pcsx2/common/emitter/instructions.h

630 lines
20 KiB
C++

/* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2010 PCSX2 Dev Team
*
* PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see <http://www.gnu.org/licenses/>.
*/
/*
* ix86 definitions v0.9.1
*
* Original Authors (v0.6.2 and prior):
* linuzappz <linuzappz@pcsx.net>
* alexey silinov
* goldfinger
* zerofrog(@gmail.com)
*
* Authors of v0.9.1:
* Jake.Stine(@gmail.com)
* cottonvibes(@gmail.com)
* sudonim(1@gmail.com)
*/
#pragma once
namespace x86Emitter
{
extern void xStoreReg(const xRegisterSSE& src);
extern void xRestoreReg(const xRegisterSSE& dest);
// ------------------------------------------------------------------------
// Group 1 Instruction Class
extern const xImpl_Group1 xADC;
extern const xImpl_Group1 xSBB;
extern const xImpl_G1Logic xAND;
extern const xImpl_G1Logic xOR;
extern const xImpl_G1Logic xXOR;
extern const xImpl_G1Arith xADD;
extern const xImpl_G1Arith xSUB;
extern const xImpl_G1Compare xCMP;
// ------------------------------------------------------------------------
// Group 2 Instruction Class
//
// Optimization Note: For Imm forms, we ignore the instruction if the shift count is
// zero. This is a safe optimization since any zero-value shift does not affect any
// flags.
extern const xImpl_Mov xMOV;
#ifdef __M_X86_64
extern const xImpl_MovImm64 xMOV64;
#endif
extern const xImpl_Test xTEST;
extern const xImpl_Group2 xROL, xROR,
xRCL, xRCR,
xSHL, xSHR,
xSAR;
// ------------------------------------------------------------------------
// Group 3 Instruction Class
extern const xImpl_Group3 xNOT, xNEG;
extern const xImpl_Group3 xUMUL, xUDIV;
extern const xImpl_iDiv xDIV;
extern const xImpl_iMul xMUL;
extern const xImpl_IncDec xINC, xDEC;
extern const xImpl_MovExtend xMOVZX, xMOVSX;
extern const xImpl_DwordShift xSHLD, xSHRD;
extern const xImpl_Group8 xBT;
extern const xImpl_Group8 xBTR;
extern const xImpl_Group8 xBTS;
extern const xImpl_Group8 xBTC;
extern const xImpl_BitScan xBSF, xBSR;
extern const xImpl_JmpCall xJMP;
extern const xImpl_JmpCall xCALL;
extern const xImpl_FastCall xFastCall;
// ------------------------------------------------------------------------
extern const xImpl_CMov xCMOVA, xCMOVAE,
xCMOVB, xCMOVBE,
xCMOVG, xCMOVGE,
xCMOVL, xCMOVLE,
xCMOVZ, xCMOVE,
xCMOVNZ, xCMOVNE,
xCMOVO, xCMOVNO,
xCMOVC, xCMOVNC,
xCMOVS, xCMOVNS,
xCMOVPE, xCMOVPO;
// ------------------------------------------------------------------------
extern const xImpl_Set xSETA, xSETAE,
xSETB, xSETBE,
xSETG, xSETGE,
xSETL, xSETLE,
xSETZ, xSETE,
xSETNZ, xSETNE,
xSETO, xSETNO,
xSETC, xSETNC,
xSETS, xSETNS,
xSETPE, xSETPO;
// ------------------------------------------------------------------------
// BMI extra instruction requires BMI1/BMI2
extern const xImplBMI_RVM xMULX, xPDEP, xPEXT, xANDN_S; // Warning xANDN is already used by SSE
//////////////////////////////////////////////////////////////////////////////////////////
// Miscellaneous Instructions
// These are all defined inline or in ix86.cpp.
//
extern void xBSWAP(const xRegister32or64& to);
// ----- Lea Instructions (Load Effective Address) -----
// Note: alternate (void*) forms of these instructions are not provided since those
// forms are functionally equivalent to Mov reg,imm, and thus better written as MOVs
// instead.
extern void xLEA(xRegister64 to, const xIndirectVoid& src, bool preserve_flags = false);
extern void xLEA(xRegister32 to, const xIndirectVoid& src, bool preserve_flags = false);
extern void xLEA(xRegister16 to, const xIndirectVoid& src, bool preserve_flags = false);
/// LEA with a target that will be decided later, guarantees that no optimizations are performed that could change what needs to be written in
extern u32* xLEA_Writeback(xAddressReg to);
// ----- Push / Pop Instructions -----
// Note: pushad/popad implementations are intentionally left out. The instructions are
// invalid in x64, and are super slow on x32. Use multiple Push/Pop instructions instead.
extern void xPOP(const xIndirectVoid& from);
extern void xPUSH(const xIndirectVoid& from);
extern void xPOP(xRegister32or64 from);
extern void xPUSH(u32 imm);
extern void xPUSH(xRegister32or64 from);
// pushes the EFLAGS register onto the stack
extern void xPUSHFD();
// pops the EFLAGS register from the stack
extern void xPOPFD();
// ----- Miscellaneous Instructions -----
// Various Instructions with no parameter and no special encoding logic.
extern void xLEAVE();
extern void xRET();
extern void xCBW();
extern void xCWD();
extern void xCDQ();
extern void xCWDE();
extern void xCDQE();
extern void xLAHF();
extern void xSAHF();
extern void xSTC();
extern void xCLC();
// NOP 1-byte
extern void xNOP();
extern void xINT(u8 imm);
extern void xINTO();
//////////////////////////////////////////////////////////////////////////////////////////
// Helper object to handle the various functions ABI
class xScopedStackFrame
{
bool m_base_frame;
bool m_save_base_pointer;
int m_offset;
public:
xScopedStackFrame(bool base_frame, bool save_base_pointer = false, int offset = 0);
~xScopedStackFrame();
};
//////////////////////////////////////////////////////////////////////////////////////////
/// Helper object to save some temporary registers before the call
class xScopedSavedRegisters
{
std::vector<std::reference_wrapper<const xAddressReg>> regs;
public:
xScopedSavedRegisters(std::initializer_list<std::reference_wrapper<const xAddressReg>> regs);
~xScopedSavedRegisters();
};
//////////////////////////////////////////////////////////////////////////////////////////
/// Helper function to calculate base+offset taking into account the limitations of x86-64's RIP-relative addressing
/// (Will either return `base+offset` or LEA `base` into `tmpRegister` and return `tmpRegister+offset`)
xAddressVoid xComplexAddress(const xAddressReg& tmpRegister, void* base, const xAddressVoid& offset);
//////////////////////////////////////////////////////////////////////////////////////////
/// Helper function to load addresses that may be far from the current instruction pointer
/// On i386, resolves to `mov dst, (sptr)addr`
/// On x86-64, resolves to either `mov dst, (sptr)addr` or `lea dst, [addr]` depending on the distance from RIP
void xLoadFarAddr(const xAddressReg& dst, void* addr);
//////////////////////////////////////////////////////////////////////////////////////////
/// Helper function to write a 64-bit constant to memory
/// May use `tmp` on x86-64
void xWriteImm64ToMem(u64* addr, const xAddressReg& tmp, u64 imm);
#ifdef __M_X86_64
//////////////////////////////////////////////////////////////////////////////////////////
/// Helper function to run operations with large immediates
/// If the immediate fits in 32 bits, runs op(target, imm)
/// Otherwise, loads imm into tmpRegister and then runs op(dst, tmp)
template <typename Op, typename Dst>
void xImm64Op(const Op& op, const Dst& dst, const xRegister64& tmpRegister, s64 imm)
{
if (imm == (s32)imm)
{
op(dst, imm);
}
else
{
xMOV64(tmpRegister, imm);
op(dst, tmpRegister);
}
}
#endif
//////////////////////////////////////////////////////////////////////////////////////////
// JMP / Jcc Instructions!
extern void xJcc(JccComparisonType comparison, const void* target);
extern s8* xJcc8(JccComparisonType comparison = Jcc_Unconditional, s8 displacement = 0);
extern s32* xJcc32(JccComparisonType comparison = Jcc_Unconditional, s32 displacement = 0);
// ------------------------------------------------------------------------
// Conditional jumps to fixed targets.
// Jumps accept any pointer as a valid target (function or data), and will generate either
// 8 or 32 bit displacement versions of the jump, depending on relative displacement of
// the target (efficient!)
//
template <typename T>
__fi void xJE(T* func)
{
xJcc(Jcc_Equal, (void*)(uptr)func);
}
template <typename T>
__fi void xJZ(T* func)
{
xJcc(Jcc_Zero, (void*)(uptr)func);
}
template <typename T>
__fi void xJNE(T* func)
{
xJcc(Jcc_NotEqual, (void*)(uptr)func);
}
template <typename T>
__fi void xJNZ(T* func)
{
xJcc(Jcc_NotZero, (void*)(uptr)func);
}
template <typename T>
__fi void xJO(T* func)
{
xJcc(Jcc_Overflow, (void*)(uptr)func);
}
template <typename T>
__fi void xJNO(T* func)
{
xJcc(Jcc_NotOverflow, (void*)(uptr)func);
}
template <typename T>
__fi void xJC(T* func)
{
xJcc(Jcc_Carry, (void*)(uptr)func);
}
template <typename T>
__fi void xJNC(T* func)
{
xJcc(Jcc_NotCarry, (void*)(uptr)func);
}
template <typename T>
__fi void xJS(T* func)
{
xJcc(Jcc_Signed, (void*)(uptr)func);
}
template <typename T>
__fi void xJNS(T* func)
{
xJcc(Jcc_Unsigned, (void*)(uptr)func);
}
template <typename T>
__fi void xJPE(T* func)
{
xJcc(Jcc_ParityEven, (void*)(uptr)func);
}
template <typename T>
__fi void xJPO(T* func)
{
xJcc(Jcc_ParityOdd, (void*)(uptr)func);
}
template <typename T>
__fi void xJL(T* func)
{
xJcc(Jcc_Less, (void*)(uptr)func);
}
template <typename T>
__fi void xJLE(T* func)
{
xJcc(Jcc_LessOrEqual, (void*)(uptr)func);
}
template <typename T>
__fi void xJG(T* func)
{
xJcc(Jcc_Greater, (void*)(uptr)func);
}
template <typename T>
__fi void xJGE(T* func)
{
xJcc(Jcc_GreaterOrEqual, (void*)(uptr)func);
}
template <typename T>
__fi void xJB(T* func)
{
xJcc(Jcc_Below, (void*)(uptr)func);
}
template <typename T>
__fi void xJBE(T* func)
{
xJcc(Jcc_BelowOrEqual, (void*)(uptr)func);
}
template <typename T>
__fi void xJA(T* func)
{
xJcc(Jcc_Above, (void*)(uptr)func);
}
template <typename T>
__fi void xJAE(T* func)
{
xJcc(Jcc_AboveOrEqual, (void*)(uptr)func);
}
// ------------------------------------------------------------------------
// Forward Jump Helpers (act as labels!)
#define DEFINE_FORWARD_JUMP(label, cond) \
template <typename OperandType> \
class xForward##label : public xForwardJump<OperandType> \
{ \
public: \
xForward##label() \
: xForwardJump<OperandType>(cond) \
{ \
} \
};
// ------------------------------------------------------------------------
// Note: typedefs below are defined individually in order to appease Intellisense
// resolution. Including them into the class definition macro above breaks it.
typedef xForwardJump<s8> xForwardJump8;
typedef xForwardJump<s32> xForwardJump32;
DEFINE_FORWARD_JUMP(JA, Jcc_Above);
DEFINE_FORWARD_JUMP(JB, Jcc_Below);
DEFINE_FORWARD_JUMP(JAE, Jcc_AboveOrEqual);
DEFINE_FORWARD_JUMP(JBE, Jcc_BelowOrEqual);
typedef xForwardJA<s8> xForwardJA8;
typedef xForwardJA<s32> xForwardJA32;
typedef xForwardJB<s8> xForwardJB8;
typedef xForwardJB<s32> xForwardJB32;
typedef xForwardJAE<s8> xForwardJAE8;
typedef xForwardJAE<s32> xForwardJAE32;
typedef xForwardJBE<s8> xForwardJBE8;
typedef xForwardJBE<s32> xForwardJBE32;
DEFINE_FORWARD_JUMP(JG, Jcc_Greater);
DEFINE_FORWARD_JUMP(JL, Jcc_Less);
DEFINE_FORWARD_JUMP(JGE, Jcc_GreaterOrEqual);
DEFINE_FORWARD_JUMP(JLE, Jcc_LessOrEqual);
typedef xForwardJG<s8> xForwardJG8;
typedef xForwardJG<s32> xForwardJG32;
typedef xForwardJL<s8> xForwardJL8;
typedef xForwardJL<s32> xForwardJL32;
typedef xForwardJGE<s8> xForwardJGE8;
typedef xForwardJGE<s32> xForwardJGE32;
typedef xForwardJLE<s8> xForwardJLE8;
typedef xForwardJLE<s32> xForwardJLE32;
DEFINE_FORWARD_JUMP(JZ, Jcc_Zero);
DEFINE_FORWARD_JUMP(JE, Jcc_Equal);
DEFINE_FORWARD_JUMP(JNZ, Jcc_NotZero);
DEFINE_FORWARD_JUMP(JNE, Jcc_NotEqual);
typedef xForwardJZ<s8> xForwardJZ8;
typedef xForwardJZ<s32> xForwardJZ32;
typedef xForwardJE<s8> xForwardJE8;
typedef xForwardJE<s32> xForwardJE32;
typedef xForwardJNZ<s8> xForwardJNZ8;
typedef xForwardJNZ<s32> xForwardJNZ32;
typedef xForwardJNE<s8> xForwardJNE8;
typedef xForwardJNE<s32> xForwardJNE32;
DEFINE_FORWARD_JUMP(JS, Jcc_Signed);
DEFINE_FORWARD_JUMP(JNS, Jcc_Unsigned);
typedef xForwardJS<s8> xForwardJS8;
typedef xForwardJS<s32> xForwardJS32;
typedef xForwardJNS<s8> xForwardJNS8;
typedef xForwardJNS<s32> xForwardJNS32;
DEFINE_FORWARD_JUMP(JO, Jcc_Overflow);
DEFINE_FORWARD_JUMP(JNO, Jcc_NotOverflow);
typedef xForwardJO<s8> xForwardJO8;
typedef xForwardJO<s32> xForwardJO32;
typedef xForwardJNO<s8> xForwardJNO8;
typedef xForwardJNO<s32> xForwardJNO32;
DEFINE_FORWARD_JUMP(JC, Jcc_Carry);
DEFINE_FORWARD_JUMP(JNC, Jcc_NotCarry);
typedef xForwardJC<s8> xForwardJC8;
typedef xForwardJC<s32> xForwardJC32;
typedef xForwardJNC<s8> xForwardJNC8;
typedef xForwardJNC<s32> xForwardJNC32;
DEFINE_FORWARD_JUMP(JPE, Jcc_ParityEven);
DEFINE_FORWARD_JUMP(JPO, Jcc_ParityOdd);
typedef xForwardJPE<s8> xForwardJPE8;
typedef xForwardJPE<s32> xForwardJPE32;
typedef xForwardJPO<s8> xForwardJPO8;
typedef xForwardJPO<s32> xForwardJPO32;
// ------------------------------------------------------------------------
extern void xEMMS();
extern void xSTMXCSR(const xIndirect32& dest);
extern void xLDMXCSR(const xIndirect32& src);
extern void xFXSAVE(const xIndirectVoid& dest);
extern void xFXRSTOR(const xIndirectVoid& src);
extern void xMOVDZX(const xRegisterSSE& to, const xRegister32or64& from);
extern void xMOVDZX(const xRegisterSSE& to, const xIndirectVoid& src);
extern void xMOVD(const xRegister32or64& to, const xRegisterSSE& from);
extern void xMOVD(const xIndirectVoid& dest, const xRegisterSSE& from);
extern void xMOVQ(const xIndirectVoid& dest, const xRegisterSSE& from);
extern void xMOVQZX(const xRegisterSSE& to, const xIndirectVoid& src);
extern void xMOVQZX(const xRegisterSSE& to, const xRegisterSSE& from);
extern void xMOVSS(const xRegisterSSE& to, const xRegisterSSE& from);
extern void xMOVSS(const xIndirectVoid& to, const xRegisterSSE& from);
extern void xMOVSD(const xRegisterSSE& to, const xRegisterSSE& from);
extern void xMOVSD(const xIndirectVoid& to, const xRegisterSSE& from);
extern void xMOVSSZX(const xRegisterSSE& to, const xIndirectVoid& from);
extern void xMOVSDZX(const xRegisterSSE& to, const xIndirectVoid& from);
extern void xMOVNTDQA(const xRegisterSSE& to, const xIndirectVoid& from);
extern void xMOVNTDQA(const xIndirectVoid& to, const xRegisterSSE& from);
extern void xMOVNTPD(const xIndirectVoid& to, const xRegisterSSE& from);
extern void xMOVNTPS(const xIndirectVoid& to, const xRegisterSSE& from);
extern void xMOVMSKPS(const xRegister32& to, const xRegisterSSE& from);
extern void xMOVMSKPD(const xRegister32& to, const xRegisterSSE& from);
extern void xMASKMOV(const xRegisterSSE& to, const xRegisterSSE& from);
extern void xPMOVMSKB(const xRegister32or64& to, const xRegisterSSE& from);
extern void xPALIGNR(const xRegisterSSE& to, const xRegisterSSE& from, u8 imm8);
// ------------------------------------------------------------------------
extern const xImplSimd_MoveSSE xMOVAPS;
extern const xImplSimd_MoveSSE xMOVUPS;
extern const xImplSimd_MoveSSE xMOVAPD;
extern const xImplSimd_MoveSSE xMOVUPD;
#ifdef ALWAYS_USE_MOVAPS
extern const xImplSimd_MoveSSE xMOVDQA;
extern const xImplSimd_MoveSSE xMOVDQU;
#else
extern const xImplSimd_MoveDQ xMOVDQA;
extern const xImplSimd_MoveDQ xMOVDQU;
#endif
extern const xImplSimd_MovHL xMOVH;
extern const xImplSimd_MovHL xMOVL;
extern const xImplSimd_MovHL_RtoR xMOVLH;
extern const xImplSimd_MovHL_RtoR xMOVHL;
extern const xImplSimd_Blend xBLEND;
extern const xImplSimd_PMove xPMOVSX;
extern const xImplSimd_PMove xPMOVZX;
extern const xImplSimd_DestRegSSE xMOVSLDUP;
extern const xImplSimd_DestRegSSE xMOVSHDUP;
extern void xINSERTPS(const xRegisterSSE& to, const xRegisterSSE& from, u8 imm8);
extern void xINSERTPS(const xRegisterSSE& to, const xIndirect32& from, u8 imm8);
extern void xEXTRACTPS(const xRegister32or64& to, const xRegisterSSE& from, u8 imm8);
extern void xEXTRACTPS(const xIndirect32& dest, const xRegisterSSE& from, u8 imm8);
// ------------------------------------------------------------------------
extern const xImplSimd_DestRegEither xPAND;
extern const xImplSimd_DestRegEither xPANDN;
extern const xImplSimd_DestRegEither xPOR;
extern const xImplSimd_DestRegEither xPXOR;
extern const xImplSimd_Shuffle xSHUF;
// ------------------------------------------------------------------------
extern const xImplSimd_DestRegSSE xPTEST;
extern const xImplSimd_MinMax xMIN;
extern const xImplSimd_MinMax xMAX;
extern const xImplSimd_Compare xCMPEQ, xCMPLT,
xCMPLE, xCMPUNORD,
xCMPNE, xCMPNLT,
xCMPNLE, xCMPORD;
extern const xImplSimd_COMI xCOMI;
extern const xImplSimd_COMI xUCOMI;
extern const xImplSimd_PCompare xPCMP;
extern const xImplSimd_PMinMax xPMIN;
extern const xImplSimd_PMinMax xPMAX;
// ------------------------------------------------------------------------
//
//
extern void xCVTDQ2PD(const xRegisterSSE& to, const xRegisterSSE& from);
extern void xCVTDQ2PD(const xRegisterSSE& to, const xIndirect64& from);
extern void xCVTDQ2PS(const xRegisterSSE& to, const xRegisterSSE& from);
extern void xCVTDQ2PS(const xRegisterSSE& to, const xIndirect128& from);
extern void xCVTPD2DQ(const xRegisterSSE& to, const xRegisterSSE& from);
extern void xCVTPD2DQ(const xRegisterSSE& to, const xIndirect128& from);
extern void xCVTPD2PS(const xRegisterSSE& to, const xRegisterSSE& from);
extern void xCVTPD2PS(const xRegisterSSE& to, const xIndirect128& from);
extern void xCVTPI2PD(const xRegisterSSE& to, const xIndirect64& from);
extern void xCVTPI2PS(const xRegisterSSE& to, const xIndirect64& from);
extern void xCVTPS2DQ(const xRegisterSSE& to, const xRegisterSSE& from);
extern void xCVTPS2DQ(const xRegisterSSE& to, const xIndirect128& from);
extern void xCVTPS2PD(const xRegisterSSE& to, const xRegisterSSE& from);
extern void xCVTPS2PD(const xRegisterSSE& to, const xIndirect64& from);
extern void xCVTSD2SI(const xRegister32or64& to, const xRegisterSSE& from);
extern void xCVTSD2SI(const xRegister32or64& to, const xIndirect64& from);
extern void xCVTSD2SS(const xRegisterSSE& to, const xRegisterSSE& from);
extern void xCVTSD2SS(const xRegisterSSE& to, const xIndirect64& from);
extern void xCVTSI2SS(const xRegisterSSE& to, const xRegister32or64& from);
extern void xCVTSI2SS(const xRegisterSSE& to, const xIndirect32& from);
extern void xCVTSS2SD(const xRegisterSSE& to, const xRegisterSSE& from);
extern void xCVTSS2SD(const xRegisterSSE& to, const xIndirect32& from);
extern void xCVTSS2SI(const xRegister32or64& to, const xRegisterSSE& from);
extern void xCVTSS2SI(const xRegister32or64& to, const xIndirect32& from);
extern void xCVTTPD2DQ(const xRegisterSSE& to, const xRegisterSSE& from);
extern void xCVTTPD2DQ(const xRegisterSSE& to, const xIndirect128& from);
extern void xCVTTPS2DQ(const xRegisterSSE& to, const xRegisterSSE& from);
extern void xCVTTPS2DQ(const xRegisterSSE& to, const xIndirect128& from);
extern void xCVTTSD2SI(const xRegister32or64& to, const xRegisterSSE& from);
extern void xCVTTSD2SI(const xRegister32or64& to, const xIndirect64& from);
extern void xCVTTSS2SI(const xRegister32or64& to, const xRegisterSSE& from);
extern void xCVTTSS2SI(const xRegister32or64& to, const xIndirect32& from);
// ------------------------------------------------------------------------
extern const xImplSimd_AndNot xANDN;
extern const xImplSimd_rSqrt xRCP;
extern const xImplSimd_rSqrt xRSQRT;
extern const xImplSimd_Sqrt xSQRT;
extern const xImplSimd_Shift xPSLL;
extern const xImplSimd_Shift xPSRL;
extern const xImplSimd_ShiftWithoutQ xPSRA;
extern const xImplSimd_AddSub xPADD;
extern const xImplSimd_AddSub xPSUB;
extern const xImplSimd_PMul xPMUL;
extern const xImplSimd_PAbsolute xPABS;
extern const xImplSimd_PSign xPSIGN;
extern const xImplSimd_PMultAdd xPMADD;
extern const xImplSimd_HorizAdd xHADD;
extern const xImplSimd_DotProduct xDP;
extern const xImplSimd_Round xROUND;
extern const xImplSimd_PShuffle xPSHUF;
extern const SimdImpl_PUnpack xPUNPCK;
extern const xImplSimd_Unpack xUNPCK;
extern const SimdImpl_Pack xPACK;
extern const xImplSimd_PInsert xPINSR;
extern const SimdImpl_PExtract xPEXTR;
} // namespace x86Emitter