
if ((r>=REG_VA_SSA && r<REG_A_ESA) || (r>=0x05c0 && r<0x06E0)) // some channel info?
{
s32 ch=0;
u32 rx = r;
if (rx >=0x400)
{
ch=24;
rx-=0x400;
}
ch+=((rx-0x1c0)/12);
rx-=(ch%24)*12;
VOICE_PROCESSED* pvoice = &voices[ch];
// Note - can we generalize this?
switch(rx)
{
case REG_VA_SSA:
ret = ((((uptr)pvoice->pStart-(uptr)spu2mem)>>17)&0x3F);
break;
case 0x1C2:
ret = ((((uptr)pvoice->pStart-(uptr)spu2mem)>>1)&0xFFFF);
break;
case REG_VA_LSAX:
ret = ((((uptr)pvoice->pLoop-(uptr)spu2mem)>>17)&0x3F);
break;
case 0x1C6:
ret = ((((uptr)pvoice->pLoop-(uptr)spu2mem)>>1)&0xFFFF);
break;
case REG_VA_NAX:
ret = ((((uptr)pvoice->pCurr-(uptr)spu2mem)>>17)&0x3F);
break;
case 0x1CA:
ret = ((((uptr)pvoice->pCurr-(uptr)spu2mem)>>1)&0xFFFF);
break;
}
SPU2_LOG("SPU2 channel read mem %x: %x\n", mem, ret);
return ret;
}
switch(mem & 0xffff)
{
case REG_C0_SPUDATA:
spuaddr = C0_SPUADDR();
ret =spu2mem[spuaddr];
spuaddr++;
if (spuaddr > 0xfffff) spuaddr=0;
C0_SPUADDR_SET(spuaddr);
break;
case REG_C1_SPUDATA:
spuaddr = C1_SPUADDR();
ret = spu2mem[spuaddr];
spuaddr++;
if (spuaddr > 0xfffff) spuaddr=0;
C1_SPUADDR_SET(spuaddr);
break;
case REG_C0_END1: ret = (dwEndChannel2[0]&0xffff); break;
case REG_C1_END1: ret = (dwEndChannel2[1]&0xffff); break;
case REG_C0_END2: ret = (dwEndChannel2[0]>>16); break;
case REG_C1_END2: ret = (dwEndChannel2[1]>>16); break;
case REG_IRQINFO:
ret = IRQINFO;
break;
default:
ret = spu2Ru16(mem);
}
SPU2_LOG("SPU2 read mem %x: %x\n", mem, ret);
return ret;
}
void CALLBACK SPU2WriteMemAddr(int core, u32 value)
{
LOG_CALLBACK("SPU2WriteMemAddr(%d, %d)\n", core, value);
MemAddr[core] = g_pDMABaseAddr + value;
}
u32 CALLBACK SPU2ReadMemAddr(int core)
{
LOG_CALLBACK("SPU2ReadMemAddr(%d)\n", core);
return MemAddr[core] - g_pDMABaseAddr;
}
void CALLBACK SPU2setDMABaseAddr(uptr baseaddr)
{
LOG_CALLBACK("SPU2setDMABaseAddr()\n");
g_pDMABaseAddr = baseaddr;
}
void CALLBACK SPU2irqCallback(void (*SPU2callback)(),void (*DMA4callback)(),void (*DMA7callback)())
{
LOG_CALLBACK("SPU2irqCallback()\n");
irqCallbackSPU2 = SPU2callback;
irqCallbackDMA4 = DMA4callback;
irqCallbackDMA7 = DMA7callback;
}
s32 CALLBACK SPU2test()
{
LOG_CALLBACK("SPU2test()\n");
return 0;
}
#define SetPacket(s) \
{ \
if (s & 0x8000) s|=0xffff0000; \
fa = (s >> shift_factor); \
fa += ((s_1 * f[predict_nr][0]) >> 6) + ((s_2 * f[predict_nr][1]) >> 6); \
s_2 = s_1; \
s_1 = fa; \
buf[nSample++] = fa; \
}
// size is in bytes
void LogPacketSound(void* packet, s32 memsize)
{
u16 buf[28];
u8* pstart = (u8*)packet;
s32 s_1 = 0, s_2=0;
for (s32 i = 0; i < memsize; i += 16)
{
s32 predict_nr=(s32)pstart[0];
s32 shift_factor=predict_nr&0xf;
predict_nr >>= 4;
pstart += 2;
for (s32 nSample=0;nSample<28; ++pstart)
{
s32 d=(s32)*pstart;
s32 s, fa;
s =((d & 0xf) << 12);
SetPacket(s);
s=((d & 0xf0) << 8);
SetPacket(s);
}
LogRawSound(buf, 2, buf, 2, 28);
}
}
void LogRawSound(void* pleft, s32 leftstride, void* pright, s32 rightstride, s32 numsamples)
{
if (g_pWavRecord == NULL )
g_pWavRecord = new WavOutFile(RECORD_FILENAME, SAMPLE_RATE, 16, 2);
u8* left = (u8*)pleft;
u8* right = (u8*)pright;
static vector<s16> tempbuf;
tempbuf.resize(2 * numsamples);
for (s32 i = 0; i < numsamples; ++i)
{
tempbuf[2*i+0] = *(s16*)left;
tempbuf[2*i+1] = *(s16*)right;
left += leftstride;
right += rightstride;
}
g_pWavRecord->write(&tempbuf[0], numsamples*2);
}
int CALLBACK SPU2setupRecording(int start, void* pData)
{
LOG_CALLBACK("SPU2setupRecording()\n");
if ( start )
{
conf.options |= OPTION_RECORDING;
WARN_LOG("ZeroSPU2: started recording at %s\n", RECORD_FILENAME);
}
else
{
conf.options &= ~OPTION_RECORDING;
WARN_LOG("ZeroSPU2: stopped recording\n");
}
return 1;
}
void save_data(freezeData *data)
{
SPU2freezeData *spud;
s32 i;
spud = (SPU2freezeData*)data->data;
spud->version = 0x70000001;
memcpy(spud->spu2regs, spu2regs, 0x10000);
memcpy(spud->spu2mem, spu2mem, 0x200000);
spud->nSpuIrq[0] = (s32)(pSpuIrq[0] - spu2mem);
spud->nSpuIrq[1] = (s32)(pSpuIrq[1] - spu2mem);
memcpy(spud->dwNewChannel2, dwNewChannel2, 4*2);
memcpy(spud->dwEndChannel2, dwEndChannel2, 4*2);
spud->dwNoiseVal = dwNoiseVal;
spud->interrupt = interrupt;
memcpy(spud->iFMod, iFMod, sizeof(iFMod));
memcpy(spud->MemAddr, MemAddr, sizeof(MemAddr));
spud->adma[0] = Adma4;
spud->adma[1] = Adma7;
spud->Adma4MemAddr = (u32)((uptr)Adma4.MemAddr - g_pDMABaseAddr);
spud->Adma7MemAddr = (u32)((uptr)Adma7.MemAddr - g_pDMABaseAddr);
spud->SPUCycles = SPUCycles;
spud->SPUWorkerCycles = SPUWorkerCycles;
memcpy(spud->SPUStartCycle, SPUStartCycle, sizeof(SPUStartCycle));
memcpy(spud->SPUTargetCycle, SPUTargetCycle, sizeof(SPUTargetCycle));
for (i = 0; i < ArraySize(s_nDurations); ++i)
{
s_nDurations[i] = NSFRAMES*1000;
}
s_nTotalDuration = ArraySize(s_nDurations)*NSFRAMES*1000;
s_nCurDuration = 0;
spud->voicesize = SPU_VOICE_STATE_SIZE;
for (i = 0; i < ArraySize(voices); ++i)
{
memcpy(&spud->voices[i], &voices[i], SPU_VOICE_STATE_SIZE);
spud->voices[i].pStart = (u8*)((uptr)voices[i].pStart-(uptr)spu2mem);
spud->voices[i].pLoop = (u8*)((uptr)voices[i].pLoop-(uptr)spu2mem);
spud->voices[i].pCurr = (u8*)((uptr)voices[i].pCurr-(uptr)spu2mem);
}
g_startcount=0xffffffff;
s_GlobalTimeStamp = 0;
s_nDropPacket = 0;
}
void load_data(freezeData *data)
{
SPU2freezeData *spud;
s32 i;
spud = (SPU2freezeData*)data->data;
if (spud->version != 0x70000001)
{
ERROR_LOG("zerospu2: Sound data either corrupted or from another plugin. Ignoring.\n");
return;
}
memcpy(spu2regs, spud->spu2regs, 0x10000);
memcpy(spu2mem, spud->spu2mem, 0x200000);
pSpuIrq[0] = spu2mem + spud->nSpuIrq[0];
pSpuIrq[1] = spu2mem + spud->nSpuIrq[1];
memcpy(dwNewChannel2, spud->dwNewChannel2, 4*2);
memcpy(dwEndChannel2, spud->dwEndChannel2, 4*2);
dwNoiseVal = spud->dwNoiseVal;
interrupt = spud->interrupt;
memcpy(iFMod, spud->iFMod, sizeof(iFMod));
memcpy(MemAddr, spud->MemAddr, sizeof(MemAddr));
Adma4 = spud->adma[0];
Adma7 = spud->adma[1];
Adma4.MemAddr = (u16*)(g_pDMABaseAddr+spud->Adma4MemAddr);
Adma7.MemAddr = (u16*)(g_pDMABaseAddr+spud->Adma7MemAddr);
SPUCycles = spud->SPUCycles;
SPUWorkerCycles = spud->SPUWorkerCycles;
memcpy(SPUStartCycle, spud->SPUStartCycle, sizeof(SPUStartCycle));
memcpy(SPUTargetCycle, spud->SPUTargetCycle, sizeof(SPUTargetCycle));
for (i = 0; i < ArraySize(voices); ++i)
{
memcpy(&voices[i], &spud->voices[i], min((s32)SPU_VOICE_STATE_SIZE, spud->voicesize));
voices[i].pStart = (u8*)((uptr)spud->voices[i].pStart+(uptr)spu2mem);
voices[i].pLoop = (u8*)((uptr)spud->voices[i].pLoop+(uptr)spu2mem);
voices[i].pCurr = (u8*)((uptr)spud->voices[i].pCurr+(uptr)spu2mem);
}
s_GlobalTimeStamp = 0;
g_startcount = 0xffffffff;
for (s32 i = 0; i < ArraySize(s_nDurations); ++i)
{
s_nDurations[i] = NSFRAMES*1000;
}
s_nTotalDuration = ArraySize(s_nDurations)*NSFRAMES*1000;
s_nCurDuration = 0;
s_nQueuedBuffers = 0;
s_nDropPacket = 0;
}
s32 CALLBACK SPU2freeze(int mode, freezeData *data)
{
LOG_CALLBACK("SPU2freeze()\n");
assert( g_pDMABaseAddr != 0 );
switch (mode)
{
case FREEZE_LOAD:
load_data(data);
break;
case FREEZE_SAVE:
save_data(data);
break;
case FREEZE_SIZE:
data->size = sizeof(SPU2freezeData);
break;
default:
break;
}
return 0;
}