pcsx2/pcsx2/R3000AOpcodeTables.cpp

383 lines
13 KiB
C++

// SPDX-FileCopyrightText: 2002-2024 PCSX2 Dev Team
// SPDX-License-Identifier: GPL-3.0+
#include "R3000A.h"
#include "IopGte.h"
#include "IopMem.h"
#include "common/Console.h"
// Note: Branch instructions of the Interpreter are defined externally because
// the recompiler shouldn't be using them (it isn't entirely safe, due to the
// delay slot and event handling differences between recs and ints)
void psxBGEZ();
void psxBGEZAL();
void psxBGTZ();
void psxBLEZ();
void psxBLTZ();
void psxBLTZAL();
void psxBEQ();
void psxBNE();
void psxJ();
void psxJAL();
void psxJR();
void psxJALR();
/*********************************************************
* Arithmetic with immediate operand *
* Format: OP rt, rs, immediate *
*********************************************************/
void psxADDI() { if (!_Rt_) return; _rRt_ = _u32(_rRs_) + _Imm_ ; } // Rt = Rs + Im (Exception on Integer Overflow)
void psxADDIU() { // Rt = Rs + Im
if (!_Rt_)
return;
_rRt_ = _u32(_rRs_) + _Imm_ ;
}
void psxANDI() { if (!_Rt_) return; _rRt_ = _u32(_rRs_) & _ImmU_; } // Rt = Rs And Im
void psxORI() { if (!_Rt_) return; _rRt_ = _u32(_rRs_) | _ImmU_; } // Rt = Rs Or Im
void psxXORI() { if (!_Rt_) return; _rRt_ = _u32(_rRs_) ^ _ImmU_; } // Rt = Rs Xor Im
void psxSLTI() { if (!_Rt_) return; _rRt_ = _i32(_rRs_) < _Imm_ ; } // Rt = Rs < Im (Signed)
void psxSLTIU() { if (!_Rt_) return; _rRt_ = _u32(_rRs_) < (u32)_Imm_; } // Rt = Rs < Im (Unsigned)
/*********************************************************
* Register arithmetic *
* Format: OP rd, rs, rt *
*********************************************************/
void psxADD() { if (!_Rd_) return; _rRd_ = _u32(_rRs_) + _u32(_rRt_); } // Rd = Rs + Rt (Exception on Integer Overflow)
void psxADDU() { if (!_Rd_) return; _rRd_ = _u32(_rRs_) + _u32(_rRt_); } // Rd = Rs + Rt
void psxSUB() { if (!_Rd_) return; _rRd_ = _u32(_rRs_) - _u32(_rRt_); } // Rd = Rs - Rt (Exception on Integer Overflow)
void psxSUBU() { if (!_Rd_) return; _rRd_ = _u32(_rRs_) - _u32(_rRt_); } // Rd = Rs - Rt
void psxAND() { if (!_Rd_) return; _rRd_ = _u32(_rRs_) & _u32(_rRt_); } // Rd = Rs And Rt
void psxOR() { if (!_Rd_) return; _rRd_ = _u32(_rRs_) | _u32(_rRt_); } // Rd = Rs Or Rt
void psxXOR() { if (!_Rd_) return; _rRd_ = _u32(_rRs_) ^ _u32(_rRt_); } // Rd = Rs Xor Rt
void psxNOR() { if (!_Rd_) return; _rRd_ =~(_u32(_rRs_) | _u32(_rRt_)); }// Rd = Rs Nor Rt
void psxSLT() { if (!_Rd_) return; _rRd_ = _i32(_rRs_) < _i32(_rRt_); } // Rd = Rs < Rt (Signed)
void psxSLTU() { if (!_Rd_) return; _rRd_ = _u32(_rRs_) < _u32(_rRt_); } // Rd = Rs < Rt (Unsigned)
/*********************************************************
* Register mult/div & Register trap logic *
* Format: OP rs, rt *
*********************************************************/
void psxDIV() {
if (_rRt_ == 0) {
// Division by 0
_rLo_ = _i32(_rRs_) < 0 ? 1 : 0xFFFFFFFFu;
_rHi_ = _rRs_;
} else if (_rRs_ == 0x80000000u && _rRt_ == 0xFFFFFFFFu) {
// x86 overflow
_rLo_ = 0x80000000u;
_rHi_ = 0;
} else {
// Normal behavior
_rLo_ = _i32(_rRs_) / _i32(_rRt_);
_rHi_ = _i32(_rRs_) % _i32(_rRt_);
}
}
void psxDIVU() {
if (_rRt_ == 0) {
// Division by 0
_rLo_ = 0xFFFFFFFFu;
_rHi_ = _rRs_;
} else {
// Normal behavior
_rLo_ = _rRs_ / _rRt_;
_rHi_ = _rRs_ % _rRt_;
}
}
void psxMULT() {
u64 res = (s64)((s64)_i32(_rRs_) * (s64)_i32(_rRt_));
psxRegs.GPR.n.lo = (u32)(res & 0xffffffff);
psxRegs.GPR.n.hi = (u32)((res >> 32) & 0xffffffff);
}
void psxMULTU() {
u64 res = (u64)((u64)_u32(_rRs_) * (u64)_u32(_rRt_));
psxRegs.GPR.n.lo = (u32)(res & 0xffffffff);
psxRegs.GPR.n.hi = (u32)((res >> 32) & 0xffffffff);
}
/*********************************************************
* Shift arithmetic with constant shift *
* Format: OP rd, rt, sa *
*********************************************************/
void psxSLL() { if (!_Rd_) return; _rRd_ = _u32(_rRt_) << _Sa_; } // Rd = Rt << sa
void psxSRA() { if (!_Rd_) return; _rRd_ = _i32(_rRt_) >> _Sa_; } // Rd = Rt >> sa (arithmetic)
void psxSRL() { if (!_Rd_) return; _rRd_ = _u32(_rRt_) >> _Sa_; } // Rd = Rt >> sa (logical)
/*********************************************************
* Shift arithmetic with variant register shift *
* Format: OP rd, rt, rs *
*********************************************************/
void psxSLLV() { if (!_Rd_) return; _rRd_ = _u32(_rRt_) << _u32(_rRs_); } // Rd = Rt << rs
void psxSRAV() { if (!_Rd_) return; _rRd_ = _i32(_rRt_) >> _u32(_rRs_); } // Rd = Rt >> rs (arithmetic)
void psxSRLV() { if (!_Rd_) return; _rRd_ = _u32(_rRt_) >> _u32(_rRs_); } // Rd = Rt >> rs (logical)
/*********************************************************
* Load higher 16 bits of the first word in GPR with imm *
* Format: OP rt, immediate *
*********************************************************/
void psxLUI() { if (!_Rt_) return; _rRt_ = psxRegs.code << 16; } // Upper halfword of Rt = Im
/*********************************************************
* Move from HI/LO to GPR *
* Format: OP rd *
*********************************************************/
void psxMFHI() { if (!_Rd_) return; _rRd_ = _rHi_; } // Rd = Hi
void psxMFLO() { if (!_Rd_) return; _rRd_ = _rLo_; } // Rd = Lo
/*********************************************************
* Move to GPR to HI/LO & Register jump *
* Format: OP rs *
*********************************************************/
void psxMTHI() { _rHi_ = _rRs_; } // Hi = Rs
void psxMTLO() { _rLo_ = _rRs_; } // Lo = Rs
/*********************************************************
* Special purpose instructions *
* Format: OP *
*********************************************************/
void psxBREAK() {
// Break exception - psx rom doens't handles this
psxRegs.pc -= 4;
psxException(0x24, iopIsDelaySlot);
}
void psxSYSCALL() {
psxRegs.pc -= 4;
psxException(0x20, iopIsDelaySlot);
}
void psxRFE() {
// Console.WriteLn("RFE\n");
psxRegs.CP0.n.Status = (psxRegs.CP0.n.Status & 0xfffffff0) |
((psxRegs.CP0.n.Status & 0x3c) >> 2);
// Log=0;
}
/*********************************************************
* Load and store for GPR *
* Format: OP rt, offset(base) *
*********************************************************/
#define _oB_ (_u32(_rRs_) + _Imm_)
void psxLB() {
if (_Rt_) {
_rRt_ = (s8 )iopMemRead8(_oB_);
} else {
iopMemRead8(_oB_);
}
}
void psxLBU() {
if (_Rt_) {
_rRt_ = iopMemRead8(_oB_);
} else {
iopMemRead8(_oB_);
}
}
void psxLH() {
if (_Rt_) {
_rRt_ = (s16)iopMemRead16(_oB_);
} else {
iopMemRead16(_oB_);
}
}
void psxLHU() {
if (_Rt_) {
_rRt_ = iopMemRead16(_oB_);
} else {
iopMemRead16(_oB_);
}
}
void psxLW() {
if (_Rt_) {
_rRt_ = iopMemRead32(_oB_);
} else {
iopMemRead32(_oB_);
}
}
void psxLWL() {
u32 shift = (_oB_ & 3) << 3;
u32 mem = iopMemRead32(_oB_ & 0xfffffffc);
if (!_Rt_) return;
_rRt_ = ( _u32(_rRt_) & (0x00ffffff >> shift) ) |
( mem << (24 - shift) );
/*
Mem = 1234. Reg = abcd
0 4bcd (mem << 24) | (reg & 0x00ffffff)
1 34cd (mem << 16) | (reg & 0x0000ffff)
2 234d (mem << 8) | (reg & 0x000000ff)
3 1234 (mem ) | (reg & 0x00000000)
*/
}
void psxLWR() {
u32 shift = (_oB_ & 3) << 3;
u32 mem = iopMemRead32(_oB_ & 0xfffffffc);
if (!_Rt_) return;
_rRt_ = ( _u32(_rRt_) & (0xffffff00 << (24 - shift)) ) |
( mem >> shift );
/*
Mem = 1234. Reg = abcd
0 1234 (mem ) | (reg & 0x00000000)
1 a123 (mem >> 8) | (reg & 0xff000000)
2 ab12 (mem >> 16) | (reg & 0xffff0000)
3 abc1 (mem >> 24) | (reg & 0xffffff00)
*/
}
void psxSB() { iopMemWrite8 (_oB_, _u8 (_rRt_)); }
void psxSH() { iopMemWrite16(_oB_, _u16(_rRt_)); }
void psxSW() { iopMemWrite32(_oB_, _u32(_rRt_)); }
void psxSWL() {
u32 shift = (_oB_ & 3) << 3;
u32 mem = iopMemRead32(_oB_ & 0xfffffffc);
iopMemWrite32((_oB_ & 0xfffffffc), ( ( _u32(_rRt_) >> (24 - shift) ) ) |
( mem & (0xffffff00 << shift) ));
/*
Mem = 1234. Reg = abcd
0 123a (reg >> 24) | (mem & 0xffffff00)
1 12ab (reg >> 16) | (mem & 0xffff0000)
2 1abc (reg >> 8) | (mem & 0xff000000)
3 abcd (reg ) | (mem & 0x00000000)
*/
}
void psxSWR() {
u32 shift = (_oB_ & 3) << 3;
u32 mem = iopMemRead32(_oB_ & 0xfffffffc);
iopMemWrite32((_oB_ & 0xfffffffc), ( ( _u32(_rRt_) << shift ) |
(mem & (0x00ffffff >> (24 - shift)) ) ) );
/*
Mem = 1234. Reg = abcd
0 abcd (reg ) | (mem & 0x00000000)
1 bcd4 (reg << 8) | (mem & 0x000000ff)
2 cd34 (reg << 16) | (mem & 0x0000ffff)
3 d234 (reg << 24) | (mem & 0x00ffffff)
*/
}
/*********************************************************
* Moves between GPR and COPx *
* Format: OP rt, fs *
*********************************************************/
void psxMFC0() { if (!_Rt_) return; _rRt_ = (int)_rFs_; }
void psxCFC0() { if (!_Rt_) return; _rRt_ = (int)_rFs_; }
void psxMTC0() { _rFs_ = _u32(_rRt_); }
void psxCTC0() { _rFs_ = _u32(_rRt_); }
void psxCTC2() { _c2dRd_ = _u32(_rRt_); };
/*********************************************************
* Unknown instruction (would generate an exception) *
* Format: ? *
*********************************************************/
void psxNULL() {
Console.Warning("psx: Unimplemented op %x", psxRegs.code);
}
void psxSPECIAL() {
psxSPC[_Funct_]();
}
void psxREGIMM() {
psxREG[_Rt_]();
}
void psxCOP0() {
psxCP0[_Rs_]();
}
void psxCOP2() {
psxCP2[_Funct_]();
}
void psxBASIC() {
psxCP2BSC[_Rs_]();
}
void(*psxBSC[64])() = {
psxSPECIAL, psxREGIMM, psxJ , psxJAL , psxBEQ , psxBNE , psxBLEZ, psxBGTZ, //7
psxADDI , psxADDIU , psxSLTI, psxSLTIU, psxANDI, psxORI , psxXORI, psxLUI , //15
psxCOP0 , psxNULL , psxCOP2, psxNULL , psxNULL, psxNULL, psxNULL, psxNULL, //23
psxNULL , psxNULL , psxNULL, psxNULL , psxNULL, psxNULL, psxNULL, psxNULL, //31
psxLB , psxLH , psxLWL , psxLW , psxLBU , psxLHU , psxLWR , psxNULL, //39
psxSB , psxSH , psxSWL , psxSW , psxNULL, psxNULL, psxSWR , psxNULL, //47
psxNULL , psxNULL , gteLWC2, psxNULL , psxNULL, psxNULL, psxNULL, psxNULL, //55
psxNULL , psxNULL , gteSWC2, psxNULL , psxNULL, psxNULL, psxNULL, psxNULL //63
};
void(*psxSPC[64])() = {
psxSLL , psxNULL , psxSRL , psxSRA , psxSLLV , psxNULL , psxSRLV, psxSRAV,
psxJR , psxJALR , psxNULL, psxNULL, psxSYSCALL, psxBREAK, psxNULL, psxNULL,
psxMFHI, psxMTHI , psxMFLO, psxMTLO, psxNULL , psxNULL , psxNULL, psxNULL,
psxMULT, psxMULTU, psxDIV , psxDIVU, psxNULL , psxNULL , psxNULL, psxNULL,
psxADD , psxADDU , psxSUB , psxSUBU, psxAND , psxOR , psxXOR , psxNOR ,
psxNULL, psxNULL , psxSLT , psxSLTU, psxNULL , psxNULL , psxNULL, psxNULL,
psxNULL, psxNULL , psxNULL, psxNULL, psxNULL , psxNULL , psxNULL, psxNULL,
psxNULL, psxNULL , psxNULL, psxNULL, psxNULL , psxNULL , psxNULL, psxNULL
};
void(*psxREG[32])() = {
psxBLTZ , psxBGEZ , psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL,
psxNULL , psxNULL , psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL,
psxBLTZAL, psxBGEZAL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL,
psxNULL , psxNULL , psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL
};
void(*psxCP0[32])() = {
psxMFC0, psxNULL, psxCFC0, psxNULL, psxMTC0, psxNULL, psxCTC0, psxNULL,
psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL,
psxRFE , psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL,
psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL
};
void (*psxCP2[64])() = {
psxBASIC, gteRTPS , psxNULL , psxNULL, psxNULL, psxNULL , gteNCLIP, psxNULL, // 00
psxNULL , psxNULL , psxNULL , psxNULL, gteOP , psxNULL , psxNULL , psxNULL, // 08
gteDPCS , gteINTPL, gteMVMVA, gteNCDS, gteCDP , psxNULL , gteNCDT , psxNULL, // 10
psxNULL , psxNULL , psxNULL , gteNCCS, gteCC , psxNULL , gteNCS , psxNULL, // 18
gteNCT , psxNULL , psxNULL , psxNULL, psxNULL, psxNULL , psxNULL , psxNULL, // 20
gteSQR , gteDCPL , gteDPCT , psxNULL, psxNULL, gteAVSZ3, gteAVSZ4, psxNULL, // 28
gteRTPT , psxNULL , psxNULL , psxNULL, psxNULL, psxNULL , psxNULL , psxNULL, // 30
psxNULL , psxNULL , psxNULL , psxNULL, psxNULL, gteGPF , gteGPL , gteNCCT // 38
};
void(*psxCP2BSC[32])() = {
gteMFC2, psxNULL, gteCFC2, psxNULL, gteMTC2, psxNULL, gteCTC2, psxNULL,
psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL,
psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL,
psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL, psxNULL
};