#ifdef SHADER_MODEL // make safe to include in resource file to enforce dependency #define FMT_32 0 #define FMT_24 1 #define FMT_16 2 #ifndef VS_TME #define VS_TME 1 #define VS_FST 1 #endif #ifndef GS_IIP #define GS_IIP 0 #define GS_PRIM 3 #define GS_POINT 0 #define GS_LINE 0 #endif #ifndef PS_FST #define PS_FST 0 #define PS_WMS 0 #define PS_WMT 0 #define PS_FMT FMT_32 #define PS_AEM 0 #define PS_TFX 0 #define PS_TCC 1 #define PS_ATST 1 #define PS_FOG 0 #define PS_CLR1 0 #define PS_FBA 0 #define PS_FBMASK 0 #define PS_LTF 1 #define PS_TCOFFSETHACK 0 #define PS_POINT_SAMPLER 0 #define PS_SHUFFLE 0 #define PS_READ_BA 0 #define PS_DFMT 0 #define PS_DEPTH_FMT 0 #define PS_PAL_FMT 0 #define PS_CHANNEL_FETCH 0 #define PS_TALES_OF_ABYSS_HLE 0 #define PS_URBAN_CHAOS_HLE 0 #define PS_INVALID_TEX0 0 #define PS_SCALE_FACTOR 1 #define PS_HDR 0 #define PS_COLCLIP 0 #define PS_BLEND_A 0 #define PS_BLEND_B 0 #define PS_BLEND_C 0 #define PS_BLEND_D 0 #define PS_PABE 0 #define PS_DITHER 0 #define PS_ZCLAMP 0 #endif #define SW_BLEND (PS_BLEND_A || PS_BLEND_B || PS_BLEND_D) #define PS_AEM_FMT (PS_FMT & 3) struct VS_INPUT { float2 st : TEXCOORD0; uint4 c : COLOR0; float q : TEXCOORD1; uint2 p : POSITION0; uint z : POSITION1; uint2 uv : TEXCOORD2; float4 f : COLOR1; }; struct VS_OUTPUT { float4 p : SV_Position; float4 t : TEXCOORD0; float4 ti : TEXCOORD2; float4 c : COLOR0; }; struct PS_INPUT { float4 p : SV_Position; float4 t : TEXCOORD0; float4 ti : TEXCOORD2; float4 c : COLOR0; }; struct PS_OUTPUT { float4 c0 : SV_Target0; float4 c1 : SV_Target1; #if PS_ZCLAMP float depth : SV_Depth; #endif }; Texture2D Texture : register(t0); Texture2D Palette : register(t1); Texture2D RtSampler : register(t3); Texture2D RawTexture : register(t4); SamplerState TextureSampler : register(s0); SamplerState PaletteSampler : register(s1); cbuffer cb0 { float4 VertexScale; float4 VertexOffset; float4 Texture_Scale_Offset; uint MaxDepth; uint3 pad_cb0; }; cbuffer cb1 { float3 FogColor; float AREF; float4 HalfTexel; float4 WH; float4 MinMax; float2 MinF; float2 TA; uint4 MskFix; int4 ChannelShuffle; uint4 FbMask; float4 TC_OffsetHack; float Af; float MaxDepthPS; float2 pad_cb1; float4x4 DitherMatrix; }; cbuffer cb2 { float2 PointSize; }; float4 sample_c(float2 uv) { if (PS_POINT_SAMPLER) { // Weird issue with ATI/AMD cards, // it looks like they add 127/128 of a texel to sampling coordinates // occasionally causing point sampling to erroneously round up. // I'm manually adjusting coordinates to the centre of texels here, // though the centre is just paranoia, the top left corner works fine. // As of 2018 this issue is still present. uv = (trunc(uv * WH.zw) + float2(0.5, 0.5)) / WH.zw; } return Texture.Sample(TextureSampler, uv); } float4 sample_p(float u) { return Palette.Sample(PaletteSampler, u); } float4 clamp_wrap_uv(float4 uv) { float4 tex_size; if (PS_INVALID_TEX0 == 1) tex_size = WH.zwzw; else tex_size = WH.xyxy; if(PS_WMS == PS_WMT) { if(PS_WMS == 2) { uv = clamp(uv, MinMax.xyxy, MinMax.zwzw); } else if(PS_WMS == 3) { #if PS_FST == 0 // wrap negative uv coords to avoid an off by one error that shifted // textures. Fixes Xenosaga's hair issue. uv = frac(uv); #endif uv = (float4)(((uint4)(uv * tex_size) & MskFix.xyxy) | MskFix.zwzw) / tex_size; } } else { if(PS_WMS == 2) { uv.xz = clamp(uv.xz, MinMax.xx, MinMax.zz); } else if(PS_WMS == 3) { #if PS_FST == 0 uv.xz = frac(uv.xz); #endif uv.xz = (float2)(((uint2)(uv.xz * tex_size.xx) & MskFix.xx) | MskFix.zz) / tex_size.xx; } if(PS_WMT == 2) { uv.yw = clamp(uv.yw, MinMax.yy, MinMax.ww); } else if(PS_WMT == 3) { #if PS_FST == 0 uv.yw = frac(uv.yw); #endif uv.yw = (float2)(((uint2)(uv.yw * tex_size.yy) & MskFix.yy) | MskFix.ww) / tex_size.yy; } } return uv; } float4x4 sample_4c(float4 uv) { float4x4 c; c[0] = sample_c(uv.xy); c[1] = sample_c(uv.zy); c[2] = sample_c(uv.xw); c[3] = sample_c(uv.zw); return c; } float4 sample_4_index(float4 uv) { float4 c; c.x = sample_c(uv.xy).a; c.y = sample_c(uv.zy).a; c.z = sample_c(uv.xw).a; c.w = sample_c(uv.zw).a; // Denormalize value uint4 i = uint4(c * 255.0f + 0.5f); if (PS_PAL_FMT == 1) { // 4HL c = float4(i & 0xFu) / 255.0f; } else if (PS_PAL_FMT == 2) { // 4HH c = float4(i >> 4u) / 255.0f; } // Most of texture will hit this code so keep normalized float value // 8 bits return c * 255./256 + 0.5/256; } float4x4 sample_4p(float4 u) { float4x4 c; c[0] = sample_p(u.x); c[1] = sample_p(u.y); c[2] = sample_p(u.z); c[3] = sample_p(u.w); return c; } int fetch_raw_depth(int2 xy) { float4 col = RawTexture.Load(int3(xy, 0)); return (int)(col.r * exp2(32.0f)); } float4 fetch_raw_color(int2 xy) { return RawTexture.Load(int3(xy, 0)); } float4 fetch_c(int2 uv) { return Texture.Load(int3(uv, 0)); } ////////////////////////////////////////////////////////////////////// // Depth sampling ////////////////////////////////////////////////////////////////////// int2 clamp_wrap_uv_depth(int2 uv) { int4 mask = (int4)MskFix << 4; if (PS_WMS == PS_WMT) { if (PS_WMS == 2) { uv = clamp(uv, mask.xy, mask.zw); } else if (PS_WMS == 3) { uv = (uv & mask.xy) | mask.zw; } } else { if (PS_WMS == 2) { uv.x = clamp(uv.x, mask.x, mask.z); } else if (PS_WMS == 3) { uv.x = (uv.x & mask.x) | mask.z; } if (PS_WMT == 2) { uv.y = clamp(uv.y, mask.y, mask.w); } else if (PS_WMT == 3) { uv.y = (uv.y & mask.y) | mask.w; } } return uv; } float4 sample_depth(float2 st, float2 pos) { float2 uv_f = (float2)clamp_wrap_uv_depth(int2(st)) * (float2)PS_SCALE_FACTOR * (float2)(1.0f / 16.0f); int2 uv = (int2)uv_f; float4 t = (float4)(0.0f); if (PS_TALES_OF_ABYSS_HLE == 1) { // Warning: UV can't be used in channel effect int depth = fetch_raw_depth(pos); // Convert msb based on the palette t = Palette.Load(int3((depth >> 8) & 0xFF, 0, 0)) * 255.0f; } else if (PS_URBAN_CHAOS_HLE == 1) { // Depth buffer is read as a RGB5A1 texture. The game try to extract the green channel. // So it will do a first channel trick to extract lsb, value is right-shifted. // Then a new channel trick to extract msb which will shifted to the left. // OpenGL uses a FLOAT32 format for the depth so it requires a couple of conversion. // To be faster both steps (msb&lsb) are done in a single pass. // Warning: UV can't be used in channel effect int depth = fetch_raw_depth(pos); // Convert lsb based on the palette t = Palette.Load(int3(depth & 0xFF, 0, 0)) * 255.0f; // Msb is easier float green = (float)((depth >> 8) & 0xFF) * 36.0f; green = min(green, 255.0f); t.g += green; } else if (PS_DEPTH_FMT == 1) { // Based on ps_main11 of convert // Convert a FLOAT32 depth texture into a RGBA color texture const float4 bitSh = float4(exp2(24.0f), exp2(16.0f), exp2(8.0f), exp2(0.0f)); const float4 bitMsk = float4(0.0, 1.0f / 256.0f, 1.0f / 256.0f, 1.0f / 256.0f); float4 res = frac((float4)fetch_c(uv).r * bitSh); t = (res - res.xxyz * bitMsk) * 256.0f; } else if (PS_DEPTH_FMT == 2) { // Based on ps_main12 of convert // Convert a FLOAT32 (only 16 lsb) depth into a RGB5A1 color texture const float4 bitSh = float4(exp2(32.0f), exp2(27.0f), exp2(22.0f), exp2(17.0f)); const uint4 bitMsk = uint4(0x1F, 0x1F, 0x1F, 0x1); uint4 color = (uint4)((float4)fetch_c(uv).r * bitSh) & bitMsk; t = (float4)color * float4(8.0f, 8.0f, 8.0f, 128.0f); } else if (PS_DEPTH_FMT == 3) { // Convert a RGBA/RGB5A1 color texture into a RGBA/RGB5A1 color texture t = fetch_c(uv) * 255.0f; } if (PS_AEM_FMT == FMT_24) { t.a = ((PS_AEM == 0) || any(bool3(t.rgb))) ? 255.0f * TA.x : 0.0f; } else if (PS_AEM_FMT == FMT_16) { t.a = t.a >= 128.0f ? 255.0f * TA.y : ((PS_AEM == 0) || any(bool3(t.rgb))) ? 255.0f * TA.x : 0.0f; } return t; } ////////////////////////////////////////////////////////////////////// // Fetch a Single Channel ////////////////////////////////////////////////////////////////////// float4 fetch_red(int2 xy) { float4 rt; if ((PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2)) { int depth = (fetch_raw_depth(xy)) & 0xFF; rt = (float4)(depth) / 255.0f; } else { rt = fetch_raw_color(xy); } return sample_p(rt.r) * 255.0f; } float4 fetch_blue(int2 xy) { float4 rt; if ((PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2)) { int depth = (fetch_raw_depth(xy) >> 16) & 0xFF; rt = (float4)(depth) / 255.0f; } else { rt = fetch_raw_color(xy); } return sample_p(rt.b) * 255.0f; } float4 fetch_green(int2 xy) { float4 rt = fetch_raw_color(xy); return sample_p(rt.g) * 255.0f; } float4 fetch_alpha(int2 xy) { float4 rt = fetch_raw_color(xy); return sample_p(rt.a) * 255.0f; } float4 fetch_rgb(int2 xy) { float4 rt = fetch_raw_color(xy); float4 c = float4(sample_p(rt.r).r, sample_p(rt.g).g, sample_p(rt.b).b, 1.0); return c * 255.0f; } float4 fetch_gXbY(int2 xy) { if ((PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2)) { int depth = fetch_raw_depth(xy); int bg = (depth >> (8 + ChannelShuffle.w)) & 0xFF; return (float4)(bg); } else { int4 rt = (int4)(fetch_raw_color(xy) * 255.0); int green = (rt.g >> ChannelShuffle.w) & ChannelShuffle.z; int blue = (rt.b << ChannelShuffle.y) & ChannelShuffle.x; return (float4)(green | blue); } } float4 sample_color(float2 st) { #if PS_TCOFFSETHACK st += TC_OffsetHack.xy; #endif float4 t; float4x4 c; float2 dd; if (PS_LTF == 0 && PS_AEM_FMT == FMT_32 && PS_PAL_FMT == 0 && PS_WMS < 2 && PS_WMT < 2) { c[0] = sample_c(st); } else { float4 uv; if(PS_LTF) { uv = st.xyxy + HalfTexel; dd = frac(uv.xy * WH.zw); if(PS_FST == 0) { dd = clamp(dd, (float2)0.0f, (float2)0.9999999f); } } else { uv = st.xyxy; } uv = clamp_wrap_uv(uv); #if PS_PAL_FMT != 0 c = sample_4p(sample_4_index(uv)); #else c = sample_4c(uv); #endif } [unroll] for (uint i = 0; i < 4; i++) { if(PS_AEM_FMT == FMT_24) { c[i].a = !PS_AEM || any(c[i].rgb) ? TA.x : 0; } else if(PS_AEM_FMT == FMT_16) { c[i].a = c[i].a >= 0.5 ? TA.y : !PS_AEM || any(c[i].rgb) ? TA.x : 0; } } if(PS_LTF) { t = lerp(lerp(c[0], c[1], dd.x), lerp(c[2], c[3], dd.x), dd.y); } else { t = c[0]; } return trunc(t * 255.0f + 0.05f); } float4 tfx(float4 T, float4 C) { float4 C_out; float4 FxT = trunc(trunc(C) * T / 128.0f); #if (PS_TFX == 0) C_out = FxT; #elif (PS_TFX == 1) C_out = T; #elif (PS_TFX == 2) C_out.rgb = FxT.rgb + C.a; C_out.a = T.a + C.a; #elif (PS_TFX == 3) C_out.rgb = FxT.rgb + C.a; C_out.a = T.a; #else C_out = C; #endif #if (PS_TCC == 0) C_out.a = C.a; #endif #if (PS_TFX == 0) || (PS_TFX == 2) || (PS_TFX == 3) // Clamp only when it is useful C_out = min(C_out, 255.0f); #endif return C_out; } void atst(float4 C) { float a = C.a; if(PS_ATST == 0) { // nothing to do } else if(PS_ATST == 1) { if (a > AREF) discard; } else if(PS_ATST == 2) { if (a < AREF) discard; } else if(PS_ATST == 3) { if (abs(a - AREF) > 0.5f) discard; } else if(PS_ATST == 4) { if (abs(a - AREF) < 0.5f) discard; } } float4 fog(float4 c, float f) { if(PS_FOG) { c.rgb = trunc(lerp(FogColor, c.rgb, f)); } return c; } float4 ps_color(PS_INPUT input) { #if PS_FST == 0 && PS_INVALID_TEX0 == 1 // Re-normalize coordinate from invalid GS to corrected texture size float2 st = (input.t.xy * WH.xy) / (input.t.w * WH.zw); // no st_int yet #elif PS_FST == 0 float2 st = input.t.xy / input.t.w; float2 st_int = input.ti.zw / input.t.w; #else float2 st = input.ti.xy; float2 st_int = input.ti.zw; #endif #if PS_CHANNEL_FETCH == 1 float4 T = fetch_red(int2(input.p.xy)); #elif PS_CHANNEL_FETCH == 2 float4 T = fetch_green(int2(input.p.xy)); #elif PS_CHANNEL_FETCH == 3 float4 T = fetch_blue(int2(input.p.xy)); #elif PS_CHANNEL_FETCH == 4 float4 T = fetch_alpha(int2(input.p.xy)); #elif PS_CHANNEL_FETCH == 5 float4 T = fetch_rgb(int2(input.p.xy)); #elif PS_CHANNEL_FETCH == 6 float4 T = fetch_gXbY(int2(input.p.xy)); #elif PS_DEPTH_FMT > 0 float4 T = sample_depth(st_int, input.p.xy); #else float4 T = sample_color(st); #endif float4 C = tfx(T, input.c); atst(C); C = fog(C, input.t.z); if(PS_CLR1) // needed for Cd * (As/Ad/F + 1) blending modes { C.rgb = (float3)255.0f; } return C; } void ps_fbmask(inout float4 C, float2 pos_xy) { if (PS_FBMASK) { float4 RT = trunc(RtSampler.Load(int3(pos_xy, 0)) * 255.0f + 0.1f); C = (float4)(((uint4)C & ~FbMask) | ((uint4)RT & FbMask)); } } void ps_dither(inout float3 C, float2 pos_xy) { if (PS_DITHER) { int2 fpos; if (PS_DITHER == 2) fpos = int2(pos_xy); else fpos = int2(pos_xy / (float)PS_SCALE_FACTOR); C += DitherMatrix[fpos.y & 3][fpos.x & 3]; } } void ps_blend(inout float4 Color, float As, float2 pos_xy) { if (SW_BLEND) { float4 RT = trunc(RtSampler.Load(int3(pos_xy, 0)) * 255.0f + 0.1f); float Ad = (PS_DFMT == FMT_24) ? 1.0f : RT.a / 128.0f; float3 Cd = RT.rgb; float3 Cs = Color.rgb; float3 Cv; float3 A = (PS_BLEND_A == 0) ? Cs : ((PS_BLEND_A == 1) ? Cd : (float3)0.0f); float3 B = (PS_BLEND_B == 0) ? Cs : ((PS_BLEND_B == 1) ? Cd : (float3)0.0f); float3 C = (PS_BLEND_C == 0) ? As : ((PS_BLEND_C == 1) ? Ad : Af); float3 D = (PS_BLEND_D == 0) ? Cs : ((PS_BLEND_D == 1) ? Cd : (float3)0.0f); Cv = (PS_BLEND_A == PS_BLEND_B) ? D : trunc(((A - B) * C) + D); // PABE if (PS_PABE) Cv = (Color.a >= 128.0f) ? Cv : Color.rgb; // Dithering ps_dither(Cv, pos_xy); // Standard Clamp if (PS_COLCLIP == 0 && PS_HDR == 0) Cv = clamp(Cv, (float3)0.0f, (float3)255.0f); // In 16 bits format, only 5 bits of color are used. It impacts shadows computation of Castlevania if (PS_DFMT == FMT_16) Cv = (float3)((int3)Cv & (int3)0xF8); else if (PS_COLCLIP == 1 && PS_HDR == 0) Cv = (float3)((int3)Cv & (int3)0xFF); Color.rgb = Cv; } } PS_OUTPUT ps_main(PS_INPUT input) { float4 C = ps_color(input); PS_OUTPUT output; if (PS_SHUFFLE) { uint4 denorm_c = uint4(C); uint2 denorm_TA = uint2(float2(TA.xy) * 255.0f + 0.5f); // Mask will take care of the correct destination if (PS_READ_BA) C.rb = C.bb; else C.rb = C.rr; if (PS_READ_BA) { if (denorm_c.a & 0x80u) C.ga = (float2)(float((denorm_c.a & 0x7Fu) | (denorm_TA.y & 0x80u))); else C.ga = (float2)(float((denorm_c.a & 0x7Fu) | (denorm_TA.x & 0x80u))); } else { if (denorm_c.g & 0x80u) C.ga = (float2)(float((denorm_c.g & 0x7Fu) | (denorm_TA.y & 0x80u))); else C.ga = (float2)(float((denorm_c.g & 0x7Fu) | (denorm_TA.x & 0x80u))); } } // Must be done before alpha correction float alpha_blend = C.a / 128.0f; // Alpha correction if (PS_DFMT == FMT_16) { float A_one = 128.0f; // alpha output will be 0x80 C.a = PS_FBA ? A_one : step(A_one, C.a) * A_one; } else if ((PS_DFMT == FMT_32) && PS_FBA) { float A_one = 128.0f; if (C.a < A_one) C.a += A_one; } if (!SW_BLEND) ps_dither(C.rgb, input.p.xy); ps_blend(C, alpha_blend, input.p.xy); ps_fbmask(C, input.p.xy); // When dithering the bottom 3 bits become meaningless and cause lines in the picture // so we need to limit the color depth on dithered items // SW_BLEND already deals with this so no need to do in those cases if (!SW_BLEND && PS_DITHER && PS_DFMT == FMT_16 && !PS_COLCLIP) { C.rgb = clamp(C.rgb, (float3)0.0f, (float3)255.0f); C.rgb = (uint3)((uint3)C.rgb & (uint3)0xF8); } output.c0 = C / 255.0f; output.c1 = (float4)(alpha_blend); #if PS_ZCLAMP output.depth = min(input.p.z, MaxDepthPS); #endif return output; } ////////////////////////////////////////////////////////////////////// // Vertex Shader ////////////////////////////////////////////////////////////////////// VS_OUTPUT vs_main(VS_INPUT input) { // Clamp to max depth, gs doesn't wrap input.z = min(input.z, MaxDepth); VS_OUTPUT output; // pos -= 0.05 (1/320 pixel) helps avoiding rounding problems (integral part of pos is usually 5 digits, 0.05 is about as low as we can go) // example: ceil(afterseveralvertextransformations(y = 133)) => 134 => line 133 stays empty // input granularity is 1/16 pixel, anything smaller than that won't step drawing up/left by one pixel // example: 133.0625 (133 + 1/16) should start from line 134, ceil(133.0625 - 0.05) still above 133 float4 p = float4(input.p, input.z, 0) - float4(0.05f, 0.05f, 0, 0); output.p = p * VertexScale - VertexOffset; if(VS_TME) { float2 uv = input.uv - Texture_Scale_Offset.zw; float2 st = input.st - Texture_Scale_Offset.zw; // Integer nomalized output.ti.xy = uv * Texture_Scale_Offset.xy; if (VS_FST) { // Integer integral output.ti.zw = uv; } else { // float for post-processing in some games output.ti.zw = st / Texture_Scale_Offset.xy; } // Float coords output.t.xy = st; output.t.w = input.q; } else { output.t.xy = 0; output.t.w = 1.0f; output.ti = 0; } output.c = input.c; output.t.z = input.f.r; return output; } ////////////////////////////////////////////////////////////////////// // Geometry Shader ////////////////////////////////////////////////////////////////////// #if GS_PRIM == 0 && GS_POINT == 0 [maxvertexcount(1)] void gs_main(point VS_OUTPUT input[1], inout PointStream stream) { stream.Append(input[0]); } #elif GS_PRIM == 0 && GS_POINT == 1 [maxvertexcount(6)] void gs_main(point VS_OUTPUT input[1], inout TriangleStream stream) { // Transform a point to a NxN sprite VS_OUTPUT Point = input[0]; // Get new position float4 lt_p = input[0].p; float4 rb_p = input[0].p + float4(PointSize.x, PointSize.y, 0.0f, 0.0f); float4 lb_p = rb_p; float4 rt_p = rb_p; lb_p.x = lt_p.x; rt_p.y = lt_p.y; // Triangle 1 Point.p = lt_p; stream.Append(Point); Point.p = lb_p; stream.Append(Point); Point.p = rt_p; stream.Append(Point); // Triangle 2 Point.p = lb_p; stream.Append(Point); Point.p = rt_p; stream.Append(Point); Point.p = rb_p; stream.Append(Point); } #elif GS_PRIM == 1 && GS_LINE == 0 [maxvertexcount(2)] void gs_main(line VS_OUTPUT input[2], inout LineStream stream) { #if GS_IIP == 0 input[0].c = input[1].c; #endif stream.Append(input[0]); stream.Append(input[1]); } #elif GS_PRIM == 1 && GS_LINE == 1 [maxvertexcount(6)] void gs_main(line VS_OUTPUT input[2], inout TriangleStream stream) { // Transform a line to a thick line-sprite VS_OUTPUT left = input[0]; VS_OUTPUT right = input[1]; float2 lt_p = input[0].p.xy; float2 rt_p = input[1].p.xy; // Potentially there is faster math float2 line_vector = normalize(rt_p.xy - lt_p.xy); float2 line_normal = float2(line_vector.y, -line_vector.x); float2 line_width = (line_normal * PointSize) / 2; lt_p -= line_width; rt_p -= line_width; float2 lb_p = input[0].p.xy + line_width; float2 rb_p = input[1].p.xy + line_width; #if GS_IIP == 0 left.c = right.c; #endif // Triangle 1 left.p.xy = lt_p; stream.Append(left); left.p.xy = lb_p; stream.Append(left); right.p.xy = rt_p; stream.Append(right); stream.RestartStrip(); // Triangle 2 left.p.xy = lb_p; stream.Append(left); right.p.xy = rt_p; stream.Append(right); right.p.xy = rb_p; stream.Append(right); stream.RestartStrip(); } #elif GS_PRIM == 2 [maxvertexcount(3)] void gs_main(triangle VS_OUTPUT input[3], inout TriangleStream stream) { #if GS_IIP == 0 input[0].c = input[2].c; input[1].c = input[2].c; #endif stream.Append(input[0]); stream.Append(input[1]); stream.Append(input[2]); } #elif GS_PRIM == 3 [maxvertexcount(4)] void gs_main(line VS_OUTPUT input[2], inout TriangleStream stream) { VS_OUTPUT lt = input[0]; VS_OUTPUT rb = input[1]; // flat depth lt.p.z = rb.p.z; // flat fog and texture perspective lt.t.zw = rb.t.zw; // flat color lt.c = rb.c; // Swap texture and position coordinate VS_OUTPUT lb = rb; lb.p.x = lt.p.x; lb.t.x = lt.t.x; lb.ti.x = lt.ti.x; lb.ti.z = lt.ti.z; VS_OUTPUT rt = rb; rt.p.y = lt.p.y; rt.t.y = lt.t.y; rt.ti.y = lt.ti.y; rt.ti.w = lt.ti.w; stream.Append(lt); stream.Append(lb); stream.Append(rt); stream.Append(rb); } #endif #endif