/* * Copyright (C) 2007-2009 Gabest * http://www.gabest.org * * This Program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This Program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA. * http://www.gnu.org/copyleft/gpl.html * */ #include "stdafx.h" #include "GSRendererDX11.h" GSRendererDX11::GSRendererDX11() : GSRendererHW(new GSTextureCache11(this)) { m_sw_blending = theApp.GetConfigI("accurate_blending_unit_d3d11"); ResetStates(); } bool GSRendererDX11::CreateDevice(GSDevice* dev) { return GSRenderer::CreateDevice(dev); } void GSRendererDX11::SetupIA(const float& sx, const float& sy) { GSDevice11* dev = (GSDevice11*)m_dev; D3D11_PRIMITIVE_TOPOLOGY t; const bool unscale_pt_ln = m_userHacks_enabled_unscale_ptln && (GetUpscaleMultiplier() != 1); switch (m_vt.m_primclass) { case GS_POINT_CLASS: if (unscale_pt_ln) { m_gs_sel.point = 1; gs_cb.PointSize = GSVector2(16.0f * sx, 16.0f * sy); } t = D3D11_PRIMITIVE_TOPOLOGY_POINTLIST; break; case GS_LINE_CLASS: if (unscale_pt_ln) { m_gs_sel.line = 1; gs_cb.PointSize = GSVector2(16.0f * sx, 16.0f * sy); } t = D3D11_PRIMITIVE_TOPOLOGY_LINELIST; break; case GS_SPRITE_CLASS: // Lines: GPU conversion. // Triangles: CPU conversion. if (!m_vt.m_accurate_stq && m_vertex.next > 32) // <=> 16 sprites (based on Shadow Hearts) { t = D3D11_PRIMITIVE_TOPOLOGY_LINELIST; } else { m_gs_sel.cpu_sprite = 1; Lines2Sprites(); t = D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST; } break; case GS_TRIANGLE_CLASS: t = D3D11_PRIMITIVE_TOPOLOGY_TRIANGLELIST; break; default: __assume(0); } void* ptr = NULL; if (dev->IAMapVertexBuffer(&ptr, sizeof(GSVertex), m_vertex.next)) { GSVector4i::storent(ptr, m_vertex.buff, sizeof(GSVertex) * m_vertex.next); if (m_userhacks_wildhack && !m_isPackedUV_HackFlag) { GSVertex* RESTRICT d = (GSVertex*)ptr; for (unsigned int i = 0; i < m_vertex.next; i++) { if (PRIM->TME && PRIM->FST) d[i].UV &= 0x3FEF3FEF; } } dev->IAUnmapVertexBuffer(); } dev->IASetIndexBuffer(m_index.buff, m_index.tail); dev->IASetPrimitiveTopology(t); } void GSRendererDX11::EmulateAtst(const int pass, const GSTextureCache::Source* tex) { static const uint32 inverted_atst[] = {ATST_ALWAYS, ATST_NEVER, ATST_GEQUAL, ATST_GREATER, ATST_NOTEQUAL, ATST_LESS, ATST_LEQUAL, ATST_EQUAL}; int atst = (pass == 2) ? inverted_atst[m_context->TEST.ATST] : m_context->TEST.ATST; if (!m_context->TEST.ATE) return; switch (atst) { case ATST_LESS: ps_cb.FogColor_AREF.a = (float)m_context->TEST.AREF - 0.1f; m_ps_sel.atst = 1; break; case ATST_LEQUAL: ps_cb.FogColor_AREF.a = (float)m_context->TEST.AREF - 0.1f + 1.0f; m_ps_sel.atst = 1; break; case ATST_GEQUAL: // Maybe a -1 trick multiplication factor could be used to merge with ATST_LEQUAL case ps_cb.FogColor_AREF.a = (float)m_context->TEST.AREF - 0.1f; m_ps_sel.atst = 2; break; case ATST_GREATER: // Maybe a -1 trick multiplication factor could be used to merge with ATST_LESS case ps_cb.FogColor_AREF.a = (float)m_context->TEST.AREF - 0.1f + 1.0f; m_ps_sel.atst = 2; break; case ATST_EQUAL: ps_cb.FogColor_AREF.a = (float)m_context->TEST.AREF; m_ps_sel.atst = 3; break; case ATST_NOTEQUAL: ps_cb.FogColor_AREF.a = (float)m_context->TEST.AREF; m_ps_sel.atst = 4; break; case ATST_NEVER: // Draw won't be done so no need to implement it in shader case ATST_ALWAYS: default: m_ps_sel.atst = 0; break; } } void GSRendererDX11::EmulateZbuffer() { if (m_context->TEST.ZTE) { m_om_dssel.ztst = m_context->TEST.ZTST; m_om_dssel.zwe = !m_context->ZBUF.ZMSK; } else { m_om_dssel.ztst = ZTST_ALWAYS; } // On the real GS we appear to do clamping on the max z value the format allows. // Clamping is done after rasterization. const uint32 max_z = 0xFFFFFFFF >> (GSLocalMemory::m_psm[m_context->ZBUF.PSM].fmt * 8); const bool clamp_z = (uint32)(GSVector4i(m_vt.m_max.p).z) > max_z; vs_cb.MaxDepth = GSVector2i(0xFFFFFFFF); ps_cb.Af_MaxDepth.y = 1.0f; m_ps_sel.zclamp = 0; if (clamp_z) { if (m_vt.m_primclass == GS_SPRITE_CLASS || m_vt.m_primclass == GS_POINT_CLASS) { vs_cb.MaxDepth = GSVector2i(max_z); } else { ps_cb.Af_MaxDepth.y = max_z * ldexpf(1, -32); m_ps_sel.zclamp = 1; } } GSVertex* v = &m_vertex.buff[0]; // Minor optimization of a corner case (it allow to better emulate some alpha test effects) if (m_om_dssel.ztst == ZTST_GEQUAL && m_vt.m_eq.z && v[0].XYZ.Z == max_z) { #ifdef _DEBUG fprintf(stdout, "%d: Optimize Z test GEQUAL to ALWAYS (%s)\n", s_n, psm_str(m_context->ZBUF.PSM)); #endif m_om_dssel.ztst = ZTST_ALWAYS; } } void GSRendererDX11::EmulateTextureShuffleAndFbmask() { // FBmask blend level selection. // We do this becaue: // 1. D3D sucks. // 2. FB copy is slow, especially on triangle primitives which is unplayable with some games. // 3. SW blending isn't implemented yet. bool enable_fbmask_emulation = false; switch (m_sw_blending) { case ACC_BLEND_HIGH_D3D11: // Fully enable Fbmask emulation like on opengl, note misses sw blending to work as opengl on some games (Genji). // Debug enable_fbmask_emulation = true; break; case ACC_BLEND_MEDIUM_D3D11: // Enable Fbmask emulation excluding triangle class because it is quite slow. // Exclude 0x80000000 because Genji needs sw blending, otherwise it breaks some effects. enable_fbmask_emulation = ((m_vt.m_primclass != GS_TRIANGLE_CLASS) && (m_context->FRAME.FBMSK != 0x80000000)); break; case ACC_BLEND_BASIC_D3D11: // Enable Fbmask emulation excluding triangle class because it is quite slow. // Exclude 0x80000000 because Genji needs sw blending, otherwise it breaks some effects. // Also exclude fbmask emulation on texture shuffle just in case, it is probably safe tho. enable_fbmask_emulation = (!m_texture_shuffle && (m_vt.m_primclass != GS_TRIANGLE_CLASS) && (m_context->FRAME.FBMSK != 0x80000000)); break; case ACC_BLEND_NONE_D3D11: default: break; } // Uncomment to disable texture shuffle emulation. // m_texture_shuffle = false; if (m_texture_shuffle) { m_ps_sel.shuffle = 1; m_ps_sel.dfmt = 0; bool write_ba; bool read_ba; ConvertSpriteTextureShuffle(write_ba, read_ba); m_ps_sel.read_ba = read_ba; // Please bang my head against the wall! // 1/ Reduce the frame mask to a 16 bit format const uint32& m = m_context->FRAME.FBMSK; uint32 fbmask = ((m >> 3) & 0x1F) | ((m >> 6) & 0x3E0) | ((m >> 9) & 0x7C00) | ((m >> 16) & 0x8000); // FIXME GSVector will be nice here uint8 rg_mask = fbmask & 0xFF; uint8 ba_mask = (fbmask >> 8) & 0xFF; m_om_bsel.wrgba = 0; // 2 Select the new mask (Please someone put SSE here) if (rg_mask != 0xFF) { if (write_ba) { // fprintf(stderr, "%d: Color shuffle %s => B\n", s_n, read_ba ? "B" : "R"); m_om_bsel.wb = 1; } else { // fprintf(stderr, "%d: Color shuffle %s => R\n", s_n, read_ba ? "B" : "R"); m_om_bsel.wr = 1; } if (rg_mask) m_ps_sel.fbmask = 1; } if (ba_mask != 0xFF) { if (write_ba) { // fprintf(stderr, "%d: Color shuffle %s => A\n", s_n, read_ba ? "A" : "G"); m_om_bsel.wa = 1; } else { // fprintf(stderr, "%d: Color shuffle %s => G\n", s_n, read_ba ? "A" : "G"); m_om_bsel.wg = 1; } if (ba_mask) m_ps_sel.fbmask = 1; } if (m_ps_sel.fbmask && enable_fbmask_emulation) { // fprintf(stderr, "%d: FBMASK Unsafe SW emulated fb_mask:%x on tex shuffle\n", s_n, fbmask); ps_cb.FbMask.r = rg_mask; ps_cb.FbMask.g = rg_mask; ps_cb.FbMask.b = ba_mask; ps_cb.FbMask.a = ba_mask; m_bind_rtsample = true; } else { m_ps_sel.fbmask = 0; } } else { m_ps_sel.dfmt = GSLocalMemory::m_psm[m_context->FRAME.PSM].fmt; GSVector4i fbmask_v = GSVector4i::load((int)m_context->FRAME.FBMSK); int ff_fbmask = fbmask_v.eq8(GSVector4i::xffffffff()).mask(); int zero_fbmask = fbmask_v.eq8(GSVector4i::zero()).mask(); m_om_bsel.wrgba = ~ff_fbmask; // Enable channel if at least 1 bit is 0 m_ps_sel.fbmask = enable_fbmask_emulation && (~ff_fbmask & ~zero_fbmask & 0xF); if (m_ps_sel.fbmask) { ps_cb.FbMask = fbmask_v.u8to32(); // Only alpha is special here, I think we can take a very unsafe shortcut // Alpha isn't blended on the GS but directly copyied into the RT. // // Behavior is clearly undefined however there is a high probability that // it will work. Masked bit will be constant and normally the same everywhere // RT/FS output/Cached value. /*fprintf(stderr, "%d: FBMASK Unsafe SW emulated fb_mask:%x on %d bits format\n", s_n, m_context->FRAME.FBMSK, (GSLocalMemory::m_psm[m_context->FRAME.PSM].fmt == 2) ? 16 : 32);*/ m_bind_rtsample = true; } } } void GSRendererDX11::EmulateChannelShuffle(GSTexture** rt, const GSTextureCache::Source* tex) { GSDevice11* dev = (GSDevice11*)m_dev; // Uncomment to disable HLE emulation (allow to trace the draw call) // m_channel_shuffle = false; // First let's check we really have a channel shuffle effect if (m_channel_shuffle) { if (m_game.title == CRC::GT4 || m_game.title == CRC::GT3 || m_game.title == CRC::GTConcept || m_game.title == CRC::TouristTrophy) { // fprintf(stderr, "%d: Gran Turismo RGB Channel\n", s_n); m_ps_sel.channel = ChannelFetch_RGB; m_context->TEX0.TFX = TFX_DECAL; *rt = tex->m_from_target; } else if (m_game.title == CRC::Tekken5) { if (m_context->FRAME.FBW == 1) { // Used in stages: Secret Garden, Acid Rain, Moonlit Wilderness // fprintf(stderr, "%d: Tekken5 RGB Channel\n", s_n); m_ps_sel.channel = ChannelFetch_RGB; m_context->FRAME.FBMSK = 0xFF000000; // 12 pages: 2 calls by channel, 3 channels, 1 blit // Minus current draw call m_skip = 12 * (3 + 3 + 1) - 1; *rt = tex->m_from_target; } else { // Could skip model drawing if wrongly detected m_channel_shuffle = false; } } else if ((tex->m_texture->GetType() == GSTexture::DepthStencil) && !(tex->m_32_bits_fmt)) { // So far 2 games hit this code path. Urban Chaos and Tales of Abyss // UC: will copy depth to green channel // ToA: will copy depth to alpha channel if ((m_context->FRAME.FBMSK & 0xFF0000) == 0xFF0000) { // Green channel is masked // fprintf(stderr, "%d: Tales Of Abyss Crazyness (MSB 16b depth to Alpha)\n", s_n); m_ps_sel.tales_of_abyss_hle = 1; } else { // fprintf(stderr, "%d: Urban Chaos Crazyness (Green extraction)\n", s_n); m_ps_sel.urban_chaos_hle = 1; } } else if (m_index.tail <= 64 && m_context->CLAMP.WMT == 3) { // Blood will tell. I think it is channel effect too but again // implemented in a different way. I don't want to add more CRC stuff. So // let's disable channel when the signature is different. // // Note: Tales Of Abyss and Tekken5 could hit this path too. Those games are // handled above. // fprintf(stderr, "%d: Maybe not a channel!\n", s_n); m_channel_shuffle = false; } else if (m_context->CLAMP.WMS == 3 && ((m_context->CLAMP.MAXU & 0x8) == 8)) { // Read either blue or Alpha. Let's go for Blue ;) // MGS3/Kill Zone // fprintf(stderr, "%d: Blue channel\n", s_n); m_ps_sel.channel = ChannelFetch_BLUE; } else if (m_context->CLAMP.WMS == 3 && ((m_context->CLAMP.MINU & 0x8) == 0)) { // Read either Red or Green. Let's check the V coordinate. 0-1 is likely top so // red. 2-3 is likely bottom so green (actually depends on texture base pointer offset) bool green = PRIM->FST && (m_vertex.buff[0].V & 32); if (green && (m_context->FRAME.FBMSK & 0x00FFFFFF) == 0x00FFFFFF) { // Typically used in Terminator 3 int blue_mask = m_context->FRAME.FBMSK >> 24; int green_mask = ~blue_mask & 0xFF; int blue_shift = -1; // Note: potentially we could also check the value of the clut switch (m_context->FRAME.FBMSK >> 24) { case 0xFF: ASSERT(0); break; case 0xFE: blue_shift = 1; break; case 0xFC: blue_shift = 2; break; case 0xF8: blue_shift = 3; break; case 0xF0: blue_shift = 4; break; case 0xE0: blue_shift = 5; break; case 0xC0: blue_shift = 6; break; case 0x80: blue_shift = 7; break; default: ASSERT(0); break; } int green_shift = 8 - blue_shift; ps_cb.ChannelShuffle = GSVector4i(blue_mask, blue_shift, green_mask, green_shift); if (blue_shift >= 0) { // fprintf(stderr, "%d: Green/Blue channel (%d, %d)\n", s_n, blue_shift, green_shift); m_ps_sel.channel = ChannelFetch_GXBY; m_context->FRAME.FBMSK = 0x00FFFFFF; } else { // fprintf(stderr, "%d: Green channel (wrong mask) (fbmask %x)\n", s_n, m_context->FRAME.FBMSK >> 24); m_ps_sel.channel = ChannelFetch_GREEN; } } else if (green) { // fprintf(stderr, "%d: Green channel\n", s_n); m_ps_sel.channel = ChannelFetch_GREEN; } else { // Pop // fprintf(stderr, "%d: Red channel\n", s_n); m_ps_sel.channel = ChannelFetch_RED; } } else { // fprintf(stderr, "%d: Channel not supported\n", s_n); m_channel_shuffle = false; } } // Effect is really a channel shuffle effect so let's cheat a little if (m_channel_shuffle) { dev->PSSetShaderResource(4, tex->m_from_target); // Replace current draw with a fullscreen sprite // // Performance GPU note: it could be wise to reduce the size to // the rendered size of the framebuffer GSVertex* s = &m_vertex.buff[0]; s[0].XYZ.X = (uint16)(m_context->XYOFFSET.OFX + 0); s[1].XYZ.X = (uint16)(m_context->XYOFFSET.OFX + 16384); s[0].XYZ.Y = (uint16)(m_context->XYOFFSET.OFY + 0); s[1].XYZ.Y = (uint16)(m_context->XYOFFSET.OFY + 16384); m_vertex.head = m_vertex.tail = m_vertex.next = 2; m_index.tail = 2; } else { #ifdef _DEBUG dev->PSSetShaderResource(4, NULL); #endif } } void GSRendererDX11::EmulateBlending() { // Partial port of OGL SW blending. Currently only works for accumulation and non recursive blend. const GIFRegALPHA& ALPHA = m_context->ALPHA; bool sw_blending = false; // No blending so early exit if (!(PRIM->ABE || (PRIM->AA1 && m_vt.m_primclass == GS_LINE_CLASS))) return; m_om_bsel.abe = 1; if (m_env.PABE.PABE) { if (ALPHA.A == 0 && ALPHA.B == 1 && ALPHA.C == 0 && ALPHA.D == 1) { // this works because with PABE alpha blending is on when alpha >= 0x80, but since the pixel shader // cannot output anything over 0x80 (== 1.0) blending with 0x80 or turning it off gives the same result m_om_bsel.abe = 0; } // Breath of Fire Dragon Quarter, Strawberry Shortcake, Super Robot Wars. } m_om_bsel.blend_index = uint8(((ALPHA.A * 3 + ALPHA.B) * 3 + ALPHA.C) * 3 + ALPHA.D); const int blend_flag = m_dev->GetBlendFlags(m_om_bsel.blend_index); // Do the multiplication in shader for blending accumulation: Cs*As + Cd or Cs*Af + Cd const bool accumulation_blend = !!(blend_flag & BLEND_ACCU); // Blending doesn't require sampling of the rt const bool blend_non_recursive = !!(blend_flag & BLEND_NO_REC); switch (m_sw_blending) { case ACC_BLEND_HIGH_D3D11: case ACC_BLEND_MEDIUM_D3D11: case ACC_BLEND_BASIC_D3D11: sw_blending |= accumulation_blend || blend_non_recursive; [[fallthrough]]; default: break; } // Color clip if (m_env.COLCLAMP.CLAMP == 0) { // fprintf(stderr, "%d: COLCLIP Info (Blending: %d/%d/%d/%d)\n", s_n, ALPHA.A, ALPHA.B, ALPHA.C, ALPHA.D); if (blend_non_recursive) { // The fastest algo that requires a single pass // fprintf(stderr, "%d: COLCLIP Free mode ENABLED\n", s_n); m_ps_sel.colclip = 1; sw_blending = true; } else if (accumulation_blend) { // fprintf(stderr, "%d: COLCLIP Fast HDR mode ENABLED\n", s_n); sw_blending = true; m_ps_sel.hdr = 1; } else { // fprintf(stderr, "%d: COLCLIP HDR mode ENABLED\n", s_n); m_ps_sel.hdr = 1; } } /*fprintf(stderr, "%d: BLEND_INFO: %d/%d/%d/%d. Clamp:%d. Prim:%d number %d (sw %d)\n", s_n, ALPHA.A, ALPHA.B, ALPHA.C, ALPHA.D, m_env.COLCLAMP.CLAMP, m_vt.m_primclass, m_vertex.next, sw_blending);*/ if (sw_blending) { m_ps_sel.blend_a = ALPHA.A; m_ps_sel.blend_b = ALPHA.B; m_ps_sel.blend_c = ALPHA.C; m_ps_sel.blend_d = ALPHA.D; if (accumulation_blend) { m_om_bsel.accu_blend = 1; if (ALPHA.A == 2) { // The blend unit does a reverse subtraction so it means // the shader must output a positive value. // Replace 0 - Cs by Cs - 0 m_ps_sel.blend_a = ALPHA.B; m_ps_sel.blend_b = 2; } // Remove the addition/substraction from the SW blending m_ps_sel.blend_d = 2; } else { // Disable HW blending m_om_bsel.abe = 0; // Only BLEND_NO_REC should hit this code path for now ASSERT(blend_non_recursive); } // Require the fix alpha vlaue if (ALPHA.C == 2) ps_cb.Af_MaxDepth.x = (float)ALPHA.FIX / 128.0f; } else { m_ps_sel.clr1 = !!(blend_flag & BLEND_C_CLR); // FIXME: When doing HW blending with a 24 bit frambuffer and ALPHA.C == 1 (Ad) it should be handled // as if Ad = 1.0f. As with OGL side it is probably best to set m_om_bsel.c = 1 (Af) and use // AFIX = 0x80 (Af = 1.0f). } } void GSRendererDX11::EmulateTextureSampler(const GSTextureCache::Source* tex) { // Warning fetch the texture PSM format rather than the context format. The latter could have been corrected in the texture cache for depth. //const GSLocalMemory::psm_t &psm = GSLocalMemory::m_psm[m_context->TEX0.PSM]; const GSLocalMemory::psm_t &psm = GSLocalMemory::m_psm[tex->m_TEX0.PSM]; const GSLocalMemory::psm_t &cpsm = psm.pal > 0 ? GSLocalMemory::m_psm[m_context->TEX0.CPSM] : psm; const uint8 wms = m_context->CLAMP.WMS; const uint8 wmt = m_context->CLAMP.WMT; bool complex_wms_wmt = !!((wms | wmt) & 2); bool bilinear = m_vt.IsLinear(); bool shader_emulated_sampler = tex->m_palette || cpsm.fmt != 0 || complex_wms_wmt || psm.depth; // 1 and 0 are equivalent m_ps_sel.wms = (wms & 2) ? wms : 0; m_ps_sel.wmt = (wmt & 2) ? wmt : 0; int w = tex->m_texture->GetWidth(); int h = tex->m_texture->GetHeight(); int tw = (int)(1 << m_context->TEX0.TW); int th = (int)(1 << m_context->TEX0.TH); GSVector4 WH(tw, th, w, h); // Depth + bilinear filtering isn't done yet (And I'm not sure we need it anyway but a game will prove me wrong) // So of course, GTA set the linear mode, but sampling is done at texel center so it is equivalent to nearest sampling ASSERT(!(psm.depth && m_vt.IsLinear())); // Performance note: // 1/ Don't set 0 as it is the default value // 2/ Only keep aem when it is useful (avoid useless shader permutation) if (m_ps_sel.shuffle) { // Force a 32 bits access (normally shuffle is done on 16 bits) // m_ps_sel.fmt = 0; // removed as an optimization m_ps_sel.aem = m_env.TEXA.AEM; ASSERT(tex->m_target); // Require a float conversion if the texure is a depth otherwise uses Integral scaling if (psm.depth) { m_ps_sel.depth_fmt = (tex->m_texture->GetType() != GSTexture::DepthStencil) ? 3 : 1; } // Shuffle is a 16 bits format, so aem is always required GSVector4 ta(m_env.TEXA & GSVector4i::x000000ff()); ps_cb.MinF_TA = (GSVector4(ps_cb.MskFix) + 0.5f).xyxy(ta) / WH.xyxy(GSVector4(255, 255)); bilinear &= m_vt.IsLinear(); GSVector4 half_offset = RealignTargetTextureCoordinate(tex); vs_cb.Texture_Scale_Offset.z = half_offset.x; vs_cb.Texture_Scale_Offset.w = half_offset.y; } else if (tex->m_target) { // Use an old target. AEM and index aren't resolved it must be done // on the GPU // Select the 32/24/16 bits color (AEM) m_ps_sel.fmt = cpsm.fmt; m_ps_sel.aem = m_env.TEXA.AEM; // Don't upload AEM if format is 32 bits if (cpsm.fmt) { GSVector4 ta(m_env.TEXA & GSVector4i::x000000ff()); ps_cb.MinF_TA = (GSVector4(ps_cb.MskFix) + 0.5f).xyxy(ta) / WH.xyxy(GSVector4(255, 255)); } // Select the index format if (tex->m_palette) { // FIXME Potentially improve fmt field in GSLocalMemory if (m_context->TEX0.PSM == PSM_PSMT4HL) m_ps_sel.fmt |= 1 << 2; else if (m_context->TEX0.PSM == PSM_PSMT4HH) m_ps_sel.fmt |= 2 << 2; else m_ps_sel.fmt |= 3 << 2; // Alpha channel of the RT is reinterpreted as an index. Star // Ocean 3 uses it to emulate a stencil buffer. It is a very // bad idea to force bilinear filtering on it. bilinear &= m_vt.IsLinear(); } // Depth format if (tex->m_texture->GetType() == GSTexture::DepthStencil) { // Require a float conversion if the texure is a depth format m_ps_sel.depth_fmt = (psm.bpp == 16) ? 2 : 1; // Don't force interpolation on depth format bilinear &= m_vt.IsLinear(); } else if (psm.depth) { // Use Integral scaling m_ps_sel.depth_fmt = 3; // Don't force interpolation on depth format bilinear &= m_vt.IsLinear(); } GSVector4 half_offset = RealignTargetTextureCoordinate(tex); vs_cb.Texture_Scale_Offset.z = half_offset.x; vs_cb.Texture_Scale_Offset.w = half_offset.y; } else if (tex->m_palette) { // Use a standard 8 bits texture. AEM is already done on the CLUT // Therefore you only need to set the index // m_ps_sel.aem = 0; // removed as an optimization // Note 4 bits indexes are converted to 8 bits m_ps_sel.fmt = 3 << 2; } else { // Standard texture. Both index and AEM expansion were already done by the CPU. // m_ps_sel.fmt = 0; // removed as an optimization // m_ps_sel.aem = 0; // removed as an optimization } if (m_context->TEX0.TFX == TFX_MODULATE && m_vt.m_eq.rgba == 0xFFFF && m_vt.m_min.c.eq(GSVector4i(128))) { // Micro optimization that reduces GPU load (removes 5 instructions on the FS program) m_ps_sel.tfx = TFX_DECAL; } else { m_ps_sel.tfx = m_context->TEX0.TFX; } m_ps_sel.tcc = m_context->TEX0.TCC; m_ps_sel.ltf = bilinear && shader_emulated_sampler; m_ps_sel.point_sampler = !bilinear || shader_emulated_sampler; GSVector4 TextureScale = GSVector4(0.0625f) / WH.xyxy(); vs_cb.Texture_Scale_Offset.x = TextureScale.x; vs_cb.Texture_Scale_Offset.y = TextureScale.y; if (PRIM->FST) { //Maybe better? //vs_cb.TextureScale = GSVector4(1.0f / 16) * GSVector4(tex->m_texture->GetScale()).xyxy() / WH.zwzw(); m_ps_sel.fst = 1; } ps_cb.WH = WH; ps_cb.HalfTexel = GSVector4(-0.5f, 0.5f).xxyy() / WH.zwzw(); if (complex_wms_wmt) { ps_cb.MskFix = GSVector4i(m_context->CLAMP.MINU, m_context->CLAMP.MINV, m_context->CLAMP.MAXU, m_context->CLAMP.MAXV); ps_cb.MinMax = GSVector4(ps_cb.MskFix) / WH.xyxy(); } // TC Offset Hack m_ps_sel.tcoffsethack = m_userhacks_tcoffset; ps_cb.TC_OffsetHack = GSVector4(m_userhacks_tcoffset_x, m_userhacks_tcoffset_y).xyxy() / WH.xyxy(); // Must be done after all coordinates math if (m_context->HasFixedTEX0() && !PRIM->FST) { m_ps_sel.invalid_tex0 = 1; // Use invalid size to denormalize ST coordinate ps_cb.WH.x = (float)(1 << m_context->stack.TEX0.TW); ps_cb.WH.y = (float)(1 << m_context->stack.TEX0.TH); // We can't handle m_target with invalid_tex0 atm due to upscaling ASSERT(!tex->m_target); } // Only enable clamping in CLAMP mode. REGION_CLAMP will be done manually in the shader m_ps_ssel.tau = (wms != CLAMP_CLAMP); m_ps_ssel.tav = (wmt != CLAMP_CLAMP); m_ps_ssel.ltf = bilinear && !shader_emulated_sampler; } void GSRendererDX11::ResetStates() { m_bind_rtsample = false; m_vs_sel.key = 0; m_gs_sel.key = 0; m_ps_sel.key = 0; m_ps_ssel.key = 0; m_om_bsel.key = 0; m_om_dssel.key = 0; } void GSRendererDX11::DrawPrims(GSTexture* rt, GSTexture* ds, GSTextureCache::Source* tex) { GSTexture* hdr_rt = NULL; const GSVector2i& rtsize = ds ? ds->GetSize() : rt->GetSize(); const GSVector2& rtscale = ds ? ds->GetScale() : rt->GetScale(); bool DATE = m_context->TEST.DATE && m_context->FRAME.PSM != PSM_PSMCT24; bool DATE_one = false; bool ate_first_pass = m_context->TEST.DoFirstPass(); bool ate_second_pass = m_context->TEST.DoSecondPass(); ResetStates(); vs_cb.Texture_Scale_Offset = GSVector4(0.0f); ASSERT(m_dev != NULL); GSDevice11* dev = (GSDevice11*)m_dev; // HLE implementation of the channel selection effect // // Warning it must be done at the begining because it will change the vertex list EmulateChannelShuffle(&rt, tex); // Upscaling hack to avoid various line/grid issues MergeSprite(tex); EmulateTextureShuffleAndFbmask(); // DATE: selection of the algorithm. if (DATE) { if (m_texture_shuffle) { // DATE case not supported yet so keep using the old method. // Leave the check in to make sure other DATE cases are triggered correctly. // fprintf(stderr, "%d: DATE with texture shuffle\n", s_n); } else if (m_om_bsel.wa && !m_context->TEST.ATE) { // Performance note: check alpha range with GetAlphaMinMax() GetAlphaMinMax(); if (m_context->TEST.DATM && m_vt.m_alpha.max < 128) { // Only first pixel (write 0) will pass (alpha is 1) // fprintf(stderr, "%d: Fast DATE with alpha %d-%d\n", s_n, m_vt.m_alpha.min, m_vt.m_alpha.max); DATE_one = true; } else if (!m_context->TEST.DATM && m_vt.m_alpha.min >= 128) { // Only first pixel (write 1) will pass (alpha is 0) // fprintf(stderr, "%d: Fast DATE with alpha %d-%d\n", s_n, m_vt.m_alpha.min, m_vt.m_alpha.max); DATE_one = true; } else if ((m_vt.m_primclass == GS_SPRITE_CLASS /*&& m_drawlist.size() < 50*/) || (m_index.tail < 100)) { // DATE case not supported yet so keep using the old method. // Leave the check in to make sure other DATE cases are triggered correctly. // fprintf(stderr, "%d: Slow DATE with alpha %d-%d not supported\n", s_n, m_vt.m_alpha.min, m_vt.m_alpha.max); } else { if (m_accurate_date) { // fprintf(stderr, "%d: Fast Accurate DATE with alpha %d-%d\n", s_n, m_vt.m_alpha.min, m_vt.m_alpha.max); DATE_one = true; } else { // fprintf(stderr, "%d: Inaccurate DATE with alpha %d-%d\n", s_n, m_vt.m_alpha.min, m_vt.m_alpha.max); } } } else if (!m_om_bsel.wa && !m_context->TEST.ATE) { // TODO: is it legal ? Likely but it need to be tested carefully. } } // Blend if (!IsOpaque() && rt) { EmulateBlending(); } if (m_ps_sel.hdr) { GSVector4 dRect(ComputeBoundingBox(rtscale, rtsize)); GSVector4 sRect = dRect / GSVector4(rtsize.x, rtsize.y).xyxy(); hdr_rt = dev->CreateRenderTarget(rtsize.x, rtsize.y, DXGI_FORMAT_R32G32B32A32_FLOAT); // Warning: StretchRect must be called before BeginScene otherwise // vertices will be overwritten. Trust me you don't want to do that. dev->StretchRect(rt, sRect, hdr_rt, dRect, ShaderConvert_COPY, false); } if (m_ps_sel.dfmt == 1) { // Disable writing of the alpha channel m_om_bsel.wa = 0; } if (DATE) { GSVector4i dRect = ComputeBoundingBox(rtscale, rtsize); GSVector4 src = GSVector4(dRect) / GSVector4(rtsize.x, rtsize.y).xyxy(); GSVector4 dst = src * 2.0f - 1.0f; GSVertexPT1 vertices[] = { {GSVector4(dst.x, -dst.y, 0.5f, 1.0f), GSVector2(src.x, src.y)}, {GSVector4(dst.z, -dst.y, 0.5f, 1.0f), GSVector2(src.z, src.y)}, {GSVector4(dst.x, -dst.w, 0.5f, 1.0f), GSVector2(src.x, src.w)}, {GSVector4(dst.z, -dst.w, 0.5f, 1.0f), GSVector2(src.z, src.w)}, }; dev->SetupDATE(rt, ds, vertices, m_context->TEST.DATM); } // dev->BeginScene(); // om EmulateZbuffer(); // vs m_vs_sel.tme = PRIM->TME; m_vs_sel.fst = PRIM->FST; // FIXME D3D11 and GL support half pixel center. Code could be easier!!! float sx = 2.0f * rtscale.x / (rtsize.x << 4); float sy = 2.0f * rtscale.y / (rtsize.y << 4); float ox = (float)(int)m_context->XYOFFSET.OFX; float oy = (float)(int)m_context->XYOFFSET.OFY; float ox2 = -1.0f / rtsize.x; float oy2 = -1.0f / rtsize.y; //This hack subtracts around half a pixel from OFX and OFY. // //The resulting shifted output aligns better with common blending / corona / blurring effects, //but introduces a few bad pixels on the edges. if (rt && rt->LikelyOffset && m_userHacks_HPO == 1) { ox2 *= rt->OffsetHack_modx; oy2 *= rt->OffsetHack_mody; } vs_cb.VertexScale = GSVector4(sx, -sy, ldexpf(1, -32), 0.0f); vs_cb.VertexOffset = GSVector4(ox * sx + ox2 + 1, -(oy * sy + oy2 + 1), 0.0f, -1.0f); // END of FIXME // gs m_gs_sel.iip = PRIM->IIP; m_gs_sel.prim = m_vt.m_primclass; // ps if (DATE) { m_om_dssel.date = 1; if (DATE_one) { m_om_dssel.date_one = 1; } } m_ps_sel.fba = m_context->FBA.FBA; m_ps_sel.dither = m_dithering > 0 && m_ps_sel.dfmt == 2 && m_env.DTHE.DTHE; if(m_ps_sel.dither) { m_ps_sel.dither = m_dithering; ps_cb.DitherMatrix[0] = GSVector4(m_env.DIMX.DM00, m_env.DIMX.DM10, m_env.DIMX.DM20, m_env.DIMX.DM30); ps_cb.DitherMatrix[1] = GSVector4(m_env.DIMX.DM01, m_env.DIMX.DM11, m_env.DIMX.DM21, m_env.DIMX.DM31); ps_cb.DitherMatrix[2] = GSVector4(m_env.DIMX.DM02, m_env.DIMX.DM12, m_env.DIMX.DM22, m_env.DIMX.DM32); ps_cb.DitherMatrix[3] = GSVector4(m_env.DIMX.DM03, m_env.DIMX.DM13, m_env.DIMX.DM23, m_env.DIMX.DM33); } if (PRIM->FGE) { m_ps_sel.fog = 1; GSVector4 fc = GSVector4::rgba32(m_env.FOGCOL.u32[0]); #if _M_SSE >= 0x401 // Blend AREF to avoid to load a random value for alpha (dirty cache) ps_cb.FogColor_AREF = fc.blend32<8>(ps_cb.FogColor_AREF); #else ps_cb.FogColor_AREF = fc; #endif } // Warning must be done after EmulateZbuffer // Depth test is always true so it can be executed in 2 passes (no order required) unlike color. // The idea is to compute first the color which is independent of the alpha test. And then do a 2nd // pass to handle the depth based on the alpha test. bool ate_RGBA_then_Z = false; bool ate_RGB_then_ZA = false; if (ate_first_pass & ate_second_pass) { // fprintf(stdout, "%d: Complex Alpha Test\n", s_n); bool commutative_depth = (m_om_dssel.ztst == ZTST_GEQUAL && m_vt.m_eq.z) || (m_om_dssel.ztst == ZTST_ALWAYS); bool commutative_alpha = (m_context->ALPHA.C != 1); // when either Alpha Src or a constant ate_RGBA_then_Z = (m_context->TEST.AFAIL == AFAIL_FB_ONLY) & commutative_depth; ate_RGB_then_ZA = (m_context->TEST.AFAIL == AFAIL_RGB_ONLY) & commutative_depth & commutative_alpha; } if (ate_RGBA_then_Z) { // fprintf(stdout, "%d: Alternate ATE handling: ate_RGBA_then_Z\n", s_n); // Render all color but don't update depth // ATE is disabled here m_om_dssel.zwe = false; } else if (ate_RGB_then_ZA) { // fprintf(stdout, "%d: Alternate ATE handling: ate_RGB_then_ZA\n", s_n); // Render RGB color but don't update depth/alpha // ATE is disabled here m_om_dssel.zwe = false; m_om_bsel.wa = false; } else { EmulateAtst(1, tex); } if (tex) { EmulateTextureSampler(tex); } else { m_ps_sel.tfx = 4; } if (m_bind_rtsample) { // Bind the RT.This way special effect can use it. // Do not always bind the rt when it's not needed, // only bind it when effects use it such as fbmask emulation currently // because we copy the frame buffer and it is quite slow. dev->PSSetShaderResource(3, rt); } if (m_game.title == CRC::ICO) { GSVertex* v = &m_vertex.buff[0]; const GSVideoMode mode = GetVideoMode(); if (tex && m_vt.m_primclass == GS_SPRITE_CLASS && m_vertex.next == 2 && PRIM->ABE && // Blend texture ((v[1].U == 8200 && v[1].V == 7176 && mode == GSVideoMode::NTSC) || // at display resolution 512x448 (v[1].U == 8200 && v[1].V == 8200 && mode == GSVideoMode::PAL)) && // at display resolution 512x512 tex->m_TEX0.PSM == PSM_PSMT8H) // i.e. read the alpha channel of a 32 bits texture { // Note potentially we can limit to TBP0:0x2800 // Depth buffer was moved so GSdx will invalide it which means a // downscale. ICO uses the MSB depth bits as the texture alpha // channel. However this depth of field effect requires // texel:pixel mapping accuracy. // // Use an HLE shader to sample depth directly as the alpha channel // OutputDebugString("ICO HLE"); m_ps_sel.depth_fmt = 1; m_ps_sel.channel = ChannelFetch_BLUE; dev->PSSetShaderResource(4, ds); if (!tex->m_palette) { uint16 pal = GSLocalMemory::m_psm[tex->m_TEX0.PSM].pal; m_tc->AttachPaletteToSource(tex, pal, true); } } } // rs const GSVector4& hacked_scissor = m_channel_shuffle ? GSVector4(0, 0, 1024, 1024) : m_context->scissor.in; GSVector4i scissor = GSVector4i(GSVector4(rtscale).xyxy() * hacked_scissor).rintersect(GSVector4i(rtsize).zwxy()); if (hdr_rt) dev->OMSetRenderTargets(hdr_rt, ds, &scissor); else dev->OMSetRenderTargets(rt, ds, &scissor); dev->PSSetShaderResource(0, tex ? tex->m_texture : NULL); dev->PSSetShaderResource(1, tex ? tex->m_palette : NULL); SetupIA(sx, sy); uint8 afix = m_context->ALPHA.FIX; dev->SetupOM(m_om_dssel, m_om_bsel, afix); dev->SetupVS(m_vs_sel, &vs_cb); dev->SetupGS(m_gs_sel, &gs_cb); dev->SetupPS(m_ps_sel, &ps_cb, m_ps_ssel); // draw if (ate_first_pass) { dev->DrawIndexedPrimitive(); } if (ate_second_pass) { ASSERT(!m_env.PABE.PABE); if (ate_RGBA_then_Z | ate_RGB_then_ZA) { // Enable ATE as first pass to update the depth // of pixels that passed the alpha test EmulateAtst(1, tex); } else { // second pass will process the pixels that failed // the alpha test EmulateAtst(2, tex); } dev->SetupPS(m_ps_sel, &ps_cb, m_ps_ssel); bool z = m_om_dssel.zwe; bool r = m_om_bsel.wr; bool g = m_om_bsel.wg; bool b = m_om_bsel.wb; bool a = m_om_bsel.wa; switch(m_context->TEST.AFAIL) { case AFAIL_KEEP: z = r = g = b = a = false; break; // none case AFAIL_FB_ONLY: z = false; break; // rgba case AFAIL_ZB_ONLY: r = g = b = a = false; break; // z case AFAIL_RGB_ONLY: z = a = false; break; // rgb default: __assume(0); } // Depth test should be disabled when depth writes are masked and similarly, Alpha test must be disabled // when writes to all of the alpha bits in the Framebuffer are masked. if (ate_RGBA_then_Z) { z = !m_context->ZBUF.ZMSK; r = g = b = a = false; } else if (ate_RGB_then_ZA) { z = !m_context->ZBUF.ZMSK; a = (m_context->FRAME.FBMSK & 0xFF000000) != 0xFF000000; r = g = b = false; } if (z || r || g || b || a) { m_om_dssel.zwe = z; m_om_bsel.wr = r; m_om_bsel.wg = g; m_om_bsel.wb = b; m_om_bsel.wa = a; dev->SetupOM(m_om_dssel, m_om_bsel, afix); dev->DrawIndexedPrimitive(); } } dev->EndScene(); // Warning: EndScene must be called before StretchRect otherwise // vertices will be overwritten. Trust me you don't want to do that. if (hdr_rt) { GSVector4 dRect(ComputeBoundingBox(rtscale, rtsize)); GSVector4 sRect = dRect / GSVector4(rtsize.x, rtsize.y).xyxy(); dev->StretchRect(hdr_rt, sRect, rt, dRect, ShaderConvert_MOD_256, false); dev->Recycle(hdr_rt); } }