pcsx2/plugins/GSdx/Renderers/DX11/GSDevice11.cpp

1535 lines
37 KiB
C++

/*
* Copyright (C) 2007-2009 Gabest
* http://www.gabest.org
*
* This Program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This Program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU Make; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA.
* http://www.gnu.org/copyleft/gpl.html
*
*/
#include "stdafx.h"
#include "GSdx.h"
#include "GSDevice11.h"
#include "GSUtil.h"
#include "resource.h"
#include <fstream>
#include <VersionHelpers.h>
GSDevice11::GSDevice11()
{
memset(&m_state, 0, sizeof(m_state));
memset(&m_vs_cb_cache, 0, sizeof(m_vs_cb_cache));
memset(&m_gs_cb_cache, 0, sizeof(m_gs_cb_cache));
memset(&m_ps_cb_cache, 0, sizeof(m_ps_cb_cache));
FXAA_Compiled = false;
ExShader_Compiled = false;
m_state.topology = D3D11_PRIMITIVE_TOPOLOGY_UNDEFINED;
m_state.bf = -1;
m_mipmap = theApp.GetConfigI("mipmap");
m_upscale_multiplier = theApp.GetConfigI("upscale_multiplier");
const BiFiltering nearest_filter = static_cast<BiFiltering>(theApp.GetConfigI("filter"));
const int aniso_level = theApp.GetConfigI("MaxAnisotropy");
if ((nearest_filter != BiFiltering::Nearest && !theApp.GetConfigB("paltex") && aniso_level))
m_aniso_filter = aniso_level;
else
m_aniso_filter = 0;
}
bool GSDevice11::SetFeatureLevel(D3D_FEATURE_LEVEL level, bool compat_mode)
{
m_shader.level = level;
switch (level)
{
case D3D_FEATURE_LEVEL_10_0:
m_shader.model = "0x400";
m_shader.vs = "vs_4_0";
m_shader.gs = "gs_4_0";
m_shader.ps = "ps_4_0";
m_shader.cs = "cs_4_0";
break;
case D3D_FEATURE_LEVEL_10_1:
m_shader.model = "0x401";
m_shader.vs = "vs_4_1";
m_shader.gs = "gs_4_1";
m_shader.ps = "ps_4_1";
m_shader.cs = "cs_4_1";
break;
case D3D_FEATURE_LEVEL_11_0:
m_shader.model = "0x500";
m_shader.vs = "vs_5_0";
m_shader.gs = "gs_5_0";
m_shader.ps = "ps_5_0";
m_shader.cs = "cs_5_0";
break;
default:
ASSERT(0);
return false;
}
return true;
}
bool GSDevice11::Create(const std::shared_ptr<GSWnd> &wnd)
{
bool nvidia_vendor = false;
if(!__super::Create(wnd))
{
return false;
}
HRESULT hr = E_FAIL;
D3D11_BUFFER_DESC bd;
D3D11_SAMPLER_DESC sd;
D3D11_DEPTH_STENCIL_DESC dsd;
D3D11_RASTERIZER_DESC rd;
D3D11_BLEND_DESC bsd;
// create factory
{
const HRESULT result = CreateDXGIFactory2(0, IID_PPV_ARGS(&m_factory));
if (FAILED(result))
{
fprintf(stderr, "D3D11: Unable to create DXGIFactory2 (reason: %x)\n", result);
return false;
}
}
// enumerate adapters
CComPtr<IDXGIAdapter1> adapter;
D3D_DRIVER_TYPE driver_type = D3D_DRIVER_TYPE_HARDWARE;
{
std::string adapter_id = theApp.GetConfigS("Adapter");
if (adapter_id == "ref")
driver_type = D3D_DRIVER_TYPE_REFERENCE;
else
{
for (int i = 0;; i++)
{
CComPtr<IDXGIAdapter1> enum_adapter;
if (S_OK != m_factory->EnumAdapters1(i, &enum_adapter))
break;
DXGI_ADAPTER_DESC1 desc;
hr = enum_adapter->GetDesc1(&desc);
if (S_OK == hr && (GSAdapter(desc) == adapter_id || adapter_id == "default"))
{
if (desc.VendorId == 0x10DE)
nvidia_vendor = true;
adapter = enum_adapter;
driver_type = D3D_DRIVER_TYPE_UNKNOWN;
break;
}
}
}
}
D3D_FEATURE_LEVEL level;
// device creation
{
uint32 flags = D3D11_CREATE_DEVICE_SINGLETHREADED;
#ifdef DEBUG
flags |= D3D11_CREATE_DEVICE_DEBUG;
#endif
constexpr std::array<D3D_FEATURE_LEVEL, 3> supported_levels = {
D3D_FEATURE_LEVEL_11_0,
D3D_FEATURE_LEVEL_10_1,
D3D_FEATURE_LEVEL_10_0,
};
const HRESULT result = D3D11CreateDevice(
adapter, driver_type, nullptr, flags,
supported_levels.data(), supported_levels.size(),
D3D11_SDK_VERSION, &m_dev, &level, &m_ctx
);
if (FAILED(result))
{
fprintf(stderr, "D3D11: Unable to create D3D11 device (reason %x)\n", result);
return false;
}
}
// swapchain creation
{
DXGI_SWAP_CHAIN_DESC1 swapchain_description = {};
// let the runtime get window size
swapchain_description.Width = 0;
swapchain_description.Height = 0;
swapchain_description.BufferCount = 2;
swapchain_description.Format = DXGI_FORMAT_R8G8B8A8_UNORM;
swapchain_description.BufferUsage = DXGI_USAGE_RENDER_TARGET_OUTPUT;
swapchain_description.SampleDesc.Count = 1;
swapchain_description.SampleDesc.Quality = 0;
// TODO: update swap effect
swapchain_description.SwapEffect = DXGI_SWAP_EFFECT_DISCARD;
const HRESULT result = m_factory->CreateSwapChainForHwnd(
m_dev, reinterpret_cast<HWND>(m_wnd->GetHandle()),
&swapchain_description, nullptr, nullptr, &m_swapchain
);
if (FAILED(result))
{
fprintf(stderr, "D3D11: Failed to create swapchain (reason: %x)\n", result);
return false;
}
}
if(!SetFeatureLevel(level, true))
return false;
// Set maximum texture size limit based on supported feature level.
if (level >= D3D_FEATURE_LEVEL_11_0)
m_d3d_texsize = D3D11_REQ_TEXTURE2D_U_OR_V_DIMENSION;
else
m_d3d_texsize = D3D10_REQ_TEXTURE2D_U_OR_V_DIMENSION;
{ // HACK: check nVIDIA
// Note: It can cause issues on several games such as SOTC, Fatal Frame, plus it adds border offset.
bool disable_safe_features = theApp.GetConfigB("UserHacks") && theApp.GetConfigB("UserHacks_Disable_Safe_Features");
m_hack_topleft_offset = (m_upscale_multiplier != 1 && nvidia_vendor && !disable_safe_features) ? -0.01f : 0.0f;
}
// debug
#ifdef _DEBUG
CComPtr<ID3D11Debug> debug;
hr = m_dev->QueryInterface<ID3D11Debug>(&debug);
if (SUCCEEDED(hr))
{
CComPtr<ID3D11InfoQueue> info_queue;
hr = debug->QueryInterface<ID3D11InfoQueue>(&info_queue);
if (SUCCEEDED(hr))
{
int break_on = theApp.GetConfigI("dx_break_on_severity");
info_queue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_CORRUPTION, break_on & (1 << 0));
info_queue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_ERROR, break_on & (1 << 1));
info_queue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_WARNING, break_on & (1 << 2));
info_queue->SetBreakOnSeverity(D3D11_MESSAGE_SEVERITY_INFO, break_on & (1 << 3));
}
}
#endif
// convert
D3D11_INPUT_ELEMENT_DESC il_convert[] =
{
{"POSITION", 0, DXGI_FORMAT_R32G32B32A32_FLOAT, 0, 0, D3D11_INPUT_PER_VERTEX_DATA, 0},
{"TEXCOORD", 0, DXGI_FORMAT_R32G32_FLOAT, 0, 16, D3D11_INPUT_PER_VERTEX_DATA, 0},
{"COLOR", 0, DXGI_FORMAT_R8G8B8A8_UNORM, 0, 28, D3D11_INPUT_PER_VERTEX_DATA, 0},
};
ShaderMacro sm_model(m_shader.model);
std::vector<char> shader;
theApp.LoadResource(IDR_CONVERT_FX, shader);
CreateShader(shader, "convert.fx", nullptr, "vs_main", sm_model.GetPtr(), &m_convert.vs, il_convert, countof(il_convert), &m_convert.il);
ShaderMacro sm_convert(m_shader.model);
sm_convert.AddMacro("PS_SCALE_FACTOR", std::max(1, m_upscale_multiplier));
D3D_SHADER_MACRO* sm_convert_ptr = sm_convert.GetPtr();
for(size_t i = 0; i < countof(m_convert.ps); i++)
{
CreateShader(shader, "convert.fx", nullptr, format("ps_main%d", i).c_str(), sm_convert_ptr, & m_convert.ps[i]);
}
memset(&dsd, 0, sizeof(dsd));
hr = m_dev->CreateDepthStencilState(&dsd, &m_convert.dss);
dsd.DepthEnable = true;
dsd.DepthWriteMask = D3D11_DEPTH_WRITE_MASK_ALL;
dsd.DepthFunc = D3D11_COMPARISON_ALWAYS;
hr = m_dev->CreateDepthStencilState(&dsd, &m_convert.dss_write);
memset(&bsd, 0, sizeof(bsd));
bsd.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL;
hr = m_dev->CreateBlendState(&bsd, &m_convert.bs);
// merge
memset(&bd, 0, sizeof(bd));
bd.ByteWidth = sizeof(MergeConstantBuffer);
bd.Usage = D3D11_USAGE_DEFAULT;
bd.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
hr = m_dev->CreateBuffer(&bd, NULL, &m_merge.cb);
theApp.LoadResource(IDR_MERGE_FX, shader);
for(size_t i = 0; i < countof(m_merge.ps); i++)
{
CreateShader(shader, "merge.fx", nullptr, format("ps_main%d", i).c_str(), sm_model.GetPtr(), &m_merge.ps[i]);
}
memset(&bsd, 0, sizeof(bsd));
bsd.RenderTarget[0].BlendEnable = true;
bsd.RenderTarget[0].BlendOp = D3D11_BLEND_OP_ADD;
bsd.RenderTarget[0].SrcBlend = D3D11_BLEND_SRC_ALPHA;
bsd.RenderTarget[0].DestBlend = D3D11_BLEND_INV_SRC_ALPHA;
bsd.RenderTarget[0].BlendOpAlpha = D3D11_BLEND_OP_ADD;
bsd.RenderTarget[0].SrcBlendAlpha = D3D11_BLEND_ONE;
bsd.RenderTarget[0].DestBlendAlpha = D3D11_BLEND_ZERO;
bsd.RenderTarget[0].RenderTargetWriteMask = D3D11_COLOR_WRITE_ENABLE_ALL;
hr = m_dev->CreateBlendState(&bsd, &m_merge.bs);
// interlace
memset(&bd, 0, sizeof(bd));
bd.ByteWidth = sizeof(InterlaceConstantBuffer);
bd.Usage = D3D11_USAGE_DEFAULT;
bd.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
hr = m_dev->CreateBuffer(&bd, NULL, &m_interlace.cb);
theApp.LoadResource(IDR_INTERLACE_FX, shader);
for(size_t i = 0; i < countof(m_interlace.ps); i++)
{
CreateShader(shader, "interlace.fx", nullptr, format("ps_main%d", i).c_str(), sm_model.GetPtr(), &m_interlace.ps[i]);
}
// Shade Boost
ShaderMacro sm_sboost(m_shader.model);
sm_sboost.AddMacro("SB_SATURATION", std::max(0, std::min(theApp.GetConfigI("ShadeBoost_Saturation"), 100)));
sm_sboost.AddMacro("SB_BRIGHTNESS", std::max(0, std::min(theApp.GetConfigI("ShadeBoost_Brightness"), 100)));
sm_sboost.AddMacro("SB_CONTRAST", std::max(0, std::min(theApp.GetConfigI("ShadeBoost_Contrast"), 100)));
memset(&bd, 0, sizeof(bd));
bd.ByteWidth = sizeof(ShadeBoostConstantBuffer);
bd.Usage = D3D11_USAGE_DEFAULT;
bd.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
hr = m_dev->CreateBuffer(&bd, NULL, &m_shadeboost.cb);
theApp.LoadResource(IDR_SHADEBOOST_FX, shader);
CreateShader(shader, "shadeboost.fx", nullptr, "ps_main", sm_sboost.GetPtr(), &m_shadeboost.ps);
// External fx shader
memset(&bd, 0, sizeof(bd));
bd.ByteWidth = sizeof(ExternalFXConstantBuffer);
bd.Usage = D3D11_USAGE_DEFAULT;
bd.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
hr = m_dev->CreateBuffer(&bd, NULL, &m_shaderfx.cb);
// Fxaa
memset(&bd, 0, sizeof(bd));
bd.ByteWidth = sizeof(FXAAConstantBuffer);
bd.Usage = D3D11_USAGE_DEFAULT;
bd.BindFlags = D3D11_BIND_CONSTANT_BUFFER;
hr = m_dev->CreateBuffer(&bd, NULL, &m_fxaa.cb);
//
memset(&rd, 0, sizeof(rd));
rd.FillMode = D3D11_FILL_SOLID;
rd.CullMode = D3D11_CULL_NONE;
rd.FrontCounterClockwise = false;
rd.DepthBias = false;
rd.DepthBiasClamp = 0;
rd.SlopeScaledDepthBias = 0;
rd.DepthClipEnable = false; // ???
rd.ScissorEnable = true;
rd.MultisampleEnable = true;
rd.AntialiasedLineEnable = false;
hr = m_dev->CreateRasterizerState(&rd, &m_rs);
m_ctx->RSSetState(m_rs);
//
memset(&sd, 0, sizeof(sd));
sd.Filter = m_aniso_filter ? D3D11_FILTER_ANISOTROPIC : D3D11_FILTER_MIN_MAG_MIP_LINEAR;
sd.AddressU = D3D11_TEXTURE_ADDRESS_CLAMP;
sd.AddressV = D3D11_TEXTURE_ADDRESS_CLAMP;
sd.AddressW = D3D11_TEXTURE_ADDRESS_CLAMP;
sd.MinLOD = -FLT_MAX;
sd.MaxLOD = FLT_MAX;
sd.MaxAnisotropy = m_aniso_filter;
sd.ComparisonFunc = D3D11_COMPARISON_NEVER;
hr = m_dev->CreateSamplerState(&sd, &m_convert.ln);
sd.Filter = m_aniso_filter ? D3D11_FILTER_ANISOTROPIC : D3D11_FILTER_MIN_MAG_MIP_POINT;
hr = m_dev->CreateSamplerState(&sd, &m_convert.pt);
//
Reset(1, 1);
//
CreateTextureFX();
//
memset(&dsd, 0, sizeof(dsd));
dsd.DepthEnable = false;
dsd.StencilEnable = true;
dsd.StencilReadMask = 1;
dsd.StencilWriteMask = 1;
dsd.FrontFace.StencilFunc = D3D11_COMPARISON_ALWAYS;
dsd.FrontFace.StencilPassOp = D3D11_STENCIL_OP_REPLACE;
dsd.FrontFace.StencilFailOp = D3D11_STENCIL_OP_KEEP;
dsd.FrontFace.StencilDepthFailOp = D3D11_STENCIL_OP_KEEP;
dsd.BackFace.StencilFunc = D3D11_COMPARISON_ALWAYS;
dsd.BackFace.StencilPassOp = D3D11_STENCIL_OP_REPLACE;
dsd.BackFace.StencilFailOp = D3D11_STENCIL_OP_KEEP;
dsd.BackFace.StencilDepthFailOp = D3D11_STENCIL_OP_KEEP;
m_dev->CreateDepthStencilState(&dsd, &m_date.dss);
D3D11_BLEND_DESC blend;
memset(&blend, 0, sizeof(blend));
m_dev->CreateBlendState(&blend, &m_date.bs);
GSVector2i tex_font = m_osd.get_texture_font_size();
m_font = std::unique_ptr<GSTexture>(
CreateSurface(GSTexture::Texture, tex_font.x, tex_font.y, DXGI_FORMAT_R8_UNORM)
);
return true;
}
bool GSDevice11::Reset(int w, int h)
{
if(!__super::Reset(w, h))
return false;
if(m_swapchain)
{
DXGI_SWAP_CHAIN_DESC scd;
memset(&scd, 0, sizeof(scd));
m_swapchain->GetDesc(&scd);
m_swapchain->ResizeBuffers(scd.BufferCount, w, h, scd.BufferDesc.Format, 0);
CComPtr<ID3D11Texture2D> backbuffer;
if(FAILED(m_swapchain->GetBuffer(0, __uuidof(ID3D11Texture2D), (void**)&backbuffer)))
{
return false;
}
m_backbuffer = new GSTexture11(backbuffer);
}
return true;
}
void GSDevice11::SetVSync(int vsync)
{
m_vsync = vsync ? 1 : 0;
}
void GSDevice11::Flip()
{
m_swapchain->Present(m_vsync, 0);
}
void GSDevice11::BeforeDraw()
{
// DX can't read from the FB
// So let's copy it and send that to the shader instead
auto bits = m_state.ps_sr_bitfield;
m_state.ps_sr_bitfield = 0;
unsigned long i;
while (_BitScanForward(&i, bits))
{
GSTexture11* tex = m_state.ps_sr_texture[i];
if (tex->Equal(m_state.rt_texture) || tex->Equal(m_state.rt_ds))
{
#ifdef _DEBUG
OutputDebugString(format("WARNING: FB read detected on slot %i, copying...", i).c_str());
#endif
GSTexture* cp = nullptr;
CloneTexture(tex, &cp);
PSSetShaderResource(i, cp);
}
bits ^= 1u << i;
}
PSUpdateShaderState();
}
void GSDevice11::AfterDraw()
{
unsigned long i;
while (_BitScanForward(&i, m_state.ps_sr_bitfield))
{
#ifdef _DEBUG
OutputDebugString(format("WARNING: Cleaning up copied texture on slot %i", i).c_str());
#endif
Recycle(m_state.ps_sr_texture[i]);
PSSetShaderResource(i, NULL);
}
}
void GSDevice11::DrawPrimitive()
{
BeforeDraw();
m_ctx->Draw(m_vertex.count, m_vertex.start);
AfterDraw();
}
void GSDevice11::DrawIndexedPrimitive()
{
BeforeDraw();
m_ctx->DrawIndexed(m_index.count, m_index.start, m_vertex.start);
AfterDraw();
}
void GSDevice11::DrawIndexedPrimitive(int offset, int count)
{
ASSERT(offset + count <= (int)m_index.count);
BeforeDraw();
m_ctx->DrawIndexed(count, m_index.start + offset, m_vertex.start);
AfterDraw();
}
void GSDevice11::ClearRenderTarget(GSTexture* t, const GSVector4& c)
{
if (!t) return;
m_ctx->ClearRenderTargetView(*(GSTexture11*)t, c.v);
}
void GSDevice11::ClearRenderTarget(GSTexture* t, uint32 c)
{
if (!t) return;
GSVector4 color = GSVector4::rgba32(c) * (1.0f / 255);
m_ctx->ClearRenderTargetView(*(GSTexture11*)t, color.v);
}
void GSDevice11::ClearDepth(GSTexture* t)
{
if (!t) return;
m_ctx->ClearDepthStencilView(*(GSTexture11*)t, D3D11_CLEAR_DEPTH, 0.0f, 0);
}
void GSDevice11::ClearStencil(GSTexture* t, uint8 c)
{
if (!t) return;
m_ctx->ClearDepthStencilView(*(GSTexture11*)t, D3D11_CLEAR_STENCIL, 0, c);
}
GSTexture* GSDevice11::CreateSurface(int type, int w, int h, int format)
{
HRESULT hr;
D3D11_TEXTURE2D_DESC desc;
memset(&desc, 0, sizeof(desc));
// Texture limit for D3D10/11 min 1, max 8192 D3D10, max 16384 D3D11.
desc.Width = std::max(1, std::min(w, m_d3d_texsize));
desc.Height = std::max(1, std::min(h, m_d3d_texsize));
desc.Format = (DXGI_FORMAT)format;
desc.MipLevels = 1;
desc.ArraySize = 1;
desc.SampleDesc.Count = 1;
desc.SampleDesc.Quality = 0;
desc.Usage = D3D11_USAGE_DEFAULT;
// mipmap = m_mipmap > 1 || m_filter != TriFiltering::None;
bool mipmap = m_mipmap > 1;
int layers = mipmap && format == DXGI_FORMAT_R8G8B8A8_UNORM ? (int)log2(std::max(w,h)) : 1;
switch(type)
{
case GSTexture::RenderTarget:
desc.BindFlags = D3D11_BIND_RENDER_TARGET | D3D11_BIND_SHADER_RESOURCE;
break;
case GSTexture::DepthStencil:
desc.BindFlags = D3D11_BIND_DEPTH_STENCIL | D3D11_BIND_SHADER_RESOURCE;
break;
case GSTexture::Texture:
desc.BindFlags = D3D11_BIND_SHADER_RESOURCE;
desc.MipLevels = layers;
break;
case GSTexture::Offscreen:
desc.Usage = D3D11_USAGE_STAGING;
desc.CPUAccessFlags |= D3D11_CPU_ACCESS_READ | D3D11_CPU_ACCESS_WRITE;
break;
}
GSTexture11* t = NULL;
CComPtr<ID3D11Texture2D> texture;
hr = m_dev->CreateTexture2D(&desc, NULL, &texture);
if(SUCCEEDED(hr))
{
t = new GSTexture11(texture);
switch(type)
{
case GSTexture::RenderTarget:
ClearRenderTarget(t, 0);
break;
case GSTexture::DepthStencil:
ClearDepth(t);
break;
}
}
else
{
throw std::bad_alloc();
}
return t;
}
GSTexture* GSDevice11::FetchSurface(int type, int w, int h, int format)
{
if (format == 0)
format = (type == GSTexture::DepthStencil || type == GSTexture::SparseDepthStencil) ? DXGI_FORMAT_R32G8X24_TYPELESS : DXGI_FORMAT_R8G8B8A8_UNORM;
return __super::FetchSurface(type, w, h, format);
}
GSTexture* GSDevice11::CopyOffscreen(GSTexture* src, const GSVector4& sRect, int w, int h, int format, int ps_shader)
{
GSTexture* dst = NULL;
if(format == 0)
{
format = DXGI_FORMAT_R8G8B8A8_UNORM;
}
ASSERT(format == DXGI_FORMAT_R8G8B8A8_UNORM || format == DXGI_FORMAT_R16_UINT || format == DXGI_FORMAT_R32_UINT);
if(GSTexture* rt = CreateRenderTarget(w, h, format))
{
GSVector4 dRect(0, 0, w, h);
StretchRect(src, sRect, rt, dRect, m_convert.ps[ps_shader], NULL);
dst = CreateOffscreen(w, h, format);
if(dst)
{
m_ctx->CopyResource(*(GSTexture11*)dst, *(GSTexture11*)rt);
}
Recycle(rt);
}
return dst;
}
void GSDevice11::CopyRect(GSTexture* sTex, GSTexture* dTex, const GSVector4i& r)
{
if (!sTex || !dTex)
{
ASSERT(0);
return;
}
D3D11_BOX box = { (UINT)r.left, (UINT)r.top, 0U, (UINT)r.right, (UINT)r.bottom, 1U };
// DX api isn't happy if we pass a box for depth copy
// It complains that depth/multisample must be a full copy
// and asks us to use a NULL for the box
bool depth = (sTex->GetType() == GSTexture::DepthStencil);
auto pBox = depth ? nullptr : &box;
m_ctx->CopySubresourceRegion(*(GSTexture11*)dTex, 0, 0, 0, 0, *(GSTexture11*)sTex, 0, pBox);
}
void GSDevice11::CloneTexture(GSTexture* src, GSTexture** dest)
{
if (!src || !(src->GetType() == GSTexture::DepthStencil || src->GetType() == GSTexture::RenderTarget))
{
ASSERT(0);
return;
}
int w = src->GetWidth();
int h = src->GetHeight();
if (src->GetType() == GSTexture::DepthStencil)
*dest = CreateDepthStencil(w, h, src->GetFormat());
else
*dest = CreateRenderTarget(w, h, src->GetFormat());
CopyRect(src, *dest, GSVector4i(0, 0, w, h));
}
void GSDevice11::StretchRect(GSTexture* sTex, const GSVector4& sRect, GSTexture* dTex, const GSVector4& dRect, int shader, bool linear)
{
StretchRect(sTex, sRect, dTex, dRect, m_convert.ps[shader], NULL, linear);
}
void GSDevice11::StretchRect(GSTexture* sTex, const GSVector4& sRect, GSTexture* dTex, const GSVector4& dRect, ID3D11PixelShader* ps, ID3D11Buffer* ps_cb, bool linear)
{
StretchRect(sTex, sRect, dTex, dRect, ps, ps_cb, m_convert.bs, linear);
}
void GSDevice11::StretchRect(GSTexture* sTex, const GSVector4& sRect, GSTexture* dTex, const GSVector4& dRect, bool red, bool green, bool blue, bool alpha)
{
D3D11_BLEND_DESC bd = {};
CComPtr<ID3D11BlendState> bs;
uint8 write_mask = 0;
if (red) write_mask |= D3D11_COLOR_WRITE_ENABLE_RED;
if (green) write_mask |= D3D11_COLOR_WRITE_ENABLE_GREEN;
if (blue) write_mask |= D3D11_COLOR_WRITE_ENABLE_BLUE;
if (alpha) write_mask |= D3D11_COLOR_WRITE_ENABLE_ALPHA;
bd.RenderTarget[0].RenderTargetWriteMask = write_mask;
m_dev->CreateBlendState(&bd, &bs);
StretchRect(sTex, sRect, dTex, dRect, m_convert.ps[ShaderConvert_COPY], nullptr, bs, false);
}
void GSDevice11::StretchRect(GSTexture* sTex, const GSVector4& sRect, GSTexture* dTex, const GSVector4& dRect, ID3D11PixelShader* ps, ID3D11Buffer* ps_cb, ID3D11BlendState* bs , bool linear)
{
if(!sTex || !dTex)
{
ASSERT(0);
return;
}
bool draw_in_depth = (ps == m_convert.ps[ShaderConvert_RGBA8_TO_FLOAT32] || ps == m_convert.ps[ShaderConvert_RGBA8_TO_FLOAT24] ||
ps == m_convert.ps[ShaderConvert_RGBA8_TO_FLOAT16] || ps == m_convert.ps[ShaderConvert_RGB5A1_TO_FLOAT16]);
BeginScene();
GSVector2i ds = dTex->GetSize();
// om
if (draw_in_depth)
OMSetDepthStencilState(m_convert.dss_write, 0);
else
OMSetDepthStencilState(m_convert.dss, 0);
OMSetBlendState(bs, 0);
if (draw_in_depth)
OMSetRenderTargets(NULL, dTex);
else
OMSetRenderTargets(dTex, NULL);
// ia
float left = dRect.x * 2 / ds.x - 1.0f;
float top = 1.0f - dRect.y * 2 / ds.y;
float right = dRect.z * 2 / ds.x - 1.0f;
float bottom = 1.0f - dRect.w * 2 / ds.y;
GSVertexPT1 vertices[] =
{
{GSVector4(left, top, 0.5f, 1.0f), GSVector2(sRect.x, sRect.y)},
{GSVector4(right, top, 0.5f, 1.0f), GSVector2(sRect.z, sRect.y)},
{GSVector4(left, bottom, 0.5f, 1.0f), GSVector2(sRect.x, sRect.w)},
{GSVector4(right, bottom, 0.5f, 1.0f), GSVector2(sRect.z, sRect.w)},
};
IASetVertexBuffer(vertices, sizeof(vertices[0]), countof(vertices));
IASetInputLayout(m_convert.il);
IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP);
// vs
VSSetShader(m_convert.vs, NULL);
// gs
GSSetShader(NULL, NULL);
// ps
PSSetShaderResources(sTex, NULL);
PSSetSamplerState(linear ? m_convert.ln : m_convert.pt, NULL);
PSSetShader(ps, ps_cb);
//
DrawPrimitive();
//
EndScene();
PSSetShaderResources(NULL, NULL);
}
void GSDevice11::RenderOsd(GSTexture* dt)
{
BeginScene();
// om
OMSetDepthStencilState(m_convert.dss, 0);
OMSetBlendState(m_merge.bs, 0);
OMSetRenderTargets(dt, NULL);
if(m_osd.m_texture_dirty) {
m_osd.upload_texture_atlas(m_font.get());
}
// ps
PSSetShaderResource(0, m_font.get());
PSSetSamplerState(m_convert.pt, NULL);
PSSetShader(m_convert.ps[ShaderConvert_OSD], NULL);
// ia
IASetInputLayout(m_convert.il);
IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST);
// Note scaling could also be done in shader (require gl3/dx10)
size_t count = m_osd.Size();
void* dst = NULL;
IAMapVertexBuffer(&dst, sizeof(GSVertexPT1), count);
count = m_osd.GeneratePrimitives((GSVertexPT1*)dst, count);
IAUnmapVertexBuffer();
// vs
VSSetShader(m_convert.vs, NULL);
// gs
GSSetShader(NULL, NULL);
DrawPrimitive();
EndScene();
}
void GSDevice11::DoMerge(GSTexture* sTex[3], GSVector4* sRect, GSTexture* dTex, GSVector4* dRect, const GSRegPMODE& PMODE, const GSRegEXTBUF& EXTBUF, const GSVector4& c)
{
bool slbg = PMODE.SLBG;
bool mmod = PMODE.MMOD;
ClearRenderTarget(dTex, c);
if(sTex[1] && !slbg)
{
StretchRect(sTex[1], sRect[1], dTex, dRect[1], m_merge.ps[0], NULL, true);
}
if(sTex[0])
{
m_ctx->UpdateSubresource(m_merge.cb, 0, NULL, &c, 0, 0);
StretchRect(sTex[0], sRect[0], dTex, dRect[0], m_merge.ps[mmod ? 1 : 0], m_merge.cb, m_merge.bs, true);
}
}
void GSDevice11::DoInterlace(GSTexture* sTex, GSTexture* dTex, int shader, bool linear, float yoffset)
{
GSVector4 s = GSVector4(dTex->GetSize());
GSVector4 sRect(0, 0, 1, 1);
GSVector4 dRect(0.0f, yoffset, s.x, s.y + yoffset);
InterlaceConstantBuffer cb;
cb.ZrH = GSVector2(0, 1.0f / s.y);
cb.hH = s.y / 2;
m_ctx->UpdateSubresource(m_interlace.cb, 0, NULL, &cb, 0, 0);
StretchRect(sTex, sRect, dTex, dRect, m_interlace.ps[shader], m_interlace.cb, linear);
}
//Included an init function for this also. Just to be safe.
void GSDevice11::InitExternalFX()
{
if (!ExShader_Compiled)
{
try {
std::string config_name(theApp.GetConfigS("shaderfx_conf"));
std::ifstream fconfig(config_name);
std::stringstream shader;
if (fconfig.good())
shader << fconfig.rdbuf() << "\n";
else
fprintf(stderr, "GSdx: External shader config '%s' not loaded.\n", config_name.c_str());
std::string shader_name(theApp.GetConfigS("shaderfx_glsl"));
std::ifstream fshader(shader_name);
if (fshader.good())
{
shader << fshader.rdbuf();
const std::string& s = shader.str();
std::vector<char> buff(s.begin(), s.end());
ShaderMacro sm(m_shader.model);
CreateShader(buff, shader_name.c_str(), D3D_COMPILE_STANDARD_FILE_INCLUDE, "ps_main", sm.GetPtr(), &m_shaderfx.ps);
}
else
{
fprintf(stderr, "GSdx: External shader '%s' not loaded and will be disabled!\n", shader_name.c_str());
}
}
catch (GSDXRecoverableError) {
printf("GSdx: failed to compile external post-processing shader. \n");
}
ExShader_Compiled = true;
}
}
void GSDevice11::DoExternalFX(GSTexture* sTex, GSTexture* dTex)
{
GSVector2i s = dTex->GetSize();
GSVector4 sRect(0, 0, 1, 1);
GSVector4 dRect(0, 0, s.x, s.y);
ExternalFXConstantBuffer cb;
InitExternalFX();
cb.xyFrame = GSVector2((float)s.x, (float)s.y);
cb.rcpFrame = GSVector4(1.0f / (float)s.x, 1.0f / (float)s.y, 0.0f, 0.0f);
cb.rcpFrameOpt = GSVector4::zero();
m_ctx->UpdateSubresource(m_shaderfx.cb, 0, NULL, &cb, 0, 0);
StretchRect(sTex, sRect, dTex, dRect, m_shaderfx.ps, m_shaderfx.cb, true);
}
// This shouldn't be necessary, we have some bug corrupting memory
// and for some reason isolating this code makes the plugin not crash
void GSDevice11::InitFXAA()
{
if (!FXAA_Compiled)
{
try {
std::vector<char> shader;
theApp.LoadResource(IDR_FXAA_FX, shader);
ShaderMacro sm(m_shader.model);
CreateShader(shader, "fxaa.fx", nullptr, "ps_main", sm.GetPtr(), &m_fxaa.ps);
}
catch (GSDXRecoverableError) {
printf("GSdx: failed to compile fxaa shader.\n");
}
FXAA_Compiled = true;
}
}
void GSDevice11::DoFXAA(GSTexture* sTex, GSTexture* dTex)
{
GSVector2i s = dTex->GetSize();
GSVector4 sRect(0, 0, 1, 1);
GSVector4 dRect(0, 0, s.x, s.y);
FXAAConstantBuffer cb;
InitFXAA();
cb.rcpFrame = GSVector4(1.0f / s.x, 1.0f / s.y, 0.0f, 0.0f);
cb.rcpFrameOpt = GSVector4::zero();
m_ctx->UpdateSubresource(m_fxaa.cb, 0, NULL, &cb, 0, 0);
StretchRect(sTex, sRect, dTex, dRect, m_fxaa.ps, m_fxaa.cb, true);
//sTex->Save("c:\\temp1\\1.bmp");
//dTex->Save("c:\\temp1\\2.bmp");
}
void GSDevice11::DoShadeBoost(GSTexture* sTex, GSTexture* dTex)
{
GSVector2i s = dTex->GetSize();
GSVector4 sRect(0, 0, 1, 1);
GSVector4 dRect(0, 0, s.x, s.y);
ShadeBoostConstantBuffer cb;
cb.rcpFrame = GSVector4(1.0f / s.x, 1.0f / s.y, 0.0f, 0.0f);
cb.rcpFrameOpt = GSVector4::zero();
m_ctx->UpdateSubresource(m_shadeboost.cb, 0, NULL, &cb, 0, 0);
StretchRect(sTex, sRect, dTex, dRect, m_shadeboost.ps, m_shadeboost.cb, true);
}
void GSDevice11::SetupDATE(GSTexture* rt, GSTexture* ds, const GSVertexPT1* vertices, bool datm)
{
// sfex3 (after the capcom logo), vf4 (first menu fading in), ffxii shadows, rumble roses shadows, persona4 shadows
BeginScene();
ClearStencil(ds, 0);
// om
OMSetDepthStencilState(m_date.dss, 1);
OMSetBlendState(m_date.bs, 0);
OMSetRenderTargets(NULL, ds);
// ia
IASetVertexBuffer(vertices, sizeof(vertices[0]), 4);
IASetInputLayout(m_convert.il);
IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY_TRIANGLESTRIP);
// vs
VSSetShader(m_convert.vs, NULL);
// gs
GSSetShader(NULL, NULL);
// ps
PSSetShaderResources(rt, NULL);
PSSetSamplerState(m_convert.pt, NULL);
PSSetShader(m_convert.ps[datm ? ShaderConvert_DATM_1 : ShaderConvert_DATM_0], NULL);
//
DrawPrimitive();
//
EndScene();
}
void GSDevice11::IASetVertexBuffer(const void* vertex, size_t stride, size_t count)
{
void* ptr = NULL;
if(IAMapVertexBuffer(&ptr, stride, count))
{
GSVector4i::storent(ptr, vertex, count * stride);
IAUnmapVertexBuffer();
}
}
bool GSDevice11::IAMapVertexBuffer(void** vertex, size_t stride, size_t count)
{
ASSERT(m_vertex.count == 0);
if(count * stride > m_vertex.limit * m_vertex.stride)
{
m_vb_old = m_vb;
m_vb = NULL;
m_vertex.start = 0;
m_vertex.limit = std::max<int>(count * 3 / 2, 11000);
}
if(m_vb == NULL)
{
D3D11_BUFFER_DESC bd;
memset(&bd, 0, sizeof(bd));
bd.Usage = D3D11_USAGE_DYNAMIC;
bd.ByteWidth = m_vertex.limit * stride;
bd.BindFlags = D3D11_BIND_VERTEX_BUFFER;
bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
HRESULT hr;
hr = m_dev->CreateBuffer(&bd, NULL, &m_vb);
if(FAILED(hr)) return false;
}
D3D11_MAP type = D3D11_MAP_WRITE_NO_OVERWRITE;
if(m_vertex.start + count > m_vertex.limit || stride != m_vertex.stride)
{
m_vertex.start = 0;
type = D3D11_MAP_WRITE_DISCARD;
}
D3D11_MAPPED_SUBRESOURCE m;
if(FAILED(m_ctx->Map(m_vb, 0, type, 0, &m)))
{
return false;
}
*vertex = (uint8*)m.pData + m_vertex.start * stride;
m_vertex.count = count;
m_vertex.stride = stride;
return true;
}
void GSDevice11::IAUnmapVertexBuffer()
{
m_ctx->Unmap(m_vb, 0);
IASetVertexBuffer(m_vb, m_vertex.stride);
}
void GSDevice11::IASetVertexBuffer(ID3D11Buffer* vb, size_t stride)
{
if(m_state.vb != vb || m_state.vb_stride != stride)
{
m_state.vb = vb;
m_state.vb_stride = stride;
uint32 stride2 = stride;
uint32 offset = 0;
m_ctx->IASetVertexBuffers(0, 1, &vb, &stride2, &offset);
}
}
void GSDevice11::IASetIndexBuffer(const void* index, size_t count)
{
ASSERT(m_index.count == 0);
if(count > m_index.limit)
{
m_ib_old = m_ib;
m_ib = NULL;
m_index.start = 0;
m_index.limit = std::max<int>(count * 3 / 2, 11000);
}
if(m_ib == NULL)
{
D3D11_BUFFER_DESC bd;
memset(&bd, 0, sizeof(bd));
bd.Usage = D3D11_USAGE_DYNAMIC;
bd.ByteWidth = m_index.limit * sizeof(uint32);
bd.BindFlags = D3D11_BIND_INDEX_BUFFER;
bd.CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
HRESULT hr;
hr = m_dev->CreateBuffer(&bd, NULL, &m_ib);
if(FAILED(hr)) return;
}
D3D11_MAP type = D3D11_MAP_WRITE_NO_OVERWRITE;
if(m_index.start + count > m_index.limit)
{
m_index.start = 0;
type = D3D11_MAP_WRITE_DISCARD;
}
D3D11_MAPPED_SUBRESOURCE m;
if(SUCCEEDED(m_ctx->Map(m_ib, 0, type, 0, &m)))
{
memcpy((uint8*)m.pData + m_index.start * sizeof(uint32), index, count * sizeof(uint32));
m_ctx->Unmap(m_ib, 0);
}
m_index.count = count;
IASetIndexBuffer(m_ib);
}
void GSDevice11::IASetIndexBuffer(ID3D11Buffer* ib)
{
if(m_state.ib != ib)
{
m_state.ib = ib;
m_ctx->IASetIndexBuffer(ib, DXGI_FORMAT_R32_UINT, 0);
}
}
void GSDevice11::IASetInputLayout(ID3D11InputLayout* layout)
{
if(m_state.layout != layout)
{
m_state.layout = layout;
m_ctx->IASetInputLayout(layout);
}
}
void GSDevice11::IASetPrimitiveTopology(D3D11_PRIMITIVE_TOPOLOGY topology)
{
if(m_state.topology != topology)
{
m_state.topology = topology;
m_ctx->IASetPrimitiveTopology(topology);
}
}
void GSDevice11::VSSetShader(ID3D11VertexShader* vs, ID3D11Buffer* vs_cb)
{
if(m_state.vs != vs)
{
m_state.vs = vs;
m_ctx->VSSetShader(vs, NULL, 0);
}
if(m_state.vs_cb != vs_cb)
{
m_state.vs_cb = vs_cb;
m_ctx->VSSetConstantBuffers(0, 1, &vs_cb);
}
}
void GSDevice11::GSSetShader(ID3D11GeometryShader* gs, ID3D11Buffer* gs_cb)
{
if(m_state.gs != gs)
{
m_state.gs = gs;
m_ctx->GSSetShader(gs, NULL, 0);
}
if (m_state.gs_cb != gs_cb)
{
m_state.gs_cb = gs_cb;
m_ctx->GSSetConstantBuffers(0, 1, &gs_cb);
}
}
void GSDevice11::PSSetShaderResources(GSTexture* sr0, GSTexture* sr1)
{
PSSetShaderResource(0, sr0);
PSSetShaderResource(1, sr1);
for(size_t i = 2; i < m_state.ps_sr_views.size(); i++)
{
PSSetShaderResource(i, NULL);
}
}
void GSDevice11::PSSetShaderResource(int i, GSTexture* sr)
{
ID3D11ShaderResourceView* srv = NULL;
if(sr) srv = *(GSTexture11*)sr;
PSSetShaderResourceView(i, srv, sr);
}
void GSDevice11::PSSetShaderResourceView(int i, ID3D11ShaderResourceView* srv, GSTexture* sr)
{
ASSERT(i < (int)m_state.ps_sr_views.size());
if(m_state.ps_sr_views[i] != srv)
{
m_state.ps_sr_views[i] = srv;
m_state.ps_sr_texture[i] = (GSTexture11*)sr;
srv ? m_state.ps_sr_bitfield |= 1u << i : m_state.ps_sr_bitfield &= ~(1u << i);
}
}
void GSDevice11::PSSetSamplerState(ID3D11SamplerState* ss0, ID3D11SamplerState* ss1)
{
if(m_state.ps_ss[0] != ss0 || m_state.ps_ss[1] != ss1)
{
m_state.ps_ss[0] = ss0;
m_state.ps_ss[1] = ss1;
}
}
void GSDevice11::PSSetShader(ID3D11PixelShader* ps, ID3D11Buffer* ps_cb)
{
if(m_state.ps != ps)
{
m_state.ps = ps;
m_ctx->PSSetShader(ps, NULL, 0);
}
if(m_state.ps_cb != ps_cb)
{
m_state.ps_cb = ps_cb;
m_ctx->PSSetConstantBuffers(0, 1, &ps_cb);
}
}
void GSDevice11::PSUpdateShaderState()
{
m_ctx->PSSetShaderResources(0, m_state.ps_sr_views.size(), m_state.ps_sr_views.data());
m_ctx->PSSetSamplers(0, countof(m_state.ps_ss), m_state.ps_ss);
}
void GSDevice11::OMSetDepthStencilState(ID3D11DepthStencilState* dss, uint8 sref)
{
if(m_state.dss != dss || m_state.sref != sref)
{
m_state.dss = dss;
m_state.sref = sref;
m_ctx->OMSetDepthStencilState(dss, sref);
}
}
void GSDevice11::OMSetBlendState(ID3D11BlendState* bs, float bf)
{
if(m_state.bs != bs || m_state.bf != bf)
{
m_state.bs = bs;
m_state.bf = bf;
float BlendFactor[] = {bf, bf, bf, 0};
m_ctx->OMSetBlendState(bs, BlendFactor, 0xffffffff);
}
}
void GSDevice11::OMSetRenderTargets(GSTexture* rt, GSTexture* ds, const GSVector4i* scissor)
{
ID3D11RenderTargetView* rtv = NULL;
ID3D11DepthStencilView* dsv = NULL;
if (!rt && !ds)
throw GSDXRecoverableError();
if(rt) rtv = *(GSTexture11*)rt;
if(ds) dsv = *(GSTexture11*)ds;
if(m_state.rt_view != rtv || m_state.dsv != dsv)
{
m_state.rt_view = rtv;
m_state.rt_texture = static_cast<GSTexture11*>(rt);
m_state.dsv = dsv;
m_state.rt_ds = static_cast<GSTexture11*>(ds);
m_ctx->OMSetRenderTargets(1, &rtv, dsv);
}
GSVector2i size = rt ? rt->GetSize() : ds->GetSize();
if(m_state.viewport != size)
{
m_state.viewport = size;
D3D11_VIEWPORT vp;
memset(&vp, 0, sizeof(vp));
vp.TopLeftX = m_hack_topleft_offset;
vp.TopLeftY = m_hack_topleft_offset;
vp.Width = (float)size.x;
vp.Height = (float)size.y;
vp.MinDepth = 0.0f;
vp.MaxDepth = 1.0f;
m_ctx->RSSetViewports(1, &vp);
}
GSVector4i r = scissor ? *scissor : GSVector4i(size).zwxy();
if(!m_state.scissor.eq(r))
{
m_state.scissor = r;
m_ctx->RSSetScissorRects(1, r);
}
}
GSDevice11::ShaderMacro::ShaderMacro(std::string& smodel)
{
mlist.emplace_back("SHADER_MODEL", smodel);
}
void GSDevice11::ShaderMacro::AddMacro(const char* n, int d)
{
mlist.emplace_back(n, std::to_string(d));
}
D3D_SHADER_MACRO* GSDevice11::ShaderMacro::GetPtr(void)
{
mout.clear();
for (auto& i : mlist)
mout.emplace_back(i.name.c_str(), i.def.c_str());
mout.emplace_back(nullptr, nullptr);
return (D3D_SHADER_MACRO*)mout.data();
}
void GSDevice11::CreateShader(std::vector<char> source, const char* fn, ID3DInclude *include, const char* entry, D3D_SHADER_MACRO* macro, ID3D11VertexShader** vs, D3D11_INPUT_ELEMENT_DESC* layout, int count, ID3D11InputLayout** il)
{
HRESULT hr;
CComPtr<ID3DBlob> shader;
CompileShader(source, fn, include, entry, macro, &shader, m_shader.vs);
hr = m_dev->CreateVertexShader((void*)shader->GetBufferPointer(), shader->GetBufferSize(), NULL, vs);
if(FAILED(hr))
{
throw GSDXRecoverableError();
}
hr = m_dev->CreateInputLayout(layout, count, shader->GetBufferPointer(), shader->GetBufferSize(), il);
if(FAILED(hr))
{
throw GSDXRecoverableError();
}
}
void GSDevice11::CreateShader(std::vector<char> source, const char* fn, ID3DInclude *include, const char* entry, D3D_SHADER_MACRO* macro, ID3D11GeometryShader** gs)
{
HRESULT hr;
CComPtr<ID3DBlob> shader;
CompileShader(source, fn, include, entry, macro, &shader, m_shader.gs);
hr = m_dev->CreateGeometryShader((void*)shader->GetBufferPointer(), shader->GetBufferSize(), NULL, gs);
if(FAILED(hr))
{
throw GSDXRecoverableError();
}
}
void GSDevice11::CreateShader(std::vector<char> source, const char* fn, ID3DInclude *include, const char* entry, D3D_SHADER_MACRO* macro, ID3D11PixelShader** ps)
{
HRESULT hr;
CComPtr<ID3DBlob> shader;
CompileShader(source, fn, include, entry, macro, &shader, m_shader.ps);
hr = m_dev->CreatePixelShader((void*)shader->GetBufferPointer(), shader->GetBufferSize(), NULL, ps);
if(FAILED(hr))
{
throw GSDXRecoverableError();
}
}
void GSDevice11::CompileShader(std::vector<char> source, const char* fn, ID3DInclude *include, const char* entry, D3D_SHADER_MACRO* macro, ID3DBlob** shader, std::string shader_model)
{
CComPtr<ID3DBlob> error;
UINT flags = 0;
#ifdef _DEBUG
flags = D3DCOMPILE_DEBUG | D3DCOMPILE_SKIP_OPTIMIZATION | D3DCOMPILE_AVOID_FLOW_CONTROL;
#endif
const HRESULT hr = D3DCompile(
source.data(), source.size(), fn, macro,
include, entry, shader_model.c_str(),
flags, 0, shader, &error
);
if (error)
fprintf(stderr, "%s\n", (const char*)error->GetBufferPointer());
if (FAILED(hr))
throw GSDXRecoverableError();
}
uint16 GSDevice11::ConvertBlendEnum(uint16 generic)
{
switch (generic)
{
case SRC_COLOR : return D3D11_BLEND_SRC_COLOR;
case INV_SRC_COLOR : return D3D11_BLEND_INV_SRC_COLOR;
case DST_COLOR : return D3D11_BLEND_DEST_COLOR;
case INV_DST_COLOR : return D3D11_BLEND_INV_DEST_COLOR;
case SRC1_COLOR : return D3D11_BLEND_SRC1_COLOR;
case INV_SRC1_COLOR : return D3D11_BLEND_INV_SRC1_COLOR;
case SRC_ALPHA : return D3D11_BLEND_SRC_ALPHA;
case INV_SRC_ALPHA : return D3D11_BLEND_INV_SRC_ALPHA;
case DST_ALPHA : return D3D11_BLEND_DEST_ALPHA;
case INV_DST_ALPHA : return D3D11_BLEND_INV_DEST_ALPHA;
case SRC1_ALPHA : return D3D11_BLEND_SRC1_ALPHA;
case INV_SRC1_ALPHA : return D3D11_BLEND_INV_SRC1_ALPHA;
case CONST_COLOR : return D3D11_BLEND_BLEND_FACTOR;
case INV_CONST_COLOR : return D3D11_BLEND_INV_BLEND_FACTOR;
case CONST_ONE : return D3D11_BLEND_ONE;
case CONST_ZERO : return D3D11_BLEND_ZERO;
case OP_ADD : return D3D11_BLEND_OP_ADD;
case OP_SUBTRACT : return D3D11_BLEND_OP_SUBTRACT;
case OP_REV_SUBTRACT : return D3D11_BLEND_OP_REV_SUBTRACT;
default : ASSERT(0); return 0;
}
}