/* PCSX2 - PS2 Emulator for PCs * Copyright (C) 2002-2010 PCSX2 Dev Team * * PCSX2 is free software: you can redistribute it and/or modify it under the terms * of the GNU Lesser General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with PCSX2. * If not, see . */ #include "PrecompiledHeader.h" #ifdef __LINUX__ # include // for pthread_kill, which is in pthread.h on w32-pthreads #endif #include "PersistentThread.h" #include "wxBaseTools.h" #include "ThreadingInternal.h" #include "EventSource.inl" using namespace Threading; template class EventSource< EventListener_Thread >; // 100ms interval for waitgui (issued from blocking semaphore waits on the main thread, // to avoid gui deadlock). const wxTimeSpan Threading::def_yieldgui_interval( 0, 0, 0, 100 ); ConsoleLogSource_Threading::ConsoleLogSource_Threading() { static const TraceLogDescriptor myDesc = { L"pxThread", L"pxThread", pxLt("Threading activity: start, detach, sync, deletion, etc.") }; m_Descriptor = &myDesc; } ConsoleLogSource_Threading pxConLog_Thread; class StaticMutex : public Mutex { protected: bool& m_DeletedFlag; public: StaticMutex( bool& deletedFlag ) : m_DeletedFlag( deletedFlag ) { } virtual ~StaticMutex() throw() { m_DeletedFlag = true; } }; static pthread_key_t curthread_key = 0; static s32 total_key_count = 0; static bool tkl_destructed = false; static StaticMutex total_key_lock( tkl_destructed ); static void make_curthread_key( const pxThread* thr ) { pxAssumeDev( !tkl_destructed, "total_key_lock is destroyed; program is shutting down; cannot create new thread key." ); ScopedLock lock( total_key_lock ); if( total_key_count++ != 0 ) return; if( 0 != pthread_key_create(&curthread_key, NULL) ) { pxThreadLog.Error( thr->GetName(), L"Thread key creation failed (probably out of memory >_<)" ); curthread_key = 0; } } static void unmake_curthread_key() { ScopedLock lock; if( !tkl_destructed ) lock.AssignAndLock( total_key_lock ); if( --total_key_count > 0 ) return; if( curthread_key ) pthread_key_delete( curthread_key ); curthread_key = 0; } void Threading::pxTestCancel() { pthread_testcancel(); } // Returns a handle to the current persistent thread. If the current thread does not belong // to the pxThread table, NULL is returned. Since the main/ui thread is not created // through pxThread it will also return NULL. Callers can use wxThread::IsMain() to // test if the NULL thread is the main thread. pxThread* Threading::pxGetCurrentThread() { return !curthread_key ? NULL : (pxThread*)pthread_getspecific( curthread_key ); } // returns the name of the current thread, or "Unknown" if the thread is neither a pxThread // nor the Main/UI thread. wxString Threading::pxGetCurrentThreadName() { if( pxThread* thr = pxGetCurrentThread() ) { return thr->GetName(); } else if( wxThread::IsMain() ) { return L"Main/UI"; } return L"Unknown"; } void Threading::pxYield( int ms ) { if( pxThread* thr = pxGetCurrentThread() ) thr->Yield( ms ); else Sleep( ms ); } // (intended for internal use only) // Returns true if the Wait is recursive, or false if the Wait is safe and should be // handled via normal yielding methods. bool Threading::_WaitGui_RecursionGuard( const wxChar* name ) { AffinityAssert_AllowFrom_MainUI(); // In order to avoid deadlock we need to make sure we cut some time to handle messages. // But this can result in recursive yield calls, which would crash the app. Protect // against them here and, if recursion is detected, perform a standard blocking wait. static int __Guard = 0; RecursionGuard guard( __Guard ); //if( pxAssertDev( !guard.IsReentrant(), "Recursion during UI-bound threading wait object." ) ) return false; if( !guard.IsReentrant() ) return false; pxThreadLog.Write( pxGetCurrentThreadName(), pxsFmt(L"Yield recursion in %s; opening modal dialog.", name) ); return true; } __fi void Threading::Timeslice() { sched_yield(); } void Threading::pxThread::_pt_callback_cleanup( void* handle ) { ((pxThread*)handle)->_ThreadCleanup(); } Threading::pxThread::pxThread( const wxString& name ) : m_name( name ) { m_detached = true; // start out with m_thread in detached/invalid state m_running = false; m_native_id = 0; m_native_handle = 0; } // This destructor performs basic "last chance" cleanup, which is a blocking join // against the thread. Extending classes should almost always implement their own // thread closure process, since any pxThread will, by design, not terminate // unless it has been properly canceled (resulting in deadlock). // // Thread safety: This class must not be deleted from its own thread. That would be // like marrying your sister, and then cheating on her with your daughter. Threading::pxThread::~pxThread() throw() { try { pxThreadLog.Write( GetName(), L"Executing default destructor!" ); if( m_running ) { pxThreadLog.Write( GetName(), L"Waiting for running thread to end..."); m_mtx_InThread.Wait(); pxThreadLog.Write( GetName(), L"Thread ended gracefully."); } Threading::Sleep( 1 ); Detach(); } DESTRUCTOR_CATCHALL } bool Threading::pxThread::AffinityAssert_AllowFromSelf( const DiagnosticOrigin& origin ) const { if( IsSelf() ) return true; if( IsDevBuild ) pxOnAssert( origin, pxsFmt( L"Thread affinity violation: Call allowed from '%s' thread only.", GetName().c_str() ) ); return false; } bool Threading::pxThread::AffinityAssert_DisallowFromSelf( const DiagnosticOrigin& origin ) const { if( !IsSelf() ) return true; if( IsDevBuild ) pxOnAssert( origin, pxsFmt( L"Thread affinity violation: Call is *not* allowed from '%s' thread.", GetName().c_str() ) ); return false; } void Threading::pxThread::FrankenMutex( Mutex& mutex ) { if( mutex.RecreateIfLocked() ) { // Our lock is bupkis, which means the previous thread probably deadlocked. // Let's create a new mutex lock to replace it. pxThreadLog.Error( GetName(), L"Possible deadlock detected on restarted mutex!" ); } } // Main entry point for starting or e-starting a persistent thread. This function performs necessary // locks and checks for avoiding race conditions, and then calls OnStart() immediately before // the actual thread creation. Extending classes should generally not override Start(), and should // instead override DoPrepStart instead. // // This function should not be called from the owner thread. void Threading::pxThread::Start() { // Prevents sudden parallel startup, and or parallel startup + cancel: ScopedLock startlock( m_mtx_start ); if( m_running ) { pxThreadLog.Write(GetName(), L"Start() called on running thread; ignorning..."); return; } Detach(); // clean up previous thread handle, if one exists. OnStart(); m_except = NULL; pxThreadLog.Write(GetName(), L"Calling pthread_create..."); if( pthread_create( &m_thread, NULL, _internal_callback, this ) != 0 ) throw Exception::ThreadCreationError( this ); if( !m_sem_startup.WaitWithoutYield( wxTimeSpan( 0, 0, 3, 0 ) ) ) { RethrowException(); // And if the thread threw nothing of its own: throw Exception::ThreadCreationError( this ).SetDiagMsg( L"Thread creation error: %s thread never posted startup semaphore." ); } // Event Rationale (above): Performing this semaphore wait on the created thread is "slow" in the // sense that it stalls the calling thread completely until the new thread is created // (which may not always be desirable). But too bad. In order to safely use 'running' locks // and detachment management, this *has* to be done. By rule, starting new threads shouldn't // be done very often anyway, hence the concept of Threadpooling for rapidly rotating tasks. // (and indeed, this semaphore wait might, in fact, be very swift compared to other kernel // overhead in starting threads). // (this could also be done using operating system specific calls, since any threaded OS has // functions that allow us to see if a thread is running or not, and to block against it even if // it's been detached -- removing the need for m_mtx_InThread and the semaphore wait above. But // pthreads kinda lacks that stuff, since pthread_join() has no timeout option making it im- // possible to safely block against a running thread) } // Returns: TRUE if the detachment was performed, or FALSE if the thread was // already detached or isn't running at all. // This function should not be called from the owner thread. bool Threading::pxThread::Detach() { AffinityAssert_DisallowFromSelf(pxDiagSpot); if( _InterlockedExchange( &m_detached, true ) ) return false; pthread_detach( m_thread ); return true; } bool Threading::pxThread::_basecancel() { if( !m_running ) return false; if( m_detached ) { pxThreadLog.Warn(GetName(), L"Ignoring attempted cancellation of detached thread."); return false; } pthread_cancel( m_thread ); return true; } // Remarks: // Provision of non-blocking Cancel() is probably academic, since destroying a pxThread // object performs a blocking Cancel regardless of if you explicitly do a non-blocking Cancel() // prior, since the ExecuteTaskInThread() method requires a valid object state. If you really need // fire-and-forget behavior on threads, use pthreads directly for now. // // This function should not be called from the owner thread. // // Parameters: // isBlocking - indicates if the Cancel action should block for thread completion or not. // // Exceptions raised by the blocking thread will be re-thrown into the main thread. If isBlocking // is false then no exceptions will occur. // void Threading::pxThread::Cancel( bool isBlocking ) { AffinityAssert_DisallowFromSelf( pxDiagSpot ); // Prevent simultaneous startup and cancel, necessary to avoid ScopedLock startlock( m_mtx_start ); if( !_basecancel() ) return; if( isBlocking ) { WaitOnSelf( m_mtx_InThread ); Detach(); } } bool Threading::pxThread::Cancel( const wxTimeSpan& timespan ) { AffinityAssert_DisallowFromSelf( pxDiagSpot ); // Prevent simultaneous startup and cancel: ScopedLock startlock( m_mtx_start ); if( !_basecancel() ) return true; if( !WaitOnSelf( m_mtx_InThread, timespan ) ) return false; Detach(); return true; } // Blocks execution of the calling thread until this thread completes its task. The // caller should make sure to signal the thread to exit, or else blocking may deadlock the // calling thread. Classes which extend pxThread should override this method // and signal any necessary thread exit variables prior to blocking. // // Returns the return code of the thread. // This method is roughly the equivalent of pthread_join(). // // Exceptions raised by the blocking thread will be re-thrown into the main thread. // void Threading::pxThread::Block() { AffinityAssert_DisallowFromSelf(pxDiagSpot); WaitOnSelf( m_mtx_InThread ); } bool Threading::pxThread::Block( const wxTimeSpan& timeout ) { AffinityAssert_DisallowFromSelf(pxDiagSpot); return WaitOnSelf( m_mtx_InThread, timeout ); } bool Threading::pxThread::IsSelf() const { // Detached threads may have their pthread handles recycled as newer threads, causing // false IsSelf reports. return !m_detached && (pthread_self() == m_thread); } bool Threading::pxThread::IsRunning() const { return !!m_running; } void Threading::pxThread::AddListener( EventListener_Thread& evt ) { evt.SetThread( this ); m_evtsrc_OnDelete.Add( evt ); } // Throws an exception if the thread encountered one. Uses the BaseException's Rethrow() method, // which ensures the exception type remains consistent. Debuggable stacktraces will be lost, since // the thread will have allowed itself to terminate properly. void Threading::pxThread::RethrowException() const { // Thread safety note: always detach the m_except pointer. If we checked it for NULL, the // pointer might still be invalid after detachment, so might as well just detach and check // after. ScopedExcept ptr( const_cast(this)->m_except.DetachPtr() ); if (ptr) ptr->Rethrow(); } static bool m_BlockDeletions = false; bool Threading::AllowDeletions() { AffinityAssert_AllowFrom_MainUI(); return !m_BlockDeletions; } void Threading::YieldToMain() { m_BlockDeletions = true; wxTheApp->Yield( true ); m_BlockDeletions = false; } void Threading::pxThread::_selfRunningTest( const wxChar* name ) const { if( HasPendingException() ) { pxThreadLog.Error( GetName(), pxsFmt(L"An exception was thrown while waiting on a %s.", name) ); RethrowException(); } if( !m_running ) { throw Exception::CancelEvent( pxsFmt( L"Blocking thread %s was terminated while another thread was waiting on a %s.", GetName().c_str(), name ) ); } // Thread is still alive and kicking (for now) -- yield to other messages and hope // that impending chaos does not ensue. [it shouldn't since we block pxThread // objects from being deleted until outside the scope of a mutex/semaphore wait). if( (wxTheApp != NULL) && wxThread::IsMain() && !_WaitGui_RecursionGuard( L"WaitForSelf" ) ) Threading::YieldToMain(); } // This helper function is a deadlock-safe method of waiting on a semaphore in a pxThread. If the // thread is terminated or canceled by another thread or a nested action prior to the semaphore being // posted, this function will detect that and throw a CancelEvent exception is thrown. // // Note: Use of this function only applies to semaphores which are posted by the worker thread. Calling // this function from the context of the thread itself is an error, and a dev assertion will be generated. // // Exceptions: // This function will rethrow exceptions raised by the persistent thread, if it throws an error // while the calling thread is blocking (which also means the persistent thread has terminated). // void Threading::pxThread::WaitOnSelf( Semaphore& sem ) const { if( !AffinityAssert_DisallowFromSelf(pxDiagSpot) ) return; while( true ) { if( sem.WaitWithoutYield( wxTimeSpan(0, 0, 0, 333) ) ) return; _selfRunningTest( L"semaphore" ); } } // This helper function is a deadlock-safe method of waiting on a mutex in a pxThread. // If the thread is terminated or canceled by another thread or a nested action prior to the // mutex being unlocked, this function will detect that and a CancelEvent exception is thrown. // // Note: Use of this function only applies to mutexes which are acquired by a worker thread. // Calling this function from the context of the thread itself is an error, and a dev assertion // will be generated. // // Exceptions: // This function will rethrow exceptions raised by the persistent thread, if it throws an // error while the calling thread is blocking (which also means the persistent thread has // terminated). // void Threading::pxThread::WaitOnSelf( Mutex& mutex ) const { if( !AffinityAssert_DisallowFromSelf(pxDiagSpot) ) return; while( true ) { if( mutex.WaitWithoutYield( wxTimeSpan(0, 0, 0, 333) ) ) return; _selfRunningTest( L"mutex" ); } } static const wxTimeSpan SelfWaitInterval( 0,0,0,333 ); bool Threading::pxThread::WaitOnSelf( Semaphore& sem, const wxTimeSpan& timeout ) const { if( !AffinityAssert_DisallowFromSelf(pxDiagSpot) ) return true; wxTimeSpan runningout( timeout ); while( runningout.GetMilliseconds() > 0 ) { const wxTimeSpan interval( (SelfWaitInterval < runningout) ? SelfWaitInterval : runningout ); if( sem.WaitWithoutYield( interval ) ) return true; _selfRunningTest( L"semaphore" ); runningout -= interval; } return false; } bool Threading::pxThread::WaitOnSelf( Mutex& mutex, const wxTimeSpan& timeout ) const { if( !AffinityAssert_DisallowFromSelf(pxDiagSpot) ) return true; wxTimeSpan runningout( timeout ); while( runningout.GetMilliseconds() > 0 ) { const wxTimeSpan interval( (SelfWaitInterval < runningout) ? SelfWaitInterval : runningout ); if( mutex.WaitWithoutYield( interval ) ) return true; _selfRunningTest( L"mutex" ); runningout -= interval; } return false; } // Inserts a thread cancellation point. If the thread has received a cancel request, this // function will throw an SEH exception designed to exit the thread (so make sure to use C++ // object encapsulation for anything that could leak resources, to ensure object unwinding // and cleanup, or use the DoThreadCleanup() override to perform resource cleanup). void Threading::pxThread::TestCancel() const { AffinityAssert_AllowFromSelf(pxDiagSpot); pthread_testcancel(); } // Executes the virtual member method void Threading::pxThread::_try_virtual_invoke( void (pxThread::*method)() ) { try { (this->*method)(); } // ---------------------------------------------------------------------------- // Neat repackaging for STL Runtime errors... // catch( std::runtime_error& ex ) { m_except = new Exception::RuntimeError( ex, GetName().c_str() ); } // ---------------------------------------------------------------------------- catch( Exception::RuntimeError& ex ) { BaseException* woot = ex.Clone(); woot->DiagMsg() += pxsFmt( L"(thread:%s)", GetName().c_str() ); m_except = woot; } #ifndef PCSX2_DEVBUILD // ---------------------------------------------------------------------------- // Bleh... don't bother with std::exception. runtime_error should catch anything // useful coming out of the core STL libraries anyway, and these are best handled by // the MSVC debugger (or by silent random annoying fail on debug-less linux). /*catch( std::logic_error& ex ) { throw BaseException( pxsFmt( L"STL Logic Error (thread:%s): %s", GetName().c_str(), fromUTF8( ex.what() ).c_str() ) ); } catch( std::exception& ex ) { throw BaseException( pxsFmt( L"STL exception (thread:%s): %s", GetName().c_str(), fromUTF8( ex.what() ).c_str() ) ); }*/ // ---------------------------------------------------------------------------- // BaseException -- same deal as LogicErrors. // catch( BaseException& ex ) { BaseException* woot = ex.Clone(); woot->DiagMsg() += pxsFmt( L"(thread:%s)", GetName().c_str() ); m_except = woot; } #endif } // invoked internally when canceling or exiting the thread. Extending classes should implement // OnCleanupInThread() to extend cleanup functionality. void Threading::pxThread::_ThreadCleanup() { AffinityAssert_AllowFromSelf(pxDiagSpot); _try_virtual_invoke( &pxThread::OnCleanupInThread ); m_mtx_InThread.Release(); // Must set m_running LAST, as thread destructors depend on this value (it is used // to avoid destruction of the thread until all internal data use has stopped. m_running = false; } wxString Threading::pxThread::GetName() const { ScopedLock lock(m_mtx_ThreadName); return m_name; } void Threading::pxThread::SetName( const wxString& newname ) { ScopedLock lock(m_mtx_ThreadName); m_name = newname; } // This override is called by PeristentThread when the thread is first created, prior to // calling ExecuteTaskInThread, and after the initial InThread lock has been claimed. // This code is also executed within a "safe" environment, where the creating thread is // blocked against m_sem_event. Make sure to do any necessary variable setup here, without // worry that the calling thread might attempt to test the status of those variables // before initialization has completed. // void Threading::pxThread::OnStartInThread() { m_detached = false; m_running = true; _platform_specific_OnStartInThread(); } void Threading::pxThread::_internal_execute() { m_mtx_InThread.Acquire(); _DoSetThreadName( GetName() ); make_curthread_key(this); if( curthread_key ) pthread_setspecific( curthread_key, this ); OnStartInThread(); m_sem_startup.Post(); _try_virtual_invoke( &pxThread::ExecuteTaskInThread ); } // Called by Start, prior to actual starting of the thread, and after any previous // running thread has been canceled or detached. void Threading::pxThread::OnStart() { m_native_handle = 0; m_native_id = 0; FrankenMutex( m_mtx_InThread ); m_sem_event.Reset(); m_sem_startup.Reset(); } // Extending classes that override this method should always call it last from their // personal implementations. void Threading::pxThread::OnCleanupInThread() { if( curthread_key ) pthread_setspecific( curthread_key, NULL ); unmake_curthread_key(); _platform_specific_OnCleanupInThread(); m_native_handle = 0; m_native_id = 0; m_evtsrc_OnDelete.Dispatch( 0 ); } // passed into pthread_create, and is used to dispatch the thread's object oriented // callback function void* Threading::pxThread::_internal_callback( void* itsme ) { if( !pxAssertDev( itsme != NULL, wxNullChar ) ) return NULL; pxThread& owner = *((pxThread*)itsme); pthread_cleanup_push( _pt_callback_cleanup, itsme ); owner._internal_execute(); pthread_cleanup_pop( true ); return NULL; } void Threading::pxThread::_DoSetThreadName( const wxString& name ) { _DoSetThreadName( name.ToUTF8() ); } // -------------------------------------------------------------------------------------- // BaseTaskThread Implementations // -------------------------------------------------------------------------------------- // Tells the thread to exit and then waits for thread termination. void Threading::BaseTaskThread::Block() { if( !IsRunning() ) return; m_Done = true; m_sem_event.Post(); pxThread::Block(); } // Initiates the new task. This should be called after your own StartTask has // initialized internal variables / preparations for task execution. void Threading::BaseTaskThread::PostTask() { pxAssert( !m_detached ); ScopedLock locker( m_lock_TaskComplete ); m_TaskPending = true; m_post_TaskComplete.Reset(); m_sem_event.Post(); } // Blocks current thread execution pending the completion of the parallel task. void Threading::BaseTaskThread::WaitForResult() { if( m_detached || !m_running ) return; if( m_TaskPending ) #if wxUSE_GUI m_post_TaskComplete.Wait(); #else m_post_TaskComplete.WaitWithoutYield(); #endif m_post_TaskComplete.Reset(); } void Threading::BaseTaskThread::ExecuteTaskInThread() { while( !m_Done ) { // Wait for a job -- or get a pthread_cancel. I'm easy. m_sem_event.WaitWithoutYield(); Task(); m_lock_TaskComplete.Acquire(); m_TaskPending = false; m_post_TaskComplete.Post(); m_lock_TaskComplete.Release(); }; return; } // -------------------------------------------------------------------------------------- // pthread Cond is an evil api that is not suited for Pcsx2 needs. // Let's not use it. (Air) // -------------------------------------------------------------------------------------- #if 0 Threading::WaitEvent::WaitEvent() { int err = 0; err = pthread_cond_init(&cond, NULL); err = pthread_mutex_init(&mutex, NULL); } Threading::WaitEvent::~WaitEvent() throw() { pthread_cond_destroy( &cond ); pthread_mutex_destroy( &mutex ); } void Threading::WaitEvent::Set() { pthread_mutex_lock( &mutex ); pthread_cond_signal( &cond ); pthread_mutex_unlock( &mutex ); } void Threading::WaitEvent::Wait() { pthread_mutex_lock( &mutex ); pthread_cond_wait( &cond, &mutex ); pthread_mutex_unlock( &mutex ); } #endif // -------------------------------------------------------------------------------------- // InterlockedExchanges / AtomicExchanges (PCSX2's Helper versions) // -------------------------------------------------------------------------------------- // define some overloads for InterlockedExchanges for commonly used types, like u32 and s32. // Note: For all of these atomic operations below to be atomic, the variables need to be 4-byte // aligned. Read: http://msdn.microsoft.com/en-us/library/ms684122%28v=vs.85%29.aspx __fi u32 Threading::AtomicRead(volatile u32& Target) { return Target; // Properly-aligned 32-bit reads are atomic } __fi s32 Threading::AtomicRead(volatile s32& Target) { return Target; // Properly-aligned 32-bit reads are atomic } __fi bool Threading::AtomicBitTestAndReset( volatile u32& bitset, u8 bit ) { return _interlockedbittestandreset( (volatile long*)& bitset, bit ) != 0; } __fi bool Threading::AtomicBitTestAndReset( volatile s32& bitset, u8 bit ) { return _interlockedbittestandreset( (volatile long*)& bitset, bit ) != 0; } __fi u32 Threading::AtomicExchange(volatile u32& Target, u32 value ) { return _InterlockedExchange( (volatile long*)&Target, value ); } __fi s32 Threading::AtomicExchange( volatile s32& Target, s32 value ) { return _InterlockedExchange( (volatile long*)&Target, value ); } __fi u32 Threading::AtomicExchangeAdd( volatile u32& Target, u32 value ) { return _InterlockedExchangeAdd( (volatile long*)&Target, value ); } __fi s32 Threading::AtomicExchangeAdd( volatile s32& Target, s32 value ) { return _InterlockedExchangeAdd( (volatile long*)&Target, value ); } __fi s32 Threading::AtomicExchangeSub( volatile s32& Target, s32 value ) { return _InterlockedExchangeAdd( (volatile long*)&Target, -value ); } __fi u32 Threading::AtomicIncrement( volatile u32& Target ) { return _InterlockedExchangeAdd( (volatile long*)&Target, 1 ); } __fi s32 Threading::AtomicIncrement( volatile s32& Target) { return _InterlockedExchangeAdd( (volatile long*)&Target, 1 ); } __fi u32 Threading::AtomicDecrement( volatile u32& Target ) { return _InterlockedExchangeAdd( (volatile long*)&Target, -1 ); } __fi s32 Threading::AtomicDecrement(volatile s32& Target) { return _InterlockedExchangeAdd((volatile long*)&Target, -1); } __fi void* Threading::_AtomicExchangePointer(volatile uptr& target, uptr value) { #ifdef _M_AMD64 // high-level atomic ops, please leave these 64 bit checks in place. return (void*)_InterlockedExchange64(&(volatile s64&)target, value); #else return (void*)_InterlockedExchange((volatile long*)&target, value); #endif } __fi void* Threading::_AtomicCompareExchangePointer(volatile uptr& target, uptr value, uptr comparand) { #ifdef _M_AMD64 // high-level atomic ops, please leave these 64 bit checks in place. return (void*)_InterlockedCompareExchange64(&(volatile s64&)target, value); #else return (void*)_InterlockedCompareExchange(&(volatile long&)target, value, comparand); #endif } // -------------------------------------------------------------------------------------- // BaseThreadError // -------------------------------------------------------------------------------------- wxString Exception::BaseThreadError::FormatDiagnosticMessage() const { return pxsFmt( m_message_diag, (m_thread==NULL) ? L"Null Thread Object" : m_thread->GetName().c_str()); } wxString Exception::BaseThreadError::FormatDisplayMessage() const { return pxsFmt( m_message_user, (m_thread==NULL) ? L"Null Thread Object" : m_thread->GetName().c_str()); } pxThread& Exception::BaseThreadError::Thread() { pxAssertDev( m_thread != NULL, "NULL thread object on ThreadError exception." ); return *m_thread; } const pxThread& Exception::BaseThreadError::Thread() const { pxAssertDev( m_thread != NULL, "NULL thread object on ThreadError exception." ); return *m_thread; }