pcsx2/common/emitter/simd.cpp

806 lines
30 KiB
C++

/* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2010 PCSX2 Dev Team
*
* PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "common/emitter/internal.h"
#include "common/emitter/tools.h"
// Mask of valid bit fields for the target CPU. Typically this is either 0xFFFF (SSE2
// or better) or 0xFFBF (SSE1 and earlier). Code can ensure a safe/valid MXCSR by
// AND'ing this mask against an MXCSR prior to LDMXCSR.
SSE_MXCSR MXCSR_Mask;
const char* EnumToString(SSE_RoundMode sse)
{
switch (sse)
{
case SSEround_Nearest:
return "Nearest";
case SSEround_NegInf:
return "NegativeInfinity";
case SSEround_PosInf:
return "PositiveInfinity";
case SSEround_Chop:
return "Chop";
default:
return "Invalid";
}
}
SSE_RoundMode SSE_MXCSR::GetRoundMode() const
{
return (SSE_RoundMode)RoundingControl;
}
SSE_MXCSR& SSE_MXCSR::SetRoundMode(SSE_RoundMode mode)
{
pxAssert((uint)mode < 4);
RoundingControl = (u32)mode;
return *this;
}
SSE_MXCSR& SSE_MXCSR::ClearExceptionFlags()
{
bitmask &= ~0x3f;
return *this;
}
SSE_MXCSR& SSE_MXCSR::EnableExceptions()
{
bitmask &= ~(0x3f << 7);
return *this;
}
SSE_MXCSR& SSE_MXCSR::DisableExceptions()
{
bitmask |= 0x3f << 7;
return *this;
}
// Applies the reserve bits mask for the current running cpu, as fetched from the CPU
// during CPU init/detection.
SSE_MXCSR& SSE_MXCSR::ApplyReserveMask()
{
bitmask &= MXCSR_Mask.bitmask;
return *this;
}
SSE_MXCSR::operator x86Emitter::xIndirect32() const
{
return x86Emitter::ptr32[&bitmask];
}
namespace x86Emitter
{
// ------------------------------------------------------------------------
// SimdPrefix - If the lower byte of the opcode is 0x38 or 0x3a, then the opcode is
// treated as a 16 bit value (in SSE 0x38 and 0x3a denote prefixes for extended SSE3/4
// instructions). Any other lower value assumes the upper value is 0 and ignored.
// Non-zero upper bytes, when the lower byte is not the 0x38 or 0x3a prefix, will
// generate an assertion.
//
__emitinline void SimdPrefix(u8 prefix, u16 opcode)
{
#ifdef __M_X86_64
pxAssertMsg(prefix == 0, "REX prefix must be just before the opcode");
#endif
const bool is16BitOpcode = ((opcode & 0xff) == 0x38) || ((opcode & 0xff) == 0x3a);
// If the lower byte is not a valid prefix and the upper byte is non-zero it
// means we made a mistake!
if (!is16BitOpcode)
pxAssert((opcode >> 8) == 0);
if (prefix != 0)
{
if (is16BitOpcode)
xWrite32((opcode << 16) | 0x0f00 | prefix);
else
{
xWrite16(0x0f00 | prefix);
xWrite8(opcode);
}
}
else
{
if (is16BitOpcode)
{
xWrite8(0x0f);
xWrite16(opcode);
}
else
xWrite16((opcode << 8) | 0x0f);
}
}
const xImplSimd_DestRegEither xPAND = {0x66, 0xdb};
const xImplSimd_DestRegEither xPANDN = {0x66, 0xdf};
const xImplSimd_DestRegEither xPOR = {0x66, 0xeb};
const xImplSimd_DestRegEither xPXOR = {0x66, 0xef};
// [SSE-4.1] Performs a bitwise AND of dest against src, and sets the ZF flag
// only if all bits in the result are 0. PTEST also sets the CF flag according
// to the following condition: (xmm2/m128 AND NOT xmm1) == 0;
const xImplSimd_DestRegSSE xPTEST = {0x66, 0x1738};
// =====================================================================================================
// SSE Conversion Operations, as looney as they are.
// =====================================================================================================
// These enforce pointer strictness for Indirect forms, due to the otherwise completely confusing
// nature of the functions. (so if a function expects an m32, you must use (u32*) or ptr32[]).
//
__fi void xCVTDQ2PD(const xRegisterSSE& to, const xRegisterSSE& from) { OpWriteSSE(0xf3, 0xe6); }
__fi void xCVTDQ2PD(const xRegisterSSE& to, const xIndirect64& from) { OpWriteSSE(0xf3, 0xe6); }
__fi void xCVTDQ2PS(const xRegisterSSE& to, const xRegisterSSE& from) { OpWriteSSE(0x00, 0x5b); }
__fi void xCVTDQ2PS(const xRegisterSSE& to, const xIndirect128& from) { OpWriteSSE(0x00, 0x5b); }
__fi void xCVTPD2DQ(const xRegisterSSE& to, const xRegisterSSE& from) { OpWriteSSE(0xf2, 0xe6); }
__fi void xCVTPD2DQ(const xRegisterSSE& to, const xIndirect128& from) { OpWriteSSE(0xf2, 0xe6); }
__fi void xCVTPD2PS(const xRegisterSSE& to, const xRegisterSSE& from) { OpWriteSSE(0x66, 0x5a); }
__fi void xCVTPD2PS(const xRegisterSSE& to, const xIndirect128& from) { OpWriteSSE(0x66, 0x5a); }
__fi void xCVTPI2PD(const xRegisterSSE& to, const xIndirect64& from) { OpWriteSSE(0x66, 0x2a); }
__fi void xCVTPI2PS(const xRegisterSSE& to, const xIndirect64& from) { OpWriteSSE(0x00, 0x2a); }
__fi void xCVTPS2DQ(const xRegisterSSE& to, const xRegisterSSE& from) { OpWriteSSE(0x66, 0x5b); }
__fi void xCVTPS2DQ(const xRegisterSSE& to, const xIndirect128& from) { OpWriteSSE(0x66, 0x5b); }
__fi void xCVTPS2PD(const xRegisterSSE& to, const xRegisterSSE& from) { OpWriteSSE(0x00, 0x5a); }
__fi void xCVTPS2PD(const xRegisterSSE& to, const xIndirect64& from) { OpWriteSSE(0x00, 0x5a); }
__fi void xCVTSD2SI(const xRegister32or64& to, const xRegisterSSE& from) { OpWriteSSE(0xf2, 0x2d); }
__fi void xCVTSD2SI(const xRegister32or64& to, const xIndirect64& from) { OpWriteSSE(0xf2, 0x2d); }
__fi void xCVTSD2SS(const xRegisterSSE& to, const xRegisterSSE& from) { OpWriteSSE(0xf2, 0x5a); }
__fi void xCVTSD2SS(const xRegisterSSE& to, const xIndirect64& from) { OpWriteSSE(0xf2, 0x5a); }
__fi void xCVTSI2SS(const xRegisterSSE& to, const xRegister32or64& from) { OpWriteSSE(0xf3, 0x2a); }
__fi void xCVTSI2SS(const xRegisterSSE& to, const xIndirect32& from) { OpWriteSSE(0xf3, 0x2a); }
__fi void xCVTSS2SD(const xRegisterSSE& to, const xRegisterSSE& from) { OpWriteSSE(0xf3, 0x5a); }
__fi void xCVTSS2SD(const xRegisterSSE& to, const xIndirect32& from) { OpWriteSSE(0xf3, 0x5a); }
__fi void xCVTSS2SI(const xRegister32or64& to, const xRegisterSSE& from) { OpWriteSSE(0xf3, 0x2d); }
__fi void xCVTSS2SI(const xRegister32or64& to, const xIndirect32& from) { OpWriteSSE(0xf3, 0x2d); }
__fi void xCVTTPD2DQ(const xRegisterSSE& to, const xRegisterSSE& from) { OpWriteSSE(0x66, 0xe6); }
__fi void xCVTTPD2DQ(const xRegisterSSE& to, const xIndirect128& from) { OpWriteSSE(0x66, 0xe6); }
__fi void xCVTTPS2DQ(const xRegisterSSE& to, const xRegisterSSE& from) { OpWriteSSE(0xf3, 0x5b); }
__fi void xCVTTPS2DQ(const xRegisterSSE& to, const xIndirect128& from) { OpWriteSSE(0xf3, 0x5b); }
__fi void xCVTTSD2SI(const xRegister32or64& to, const xRegisterSSE& from) { OpWriteSSE(0xf2, 0x2c); }
__fi void xCVTTSD2SI(const xRegister32or64& to, const xIndirect64& from) { OpWriteSSE(0xf2, 0x2c); }
__fi void xCVTTSS2SI(const xRegister32or64& to, const xRegisterSSE& from) { OpWriteSSE(0xf3, 0x2c); }
__fi void xCVTTSS2SI(const xRegister32or64& to, const xIndirect32& from) { OpWriteSSE(0xf3, 0x2c); }
// ------------------------------------------------------------------------
void xImplSimd_DestRegSSE::operator()(const xRegisterSSE& to, const xRegisterSSE& from) const { OpWriteSSE(Prefix, Opcode); }
void xImplSimd_DestRegSSE::operator()(const xRegisterSSE& to, const xIndirectVoid& from) const { OpWriteSSE(Prefix, Opcode); }
void xImplSimd_DestRegImmSSE::operator()(const xRegisterSSE& to, const xRegisterSSE& from, u8 imm) const { xOpWrite0F(Prefix, Opcode, to, from, imm); }
void xImplSimd_DestRegImmSSE::operator()(const xRegisterSSE& to, const xIndirectVoid& from, u8 imm) const { xOpWrite0F(Prefix, Opcode, to, from, imm); }
void xImplSimd_DestRegEither::operator()(const xRegisterSSE& to, const xRegisterSSE& from) const { OpWriteSSE(Prefix, Opcode); }
void xImplSimd_DestRegEither::operator()(const xRegisterSSE& to, const xIndirectVoid& from) const { OpWriteSSE(Prefix, Opcode); }
void xImplSimd_DestSSE_CmpImm::operator()(const xRegisterSSE& to, const xRegisterSSE& from, SSE2_ComparisonType imm) const { xOpWrite0F(Prefix, Opcode, to, from, imm); }
void xImplSimd_DestSSE_CmpImm::operator()(const xRegisterSSE& to, const xIndirectVoid& from, SSE2_ComparisonType imm) const { xOpWrite0F(Prefix, Opcode, to, from, imm); }
// =====================================================================================================
// SIMD Arithmetic Instructions
// =====================================================================================================
void _SimdShiftHelper::operator()(const xRegisterSSE& to, const xRegisterSSE& from) const { OpWriteSSE(Prefix, Opcode); }
void _SimdShiftHelper::operator()(const xRegisterSSE& to, const xIndirectVoid& from) const { OpWriteSSE(Prefix, Opcode); }
void _SimdShiftHelper::operator()(const xRegisterSSE& to, u8 imm8) const
{
xOpWrite0F(0x66, OpcodeImm, (int)Modcode, to);
xWrite8(imm8);
}
void xImplSimd_Shift::DQ(const xRegisterSSE& to, u8 imm8) const
{
xOpWrite0F(0x66, 0x73, (int)Q.Modcode + 1, to, imm8);
}
const xImplSimd_ShiftWithoutQ xPSRA =
{
{0x66, 0xe1, 0x71, 4}, // W
{0x66, 0xe2, 0x72, 4} // D
};
const xImplSimd_Shift xPSRL =
{
{0x66, 0xd1, 0x71, 2}, // W
{0x66, 0xd2, 0x72, 2}, // D
{0x66, 0xd3, 0x73, 2}, // Q
};
const xImplSimd_Shift xPSLL =
{
{0x66, 0xf1, 0x71, 6}, // W
{0x66, 0xf2, 0x72, 6}, // D
{0x66, 0xf3, 0x73, 6}, // Q
};
const xImplSimd_AddSub xPADD =
{
{0x66, 0xdc + 0x20}, // B
{0x66, 0xdc + 0x21}, // W
{0x66, 0xdc + 0x22}, // D
{0x66, 0xd4}, // Q
{0x66, 0xdc + 0x10}, // SB
{0x66, 0xdc + 0x11}, // SW
{0x66, 0xdc}, // USB
{0x66, 0xdc + 1}, // USW
};
const xImplSimd_AddSub xPSUB =
{
{0x66, 0xd8 + 0x20}, // B
{0x66, 0xd8 + 0x21}, // W
{0x66, 0xd8 + 0x22}, // D
{0x66, 0xfb}, // Q
{0x66, 0xd8 + 0x10}, // SB
{0x66, 0xd8 + 0x11}, // SW
{0x66, 0xd8}, // USB
{0x66, 0xd8 + 1}, // USW
};
const xImplSimd_PMul xPMUL =
{
{0x66, 0xd5}, // LW
{0x66, 0xe5}, // HW
{0x66, 0xe4}, // HUW
{0x66, 0xf4}, // UDQ
{0x66, 0x0b38}, // HRSW
{0x66, 0x4038}, // LD
{0x66, 0x2838}, // DQ
};
const xImplSimd_rSqrt xRSQRT =
{
{0x00, 0x52}, // PS
{0xf3, 0x52} // SS
};
const xImplSimd_rSqrt xRCP =
{
{0x00, 0x53}, // PS
{0xf3, 0x53} // SS
};
const xImplSimd_Sqrt xSQRT =
{
{0x00, 0x51}, // PS
{0xf3, 0x51}, // SS
{0xf2, 0x51} // SS
};
const xImplSimd_AndNot xANDN =
{
{0x00, 0x55}, // PS
{0x66, 0x55} // PD
};
const xImplSimd_PAbsolute xPABS =
{
{0x66, 0x1c38}, // B
{0x66, 0x1d38}, // W
{0x66, 0x1e38} // D
};
const xImplSimd_PSign xPSIGN =
{
{0x66, 0x0838}, // B
{0x66, 0x0938}, // W
{0x66, 0x0a38}, // D
};
const xImplSimd_PMultAdd xPMADD =
{
{0x66, 0xf5}, // WD
{0x66, 0xf438}, // UBSW
};
const xImplSimd_HorizAdd xHADD =
{
{0xf2, 0x7c}, // PS
{0x66, 0x7c}, // PD
};
const xImplSimd_DotProduct xDP =
{
{0x66, 0x403a}, // PS
{0x66, 0x413a}, // PD
};
const xImplSimd_Round xROUND =
{
{0x66, 0x083a}, // PS
{0x66, 0x093a}, // PD
{0x66, 0x0a3a}, // SS
{0x66, 0x0b3a}, // SD
};
// =====================================================================================================
// SIMD Comparison Instructions
// =====================================================================================================
void xImplSimd_Compare::PS(const xRegisterSSE& to, const xRegisterSSE& from) const { xOpWrite0F(0x00, 0xc2, to, from, (u8)CType); }
void xImplSimd_Compare::PS(const xRegisterSSE& to, const xIndirectVoid& from) const { xOpWrite0F(0x00, 0xc2, to, from, (u8)CType); }
void xImplSimd_Compare::PD(const xRegisterSSE& to, const xRegisterSSE& from) const { xOpWrite0F(0x66, 0xc2, to, from, (u8)CType); }
void xImplSimd_Compare::PD(const xRegisterSSE& to, const xIndirectVoid& from) const { xOpWrite0F(0x66, 0xc2, to, from, (u8)CType); }
void xImplSimd_Compare::SS(const xRegisterSSE& to, const xRegisterSSE& from) const { xOpWrite0F(0xf3, 0xc2, to, from, (u8)CType); }
void xImplSimd_Compare::SS(const xRegisterSSE& to, const xIndirectVoid& from) const { xOpWrite0F(0xf3, 0xc2, to, from, (u8)CType); }
void xImplSimd_Compare::SD(const xRegisterSSE& to, const xRegisterSSE& from) const { xOpWrite0F(0xf2, 0xc2, to, from, (u8)CType); }
void xImplSimd_Compare::SD(const xRegisterSSE& to, const xIndirectVoid& from) const { xOpWrite0F(0xf2, 0xc2, to, from, (u8)CType); }
const xImplSimd_MinMax xMIN =
{
{0x00, 0x5d}, // PS
{0x66, 0x5d}, // PD
{0xf3, 0x5d}, // SS
{0xf2, 0x5d}, // SD
};
const xImplSimd_MinMax xMAX =
{
{0x00, 0x5f}, // PS
{0x66, 0x5f}, // PD
{0xf3, 0x5f}, // SS
{0xf2, 0x5f}, // SD
};
// [TODO] : Merge this into the xCMP class, so that they are notation as: xCMP.EQ
const xImplSimd_Compare xCMPEQ = {SSE2_Equal};
const xImplSimd_Compare xCMPLT = {SSE2_Less};
const xImplSimd_Compare xCMPLE = {SSE2_LessOrEqual};
const xImplSimd_Compare xCMPUNORD = {SSE2_LessOrEqual};
const xImplSimd_Compare xCMPNE = {SSE2_NotEqual};
const xImplSimd_Compare xCMPNLT = {SSE2_NotLess};
const xImplSimd_Compare xCMPNLE = {SSE2_NotLessOrEqual};
const xImplSimd_Compare xCMPORD = {SSE2_Ordered};
const xImplSimd_COMI xCOMI =
{
{0x00, 0x2f}, // SS
{0x66, 0x2f}, // SD
};
const xImplSimd_COMI xUCOMI =
{
{0x00, 0x2e}, // SS
{0x66, 0x2e}, // SD
};
const xImplSimd_PCompare xPCMP =
{
{0x66, 0x74}, // EQB
{0x66, 0x75}, // EQW
{0x66, 0x76}, // EQD
{0x66, 0x64}, // GTB
{0x66, 0x65}, // GTW
{0x66, 0x66}, // GTD
};
const xImplSimd_PMinMax xPMIN =
{
{0x66, 0xda}, // UB
{0x66, 0xea}, // SW
{0x66, 0x3838}, // SB
{0x66, 0x3938}, // SD
{0x66, 0x3a38}, // UW
{0x66, 0x3b38}, // UD
};
const xImplSimd_PMinMax xPMAX =
{
{0x66, 0xde}, // UB
{0x66, 0xee}, // SW
{0x66, 0x3c38}, // SB
{0x66, 0x3d38}, // SD
{0x66, 0x3e38}, // UW
{0x66, 0x3f38}, // UD
};
// =====================================================================================================
// SIMD Shuffle/Pack (Shuffle puck?)
// =====================================================================================================
__fi void xImplSimd_Shuffle::_selector_assertion_check(u8 selector) const
{
pxAssertMsg((selector & ~3) == 0,
"Invalid immediate operand on SSE Shuffle: Upper 6 bits of the SSE Shuffle-PD Selector are reserved and must be zero.");
}
void xImplSimd_Shuffle::PS(const xRegisterSSE& to, const xRegisterSSE& from, u8 selector) const
{
xOpWrite0F(0xc6, to, from, selector);
}
void xImplSimd_Shuffle::PS(const xRegisterSSE& to, const xIndirectVoid& from, u8 selector) const
{
xOpWrite0F(0xc6, to, from, selector);
}
void xImplSimd_Shuffle::PD(const xRegisterSSE& to, const xRegisterSSE& from, u8 selector) const
{
_selector_assertion_check(selector);
xOpWrite0F(0x66, 0xc6, to, from, selector & 0x3);
}
void xImplSimd_Shuffle::PD(const xRegisterSSE& to, const xIndirectVoid& from, u8 selector) const
{
_selector_assertion_check(selector);
xOpWrite0F(0x66, 0xc6, to, from, selector & 0x3);
}
void xImplSimd_InsertExtractHelper::operator()(const xRegisterSSE& to, const xRegister32& from, u8 imm8) const
{
xOpWrite0F(0x66, Opcode, to, from, imm8);
}
void xImplSimd_InsertExtractHelper::operator()(const xRegisterSSE& to, const xIndirectVoid& from, u8 imm8) const
{
xOpWrite0F(0x66, Opcode, to, from, imm8);
}
void xImplSimd_PInsert::W(const xRegisterSSE& to, const xRegister32& from, u8 imm8) const { xOpWrite0F(0x66, 0xc4, to, from, imm8); }
void xImplSimd_PInsert::W(const xRegisterSSE& to, const xIndirectVoid& from, u8 imm8) const { xOpWrite0F(0x66, 0xc4, to, from, imm8); }
void SimdImpl_PExtract::W(const xRegister32& to, const xRegisterSSE& from, u8 imm8) const { xOpWrite0F(0x66, 0xc5, to, from, imm8); }
void SimdImpl_PExtract::W(const xIndirectVoid& dest, const xRegisterSSE& from, u8 imm8) const { xOpWrite0F(0x66, 0x153a, from, dest, imm8); }
const xImplSimd_Shuffle xSHUF = {};
const xImplSimd_PShuffle xPSHUF =
{
{0x66, 0x70}, // D
{0xf2, 0x70}, // LW
{0xf3, 0x70}, // HW
{0x66, 0x0038}, // B
};
const SimdImpl_PUnpack xPUNPCK =
{
{0x66, 0x60}, // LBW
{0x66, 0x61}, // LWD
{0x66, 0x62}, // LDQ
{0x66, 0x6c}, // LQDQ
{0x66, 0x68}, // HBW
{0x66, 0x69}, // HWD
{0x66, 0x6a}, // HDQ
{0x66, 0x6d}, // HQDQ
};
const SimdImpl_Pack xPACK =
{
{0x66, 0x63}, // SSWB
{0x66, 0x6b}, // SSDW
{0x66, 0x67}, // USWB
{0x66, 0x2b38}, // USDW
};
const xImplSimd_Unpack xUNPCK =
{
{0x00, 0x15}, // HPS
{0x66, 0x15}, // HPD
{0x00, 0x14}, // LPS
{0x66, 0x14}, // LPD
};
const xImplSimd_PInsert xPINSR =
{
{0x203a}, // B
{0x223a}, // D
};
const SimdImpl_PExtract xPEXTR =
{
{0x143a}, // B
{0x163a}, // D
};
// =====================================================================================================
// SIMD Move And Blend Instructions
// =====================================================================================================
void xImplSimd_MovHL::PS(const xRegisterSSE& to, const xIndirectVoid& from) const { xOpWrite0F(Opcode, to, from); }
void xImplSimd_MovHL::PS(const xIndirectVoid& to, const xRegisterSSE& from) const { xOpWrite0F(Opcode + 1, from, to); }
void xImplSimd_MovHL::PD(const xRegisterSSE& to, const xIndirectVoid& from) const { xOpWrite0F(0x66, Opcode, to, from); }
void xImplSimd_MovHL::PD(const xIndirectVoid& to, const xRegisterSSE& from) const { xOpWrite0F(0x66, Opcode + 1, from, to); }
void xImplSimd_MovHL_RtoR::PS(const xRegisterSSE& to, const xRegisterSSE& from) const { xOpWrite0F(Opcode, to, from); }
void xImplSimd_MovHL_RtoR::PD(const xRegisterSSE& to, const xRegisterSSE& from) const { xOpWrite0F(0x66, Opcode, to, from); }
static const u16 MovPS_OpAligned = 0x28; // Aligned [aps] form
static const u16 MovPS_OpUnaligned = 0x10; // unaligned [ups] form
void xImplSimd_MoveSSE::operator()(const xRegisterSSE& to, const xRegisterSSE& from) const
{
if (to != from)
xOpWrite0F(Prefix, MovPS_OpAligned, to, from);
}
void xImplSimd_MoveSSE::operator()(const xRegisterSSE& to, const xIndirectVoid& from) const
{
// ModSib form is aligned if it's displacement-only and the displacement is aligned:
bool isReallyAligned = isAligned || (((from.Displacement & 0x0f) == 0) && from.Index.IsEmpty() && from.Base.IsEmpty());
xOpWrite0F(Prefix, isReallyAligned ? MovPS_OpAligned : MovPS_OpUnaligned, to, from);
}
void xImplSimd_MoveSSE::operator()(const xIndirectVoid& to, const xRegisterSSE& from) const
{
// ModSib form is aligned if it's displacement-only and the displacement is aligned:
bool isReallyAligned = isAligned || ((to.Displacement & 0x0f) == 0 && to.Index.IsEmpty() && to.Base.IsEmpty());
xOpWrite0F(Prefix, isReallyAligned ? MovPS_OpAligned + 1 : MovPS_OpUnaligned + 1, from, to);
}
static const u8 MovDQ_PrefixAligned = 0x66; // Aligned [dqa] form
static const u8 MovDQ_PrefixUnaligned = 0xf3; // unaligned [dqu] form
void xImplSimd_MoveDQ::operator()(const xRegisterSSE& to, const xRegisterSSE& from) const
{
if (to != from)
xOpWrite0F(MovDQ_PrefixAligned, 0x6f, to, from);
}
void xImplSimd_MoveDQ::operator()(const xRegisterSSE& to, const xIndirectVoid& from) const
{
// ModSib form is aligned if it's displacement-only and the displacement is aligned:
bool isReallyAligned = isAligned || ((from.Displacement & 0x0f) == 0 && from.Index.IsEmpty() && from.Base.IsEmpty());
xOpWrite0F(isReallyAligned ? MovDQ_PrefixAligned : MovDQ_PrefixUnaligned, 0x6f, to, from);
}
void xImplSimd_MoveDQ::operator()(const xIndirectVoid& to, const xRegisterSSE& from) const
{
// ModSib form is aligned if it's displacement-only and the displacement is aligned:
bool isReallyAligned = isAligned || ((to.Displacement & 0x0f) == 0 && to.Index.IsEmpty() && to.Base.IsEmpty());
// use opcode 0x7f : alternate ModRM encoding (reverse src/dst)
xOpWrite0F(isReallyAligned ? MovDQ_PrefixAligned : MovDQ_PrefixUnaligned, 0x7f, from, to);
}
void xImplSimd_PMove::BW(const xRegisterSSE& to, const xRegisterSSE& from) const { OpWriteSSE(0x66, OpcodeBase); }
void xImplSimd_PMove::BW(const xRegisterSSE& to, const xIndirect64& from) const { OpWriteSSE(0x66, OpcodeBase); }
void xImplSimd_PMove::BD(const xRegisterSSE& to, const xRegisterSSE& from) const { OpWriteSSE(0x66, OpcodeBase + 0x100); }
void xImplSimd_PMove::BD(const xRegisterSSE& to, const xIndirect32& from) const { OpWriteSSE(0x66, OpcodeBase + 0x100); }
void xImplSimd_PMove::BQ(const xRegisterSSE& to, const xRegisterSSE& from) const { OpWriteSSE(0x66, OpcodeBase + 0x200); }
void xImplSimd_PMove::BQ(const xRegisterSSE& to, const xIndirect16& from) const { OpWriteSSE(0x66, OpcodeBase + 0x200); }
void xImplSimd_PMove::WD(const xRegisterSSE& to, const xRegisterSSE& from) const { OpWriteSSE(0x66, OpcodeBase + 0x300); }
void xImplSimd_PMove::WD(const xRegisterSSE& to, const xIndirect64& from) const { OpWriteSSE(0x66, OpcodeBase + 0x300); }
void xImplSimd_PMove::WQ(const xRegisterSSE& to, const xRegisterSSE& from) const { OpWriteSSE(0x66, OpcodeBase + 0x400); }
void xImplSimd_PMove::WQ(const xRegisterSSE& to, const xIndirect32& from) const { OpWriteSSE(0x66, OpcodeBase + 0x400); }
void xImplSimd_PMove::DQ(const xRegisterSSE& to, const xRegisterSSE& from) const { OpWriteSSE(0x66, OpcodeBase + 0x500); }
void xImplSimd_PMove::DQ(const xRegisterSSE& to, const xIndirect64& from) const { OpWriteSSE(0x66, OpcodeBase + 0x500); }
const xImplSimd_MoveSSE xMOVAPS = {0x00, true};
const xImplSimd_MoveSSE xMOVUPS = {0x00, false};
#ifdef ALWAYS_USE_MOVAPS
const xImplSimd_MoveSSE xMOVDQA = {0x00, true};
const xImplSimd_MoveSSE xMOVAPD = {0x00, true};
const xImplSimd_MoveSSE xMOVDQU = {0x00, false};
const xImplSimd_MoveSSE xMOVUPD = {0x00, false};
#else
const xImplSimd_MoveDQ xMOVDQA = {0x66, true};
const xImplSimd_MoveSSE xMOVAPD = {0x66, true};
const xImplSimd_MoveDQ xMOVDQU = {0xf3, false};
const xImplSimd_MoveSSE xMOVUPD = {0x66, false};
#endif
const xImplSimd_MovHL xMOVH = {0x16};
const xImplSimd_MovHL xMOVL = {0x12};
const xImplSimd_MovHL_RtoR xMOVLH = {0x16};
const xImplSimd_MovHL_RtoR xMOVHL = {0x12};
const xImplSimd_Blend xBLEND =
{
{0x66, 0x0c3a}, // PS
{0x66, 0x0d3a}, // PD
{0x66, 0x1438}, // VPS
{0x66, 0x1538}, // VPD
};
const xImplSimd_PMove xPMOVSX = {0x2038};
const xImplSimd_PMove xPMOVZX = {0x3038};
// [SSE-3]
const xImplSimd_DestRegSSE xMOVSLDUP = {0xf3, 0x12};
// [SSE-3]
const xImplSimd_DestRegSSE xMOVSHDUP = {0xf3, 0x16};
//////////////////////////////////////////////////////////////////////////////////////////
// MMX Mov Instructions (MOVD, MOVQ, MOVSS).
//
// Notes:
// * Some of the functions have been renamed to more clearly reflect what they actually
// do. Namely we've affixed "ZX" to several MOVs that take a register as a destination
// since that's what they do (MOVD clears upper 32/96 bits, etc).
//
// * MOVD has valid forms for MMX and XMM registers.
//
__fi void xMOVDZX(const xRegisterSSE& to, const xRegister32or64& from) { xOpWrite0F(0x66, 0x6e, to, from); }
__fi void xMOVDZX(const xRegisterSSE& to, const xIndirectVoid& src) { xOpWrite0F(0x66, 0x6e, to, src); }
__fi void xMOVD(const xRegister32or64& to, const xRegisterSSE& from) { xOpWrite0F(0x66, 0x7e, from, to); }
__fi void xMOVD(const xIndirectVoid& dest, const xRegisterSSE& from) { xOpWrite0F(0x66, 0x7e, from, dest); }
// Moves from XMM to XMM, with the *upper 64 bits* of the destination register
// being cleared to zero.
__fi void xMOVQZX(const xRegisterSSE& to, const xRegisterSSE& from) { xOpWrite0F(0xf3, 0x7e, to, from); }
// Moves from XMM to XMM, with the *upper 64 bits* of the destination register
// being cleared to zero.
__fi void xMOVQZX(const xRegisterSSE& to, const xIndirectVoid& src) { xOpWrite0F(0xf3, 0x7e, to, src); }
// Moves from XMM to XMM, with the *upper 64 bits* of the destination register
// being cleared to zero.
__fi void xMOVQZX(const xRegisterSSE& to, const void* src) { xOpWrite0F(0xf3, 0x7e, to, src); }
// Moves lower quad of XMM to ptr64 (no bits are cleared)
__fi void xMOVQ(const xIndirectVoid& dest, const xRegisterSSE& from) { xOpWrite0F(0x66, 0xd6, from, dest); }
//////////////////////////////////////////////////////////////////////////////////////////
//
#define IMPLEMENT_xMOVS(ssd, prefix) \
__fi void xMOV##ssd(const xRegisterSSE& to, const xRegisterSSE& from) \
{ \
if (to != from) \
xOpWrite0F(prefix, 0x10, to, from); \
} \
__fi void xMOV##ssd##ZX(const xRegisterSSE& to, const xIndirectVoid& from) { xOpWrite0F(prefix, 0x10, to, from); } \
__fi void xMOV##ssd(const xIndirectVoid& to, const xRegisterSSE& from) { xOpWrite0F(prefix, 0x11, from, to); }
IMPLEMENT_xMOVS(SS, 0xf3)
IMPLEMENT_xMOVS(SD, 0xf2)
//////////////////////////////////////////////////////////////////////////////////////////
// Non-temporal movs only support a register as a target (ie, load form only, no stores)
//
__fi void xMOVNTDQA(const xRegisterSSE& to, const xIndirectVoid& from)
{
xOpWrite0F(0x66, 0x2a38, to.Id, from);
}
__fi void xMOVNTDQA(const xIndirectVoid& to, const xRegisterSSE& from) { xOpWrite0F(0x66, 0xe7, from, to); }
__fi void xMOVNTPD(const xIndirectVoid& to, const xRegisterSSE& from) { xOpWrite0F(0x66, 0x2b, from, to); }
__fi void xMOVNTPS(const xIndirectVoid& to, const xRegisterSSE& from) { xOpWrite0F(0x2b, from, to); }
// ------------------------------------------------------------------------
__fi void xMOVMSKPS(const xRegister32& to, const xRegisterSSE& from) { xOpWrite0F(0x50, to, from); }
__fi void xMOVMSKPD(const xRegister32& to, const xRegisterSSE& from) { xOpWrite0F(0x66, 0x50, to, from, true); }
// xMASKMOV:
// Selectively write bytes from mm1/xmm1 to memory location using the byte mask in mm2/xmm2.
// The default memory location is specified by DS:EDI. The most significant bit in each byte
// of the mask operand determines whether the corresponding byte in the source operand is
// written to the corresponding byte location in memory.
__fi void xMASKMOV(const xRegisterSSE& to, const xRegisterSSE& from) { xOpWrite0F(0x66, 0xf7, to, from); }
// xPMOVMSKB:
// Creates a mask made up of the most significant bit of each byte of the source
// operand and stores the result in the low byte or word of the destination operand.
// Upper bits of the destination are cleared to zero.
//
// When operating on a 64-bit (MMX) source, the byte mask is 8 bits; when operating on
// 128-bit (SSE) source, the byte mask is 16-bits.
//
__fi void xPMOVMSKB(const xRegister32or64& to, const xRegisterSSE& from) { xOpWrite0F(0x66, 0xd7, to, from); }
// [sSSE-3] Concatenates dest and source operands into an intermediate composite,
// shifts the composite at byte granularity to the right by a constant immediate,
// and extracts the right-aligned result into the destination.
//
__fi void xPALIGNR(const xRegisterSSE& to, const xRegisterSSE& from, u8 imm8) { xOpWrite0F(0x66, 0x0f3a, to, from, imm8); }
// --------------------------------------------------------------------------------------
// INSERTPS / EXTRACTPS [SSE4.1 only!]
// --------------------------------------------------------------------------------------
// [TODO] these might be served better as classes, especially if other instructions use
// the M32,sse,imm form (I forget offhand if any do).
// [SSE-4.1] Insert a single-precision floating-point value from src into a specified
// location in dest, and selectively zero out the data elements in dest according to
// the mask field in the immediate byte. The source operand can be a memory location
// (32 bits) or an XMM register (lower 32 bits used).
//
// Imm8 provides three fields:
// * COUNT_S: The value of Imm8[7:6] selects the dword element from src. It is 0 if
// the source is a memory operand.
// * COUNT_D: The value of Imm8[5:4] selects the target dword element in dest.
// * ZMASK: Each bit of Imm8[3:0] selects a dword element in dest to be written
// with 0.0 if set to 1.
//
__emitinline void xINSERTPS(const xRegisterSSE& to, const xRegisterSSE& from, u8 imm8) { xOpWrite0F(0x66, 0x213a, to, from, imm8); }
__emitinline void xINSERTPS(const xRegisterSSE& to, const xIndirect32& from, u8 imm8) { xOpWrite0F(0x66, 0x213a, to, from, imm8); }
// [SSE-4.1] Extract a single-precision floating-point value from src at an offset
// determined by imm8[1-0]*32. The extracted single precision floating-point value
// is stored into the low 32-bits of dest (or at a 32-bit memory pointer).
//
__emitinline void xEXTRACTPS(const xRegister32or64& to, const xRegisterSSE& from, u8 imm8) { xOpWrite0F(0x66, 0x173a, to, from, imm8); }
__emitinline void xEXTRACTPS(const xIndirect32& dest, const xRegisterSSE& from, u8 imm8) { xOpWrite0F(0x66, 0x173a, from, dest, imm8); }
// =====================================================================================================
// Ungrouped Instructions!
// =====================================================================================================
// Store Streaming SIMD Extension Control/Status to Mem32.
__emitinline void xSTMXCSR(const xIndirect32& dest)
{
xOpWrite0F(0, 0xae, 3, dest);
}
// Load Streaming SIMD Extension Control/Status from Mem32.
__emitinline void xLDMXCSR(const xIndirect32& src)
{
xOpWrite0F(0, 0xae, 2, src);
}
// Save x87 FPU, MMX Technology, and SSE State to buffer
// Target buffer must be at least 512 bytes in length to hold the result.
__emitinline void xFXSAVE(const xIndirectVoid& dest)
{
xOpWrite0F(0, 0xae, 0, dest);
}
// Restore x87 FPU, MMX , XMM, and MXCSR State.
// Source buffer should be 512 bytes in length.
__emitinline void xFXRSTOR(const xIndirectVoid& src)
{
xOpWrite0F(0, 0xae, 1, src);
}
} // namespace x86Emitter