/* PCSX2 - PS2 Emulator for PCs * Copyright (C) 2002-2010 PCSX2 Dev Team * * PCSX2 is free software: you can redistribute it and/or modify it under the terms * of the GNU Lesser General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with PCSX2. * If not, see . */ /* * ix86 core v0.9.1 * * Original Authors (v0.6.2 and prior): * linuzappz * alexey silinov * goldfinger * zerofrog(@gmail.com) * * Authors of v0.9.1: * Jake.Stine(@gmail.com) * cottonvibes(@gmail.com) * sudonim(1@gmail.com) */ #include "common/emitter/internal.h" namespace x86Emitter { void xImpl_JmpCall::operator()(const xAddressReg& absreg) const { // Jumps are always wide and don't need the rex.W xOpWrite(0, 0xff, isJmp ? 4 : 2, absreg.GetNonWide()); } void xImpl_JmpCall::operator()(const xIndirectNative& src) const { // Jumps are always wide and don't need the rex.W EmitRex(0, xIndirect32(src.Base, src.Index, 1, 0)); xWrite8(0xff); EmitSibMagic(isJmp ? 4 : 2, src); } const xImpl_JmpCall xJMP = {true}; const xImpl_JmpCall xCALL = {false}; template void prepareRegsForFastcall(const Reg1& a1, const Reg2& a2) { if (a1.IsEmpty()) return; // Make sure we don't mess up if someone tries to fastcall with a1 in arg2reg and a2 in arg1reg if (a2.Id != arg1reg.Id) { xMOV(Reg1(arg1reg), a1); if (!a2.IsEmpty()) { xMOV(Reg2(arg2reg), a2); } } else if (a1.Id != arg2reg.Id) { xMOV(Reg2(arg2reg), a2); xMOV(Reg1(arg1reg), a1); } else { xPUSH(a1); xMOV(Reg2(arg2reg), a2); xPOP(Reg1(arg1reg)); } } void xImpl_FastCall::operator()(const void* f, const xRegister32& a1, const xRegister32& a2) const { prepareRegsForFastcall(a1, a2); uptr disp = ((uptr)xGetPtr() + 5) - (uptr)f; if ((sptr)disp == (s32)disp) { xCALL(f); } else { xLEA(rax, ptr64[f]); xCALL(rax); } } void xImpl_FastCall::operator()(const void* f, const xRegisterLong& a1, const xRegisterLong& a2) const { prepareRegsForFastcall(a1, a2); uptr disp = ((uptr)xGetPtr() + 5) - (uptr)f; if ((sptr)disp == (s32)disp) { xCALL(f); } else { xLEA(rax, ptr64[f]); xCALL(rax); } } void xImpl_FastCall::operator()(const void* f, u32 a1, const xRegisterLong& a2) const { if (!a2.IsEmpty()) { xMOV(arg2reg, a2); } xMOV(arg1reg, a1); (*this)(f, arg1reg, arg2reg); } void xImpl_FastCall::operator()(const void* f, void* a1) const { xLEA(arg1reg, ptr[a1]); (*this)(f, arg1reg, arg2reg); } void xImpl_FastCall::operator()(const void* f, u32 a1, const xRegister32& a2) const { if (!a2.IsEmpty()) { xMOV(arg2regd, a2); } xMOV(arg1regd, a1); (*this)(f, arg1regd, arg2regd); } void xImpl_FastCall::operator()(const void* f, const xIndirect32& a1) const { xMOV(arg1regd, a1); (*this)(f, arg1regd); } void xImpl_FastCall::operator()(const void* f, u32 a1, u32 a2) const { xMOV(arg1regd, a1); xMOV(arg2regd, a2); (*this)(f, arg1regd, arg2regd); } void xImpl_FastCall::operator()(const xIndirectNative& f, const xRegisterLong& a1, const xRegisterLong& a2) const { prepareRegsForFastcall(a1, a2); xCALL(f); } const xImpl_FastCall xFastCall = {}; // ------------------------------------------------------------------------ // Emits a 32 bit jump, and returns a pointer to the 32 bit displacement. // (displacements should be assigned relative to the end of the jump instruction, // or in other words *(retval+1) ) __emitinline s32* xJcc32(JccComparisonType comparison, s32 displacement) { if (comparison == Jcc_Unconditional) xWrite8(0xe9); else { xWrite8(0x0f); xWrite8(0x80 | comparison); } xWrite(displacement); return ((s32*)xGetPtr()) - 1; } // ------------------------------------------------------------------------ // Emits a 32 bit jump, and returns a pointer to the 8 bit displacement. // (displacements should be assigned relative to the end of the jump instruction, // or in other words *(retval+1) ) __emitinline s8* xJcc8(JccComparisonType comparison, s8 displacement) { xWrite8((comparison == Jcc_Unconditional) ? 0xeb : (0x70 | comparison)); xWrite(displacement); return (s8*)xGetPtr() - 1; } // ------------------------------------------------------------------------ // Writes a jump at the current x86Ptr, which targets a pre-established target address. // (usually a backwards jump) // // slideForward - used internally by xSmartJump to indicate that the jump target is going // to slide forward in the event of an 8 bit displacement. // __emitinline void xJccKnownTarget(JccComparisonType comparison, const void* target, bool slideForward) { // Calculate the potential j8 displacement first, assuming an instruction length of 2: sptr displacement8 = (sptr)target - (sptr)(xGetPtr() + 2); const int slideVal = slideForward ? ((comparison == Jcc_Unconditional) ? 3 : 4) : 0; displacement8 -= slideVal; if (slideForward) { pxAssertDev(displacement8 >= 0, "Used slideForward on a backward jump; nothing to slide!"); } if (is_s8(displacement8)) xJcc8(comparison, displacement8); else { // Perform a 32 bit jump instead. :( s32* bah = xJcc32(comparison); sptr distance = (sptr)target - (sptr)xGetPtr(); // This assert won't physically happen on x86 targets pxAssertDev(distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target is too far away, needs an indirect register"); *bah = (s32)distance; } } // Low-level jump instruction! Specify a comparison type and a target in void* form, and // a jump (either 8 or 32 bit) is generated. __emitinline void xJcc(JccComparisonType comparison, const void* target) { xJccKnownTarget(comparison, target, false); } xForwardJumpBase::xForwardJumpBase(uint opsize, JccComparisonType cctype) { pxAssert(opsize == 1 || opsize == 4); pxAssertDev(cctype != Jcc_Unknown, "Invalid ForwardJump conditional type."); BasePtr = (s8*)xGetPtr() + ((opsize == 1) ? 2 : // j8's are always 2 bytes. ((cctype == Jcc_Unconditional) ? 5 : 6)); // j32's are either 5 or 6 bytes if (opsize == 1) xWrite8((cctype == Jcc_Unconditional) ? 0xeb : (0x70 | cctype)); else { if (cctype == Jcc_Unconditional) xWrite8(0xe9); else { xWrite8(0x0f); xWrite8(0x80 | cctype); } } xAdvancePtr(opsize); } void xForwardJumpBase::_setTarget(uint opsize) const { pxAssertDev(BasePtr != NULL, ""); sptr displacement = (sptr)xGetPtr() - (sptr)BasePtr; if (opsize == 1) { pxAssertDev(is_s8(displacement), "Emitter Error: Invalid short jump displacement."); BasePtr[-1] = (s8)displacement; } else { // full displacement, no sanity checks needed :D ((s32*)BasePtr)[-1] = displacement; } } // returns the inverted conditional type for this Jcc condition. Ie, JNS will become JS. __fi JccComparisonType xInvertCond(JccComparisonType src) { pxAssert(src != Jcc_Unknown); if (Jcc_Unconditional == src) return Jcc_Unconditional; // x86 conditionals are clever! To invert conditional types, just invert the lower bit: return (JccComparisonType)((int)src ^ 1); } } // namespace x86Emitter