//#version 420 // Keep it for text editor detection // note lerp => mix #define FMT_32 0 #define FMT_24 1 #define FMT_16 2 #define FMT_8H 3 #define FMT_4HL 4 #define FMT_4HH 5 #define FMT_8 6 #ifndef VS_BPPZ #define VS_BPPZ 0 #define VS_TME 1 #define VS_FST 1 #endif #ifndef GS_IIP #define GS_IIP 0 #define GS_PRIM 3 #endif #ifndef PS_FST #define PS_FST 0 #define PS_WMS 0 #define PS_WMT 0 #define PS_FMT FMT_8 #define PS_AEM 0 #define PS_TFX 0 #define PS_TCC 1 #define PS_ATST 1 #define PS_FOG 0 #define PS_CLR1 0 #define PS_FBA 0 #define PS_AOUT 0 #define PS_LTF 1 #define PS_COLCLIP 0 #define PS_DATE 0 #endif #ifdef VERTEX_SHADER layout(location = 0) in vec2 i_t; layout(location = 1) in vec4 i_c; layout(location = 2) in float i_q; layout(location = 3) in uvec2 i_p; layout(location = 4) in uint i_z; layout(location = 5) in vec4 i_f; layout(location = 0) out VSout { vec4 o_p; vec4 o_t; vec4 o_tp; vec4 o_c; }; out gl_PerVertex { vec4 gl_Position; float gl_PointSize; float gl_ClipDistance[]; }; layout(std140, binding = 4) uniform cb0 { vec4 VertexScale; vec4 VertexOffset; vec2 TextureScale; }; void vs_main() { uint z; if(VS_BPPZ == 1) // 24 { z = i_z & 0xffffff; } else if(VS_BPPZ == 2) // 16 { z = i_z & 0xffff; } // pos -= 0.05 (1/320 pixel) helps avoiding rounding problems (integral part of pos is usually 5 digits, 0.05 is about as low as we can go) // example: ceil(afterseveralvertextransformations(y = 133)) => 134 => line 133 stays empty // input granularity is 1/16 pixel, anything smaller than that won't step drawing up/left by one pixel // example: 133.0625 (133 + 1/16) should start from line 134, ceil(133.0625 - 0.05) still above 133 vec4 p = vec4(i_p, z, 0) - vec4(0.05f, 0.05f, 0, 0); o_p = p * VertexScale - VertexOffset; #if VS_RTCOPY o_tp = (p * VertexScale - VertexOffset) * vec4(0.5, -0.5, 0, 0) + 0.5; #endif gl_Position = p; // NOTE I don't know if it is possible to merge POSITION_OUT and gl_Position if(VS_TME != 0) { if(VS_FST != 0) { o_t.xy = i_t * TextureScale; o_t.w = 1.0f; } else { o_t.xy = i_t; o_t.w = i_q; } } else { o_t.xy = vec2(0.0f, 0.0f); o_t.w = 1.0f; } o_c = i_c; o_t.z = i_f.a; } #endif #ifdef GEOMETRY_SHADER in gl_PerVertex { vec4 gl_Position; float gl_PointSize; float gl_ClipDistance[]; } gl_in[]; out gl_PerVertex { vec4 gl_Position; float gl_PointSize; float gl_ClipDistance[]; }; layout(location = 0) in GSin { vec4 p; vec4 t; vec4 tp; vec4 c; } GSin[]; layout(location = 0) out GSout { vec4 p; vec4 t; vec4 tp; vec4 c; } GSout; #if GS_PRIM == 0 layout(points) in; layout(points, max_vertices = 1) out; void gs_main() { for(int i = 0; i < gl_in.length(); i++) { gl_Position = gl_in[i].gl_Position; // FIXME is it useful GSout = GSin[i]; EmitVertex(); } EndPrimitive(); } #elif GS_PRIM == 1 layout(lines) in; layout(line_strip, max_vertices = 2) out; void gs_main() { for(int i = 0; i < gl_in.length(); i++) { gl_Position = gl_in[i].gl_Position; // FIXME is it useful GSout = GSin[i]; #if GS_IIP == 0 if (i == 0) GSout.c = GSin[1].c; #endif EmitVertex(); } EndPrimitive(); } #elif GS_PRIM == 2 layout(triangles) in; layout(triangle_strip, max_vertices = 3) out; void gs_main() { for(int i = 0; i < gl_in.length(); i++) { gl_Position = gl_in[i].gl_Position; // FIXME is it useful GSout = GSin[i]; #if GS_IIP == 0 if (i == 0 || i == 1) GSout.c = GSin[2].c; #endif EmitVertex(); } EndPrimitive(); } #elif GS_PRIM == 3 layout(lines) in; layout(triangle_strip, max_vertices = 4) out; void set_output(uint i) { GSout.p = GSin[i].p; GSout.t = GSin[i].t; GSout.tp = GSin[i].tp; GSout.c = GSin[i].c; } void gs_main() { // left top => GSin[0]; // right bottom => GSin[1]; // left top set_output(0); GSout.p.z = GSin[1].p.z; GSout.t.zw = GSin[1].t.zw; gl_Position = GSout.p; // FIXME is it useful #if GS_IIP == 0 GSout.c = GSin[1].c; #endif EmitVertex(); // left bottom set_output(1); gl_Position = gl_in[1].gl_Position; // FIXME is it useful gl_Position.x = GSin[0].p.x; GSout.p.x = GSin[0].p.x; GSout.t.x = GSin[0].t.x; EmitVertex(); // rigth top set_output(1); gl_Position = gl_in[1].gl_Position; // FIXME is it useful gl_Position.y = GSin[0].p.y; GSout.p.y = GSin[0].p.y; GSout.t.y = GSin[0].t.y; EmitVertex(); // rigth bottom set_output(1); gl_Position = GSin[1].p; // FIXME is it useful EmitVertex(); } #endif #endif #ifdef FRAGMENT_SHADER layout(location = 0) in PSin { vec4 p; vec4 t; vec4 tp; vec4 c; } PSin; // Same buffer but 2 colors for dual source blending layout(location = 0, index = 0) out vec4 SV_Target0; layout(location = 0, index = 1) out vec4 SV_Target1; layout(binding = 0) uniform sampler2D TextureSampler; layout(binding = 1) uniform sampler2D PaletteSampler; layout(binding = 2) uniform sampler2D RTCopySampler; layout(std140, binding = 5) uniform cb1 { vec3 FogColor; float AREF; vec4 HalfTexel; vec4 WH; vec4 MinMax; vec2 MinF; vec2 TA; uvec4 MskFix; }; vec4 sample_c(vec2 uv) { return texture(TextureSampler, uv); } vec4 sample_p(float u) { //FIXME do we need a 1D sampler. Big impact on opengl to find 1 dim // So for the moment cheat with 0.0f dunno if it work return texture(PaletteSampler, vec2(u, 0.0f)); } vec4 sample_rt(vec2 uv) { return texture(RTCopySampler, uv); } vec4 wrapuv(vec4 uv) { vec4 uv_out = uv; if(PS_WMS == PS_WMT) { if(PS_WMS == 2) { uv_out = clamp(uv, MinMax.xyxy, MinMax.zwzw); } else if(PS_WMS == 3) { uv_out = vec4(((ivec4(uv * WH.xyxy) & MskFix.xyxy) | MskFix.zwzw) / WH.xyxy); } } else { if(PS_WMS == 2) { uv_out.xz = clamp(uv.xz, MinMax.xx, MinMax.zz); } else if(PS_WMS == 3) { uv_out.xz = vec2(((ivec2(uv.xz * WH.xx) & MskFix.xx) | MskFix.zz) / WH.xx); } if(PS_WMT == 2) { uv_out.yw = clamp(uv.yw, MinMax.yy, MinMax.ww); } else if(PS_WMT == 3) { uv_out.yw = vec2(((ivec2(uv.yw * WH.yy) & MskFix.yy) | MskFix.ww) / WH.yy); } } return uv_out; } vec2 clampuv(vec2 uv) { vec2 uv_out = uv; if(PS_WMS == 2 && PS_WMT == 2) { uv_out = clamp(uv, MinF, MinMax.zw); } else if(PS_WMS == 2) { uv_out.x = clamp(uv.x, MinF.x, MinMax.z); } else if(PS_WMT == 2) { uv_out.y = clamp(uv.y, MinF.y, MinMax.w); } return uv_out; } mat4 sample_4c(vec4 uv) { mat4 c; c[0] = sample_c(uv.xy); c[1] = sample_c(uv.zy); c[2] = sample_c(uv.xw); c[3] = sample_c(uv.zw); return c; } vec4 sample_4a(vec4 uv) { vec4 c; c.x = sample_c(uv.xy).a; c.y = sample_c(uv.zy).a; c.z = sample_c(uv.xw).a; c.w = sample_c(uv.zw).a; return c; } mat4 sample_4p(vec4 u) { mat4 c; c[0] = sample_p(u.x); c[1] = sample_p(u.y); c[2] = sample_p(u.z); c[3] = sample_p(u.w); return c; } vec4 sample_color(vec2 st, float q) { if(!PS_FST) { st /= q; } vec4 t; if(PS_FMT <= FMT_16 && PS_WMS < 3 && PS_WMT < 3) { t = sample_c(clampuv(st)); } else { vec4 uv; vec2 dd; if(PS_LTF != 0) { uv = st.xyxy + HalfTexel; dd = fract(uv.xy * WH.zw); } else { uv = st.xyxy; } uv = wrapuv(uv); mat4 c; if(PS_FMT == FMT_8H) { c = sample_4p(sample_4a(uv)); } else if(PS_FMT == FMT_4HL) { // FIXME mod and fmod are different when value are negative c = sample_4p(mod(sample_4a(uv), 1.0f / 16)); } else if(PS_FMT == FMT_4HH) { // FIXME mod and fmod are different when value are negative c = sample_4p(mod(sample_4a(uv) * 16, 1.0f / 16)); } else if(PS_FMT == FMT_8) { c = sample_4p(sample_4a(uv)); } else { c = sample_4c(uv); } if(PS_LTF != 0) { t = mix(mix(c[0], c[1], dd.x), mix(c[2], c[3], dd.x), dd.y); } else { t = c[0]; } } if(PS_FMT == FMT_32) { ; } else if(PS_FMT == FMT_24) { // FIXME GLSL any only support bvec so try to mix it with notEqual bvec3 rgb_check = notEqual( t.rgb, vec3(0.0f, 0.0f, 0.0f) ); t.a = ( (PS_AEM == 0) || any(rgb_check) ) ? TA.x : 0.0f; } else if(PS_FMT == FMT_16) { // a bit incompatible with up-scaling because the 1 bit alpha is interpolated // FIXME GLSL any only support bvec so try to mix it with notEqual bvec3 rgb_check = notEqual( t.rgb, vec3(0.0f, 0.0f, 0.0f) ); t.a = t.a >= 0.5 ? TA.y : ( (PS_AEM == 0) || any(rgb_check) ) ? TA.x : 0.0f; } return t; } vec4 tfx(vec4 t, vec4 c) { vec4 c_out = c; if(PS_TFX == 0) { if(PS_TCC != 0) { c_out = c * t * 255.0f / 128; } else { c_out.rgb = c.rgb * t.rgb * 255.0f / 128; } } else if(PS_TFX == 1) { if(PS_TCC != 0) { c_out = t; } else { c_out.rgb = t.rgb; } } else if(PS_TFX == 2) { c_out.rgb = c.rgb * t.rgb * 255.0f / 128 + c.a; if(PS_TCC != 0) { c_out.a += t.a; } } else if(PS_TFX == 3) { c_out.rgb = c.rgb * t.rgb * 255.0f / 128 + c.a; if(PS_TCC != 0) { c_out.a = t.a; } } return clamp(c_out, vec4(0.0f, 0.0f, 0.0f, 0.0f), vec4(1.0f, 1.0f, 1.0f, 1.0f)); } void datst() { #if PS_DATE > 0 float alpha = sample_rt(PSin.tp.xy).a; float alpha0x80 = 128. / 255; if (PS_DATE == 1 && alpha >= alpha0x80) discard; else if (PS_DATE == 2 && alpha < alpha0x80) discard; #endif } void atst(vec4 c) { float a = trunc(c.a * 255); if(PS_ATST == 0) // never { discard; } else if(PS_ATST == 1) // always { // nothing to do } else if(PS_ATST == 2 || PS_ATST == 3) // l, le { if ((AREF - a) < 0.0f) discard; } else if(PS_ATST == 4) // e { if ((0.5f - abs(a - AREF)) < 0.0f) discard; } else if(PS_ATST == 5 || PS_ATST == 6) // ge, g { if ((a-AREF) < 0.0f) discard; } else if(PS_ATST == 7) // ne { if ((abs(a - AREF) - 0.5f) < 0.0f) discard; } } vec4 fog(vec4 c, float f) { vec4 c_out = c; if(PS_FOG != 0) { c_out.rgb = mix(FogColor, c.rgb, f); } return c_out; } vec4 ps_color() { datst(); vec4 t = sample_color(PSin.t.xy, PSin.t.w); vec4 c = tfx(t, PSin.c); atst(c); c = fog(c, PSin.t.z); if (PS_COLCLIP == 2) { c.rgb = 256.0f/255.0f - c.rgb; } if (PS_COLCLIP > 0) { // FIXME !!!! //c.rgb *= c.rgb < 128./255; } if(PS_CLR1 != 0) // needed for Cd * (As/Ad/F + 1) blending modes { // FIXME: I'm not sure about the value of others field //c.rgb = 1.0f; c.rgb = vec3(1.0f, 1.0f, 1.0f); } return c; } void ps_main() { vec4 c = ps_color(); // FIXME: I'm not sure about the value of others field // output.c1 = c.a * 2; // used for alpha blending SV_Target1 = vec4(c.a*2, c.a*2, c.a*2, c.a * 2); if(PS_AOUT != 0) // 16 bit output { float a = 128.0f / 255; // alpha output will be 0x80 c.a = (PS_FBA != 0) ? a : step(0.5, c.a) * a; } else if(PS_FBA != 0) { if(c.a < 0.5) c.a += 0.5; } SV_Target0 = c; } #endif