/* * Copyright (C) 2007-2009 Gabest * http://www.gabest.org * * This Program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This Program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * http://www.gnu.org/copyleft/gpl.html * */ #include "stdafx.h" #include "GSRendererSW.h" const GSVector4 g_pos_scale(1.0f / 16, 1.0f / 16, 1.0f, 128.0f); GSRendererSW::GSRendererSW(int threads) : GSRenderer(new GSVertexTraceSW(this), sizeof(GSVertexSW)) , m_fzb(NULL) { InitConvertVertex(GSRendererSW); m_nativeres = true; // ignore ini, sw is always native m_tc = new GSTextureCacheSW(this); memset(m_texture, 0, sizeof(m_texture)); m_rl = GSRasterizerList::Create(threads, &m_perfmon); m_output = (uint8*)_aligned_malloc(1024 * 1024 * sizeof(uint32), 32); memset(m_fzb_pages, 0, sizeof(m_fzb_pages)); memset(m_tex_pages, 0, sizeof(m_tex_pages)); } GSRendererSW::~GSRendererSW() { delete m_tc; for(int i = 0; i < countof(m_texture); i++) { delete m_texture[i]; } delete m_rl; _aligned_free(m_output); } void GSRendererSW::Reset() { // TODO: GSreset can come from the main thread too => crash // m_tc->RemoveAll(); m_reset = true; GSRenderer::Reset(); } void GSRendererSW::VSync(int field) { Sync(0); // IncAge might delete a cached texture in use /* int draw[8], sum = 0; for(int i = 0; i < countof(draw); i++) { draw[i] = m_perfmon.CPU(GSPerfMon::WorkerDraw0 + i); sum += draw[i]; } printf("CPU %d Sync %d W %d %d %d %d %d %d %d %d (%d)\n", m_perfmon.CPU(GSPerfMon::Main), m_perfmon.CPU(GSPerfMon::Sync), draw[0], draw[1], draw[2], draw[3], draw[4], draw[5], draw[6], draw[7], sum); // printf("m_sync_count = %d\n", ((GSRasterizerList*)m_rl)->m_sync_count); ((GSRasterizerList*)m_rl)->m_sync_count = 0; printf("m_syncpoint_count = %d\n", ((GSRasterizerList*)m_rl)->m_syncpoint_count); ((GSRasterizerList*)m_rl)->m_syncpoint_count = 0; */ GSRenderer::VSync(field); m_tc->IncAge(); if(m_reset) { m_tc->RemoveAll(); m_reset = false; } // if((m_perfmon.GetFrame() & 255) == 0) m_rl.PrintStats(); } void GSRendererSW::ResetDevice() { for(int i = 0; i < countof(m_texture); i++) { delete m_texture[i]; m_texture[i] = NULL; } } GSTexture* GSRendererSW::GetOutput(int i) { Sync(1); const GSRegDISPFB& DISPFB = m_regs->DISP[i].DISPFB; int w = DISPFB.FBW * 64; int h = GetFrameRect(i).bottom; // TODO: round up bottom if(m_dev->ResizeTexture(&m_texture[i], w, h)) { static int pitch = 1024 * 4; GSVector4i r(0, 0, w, h); const GSLocalMemory::psm_t& psm = GSLocalMemory::m_psm[DISPFB.PSM]; (m_mem.*psm.rtx)(m_mem.GetOffset(DISPFB.Block(), DISPFB.FBW, DISPFB.PSM), r.ralign(psm.bs), m_output, pitch, m_env.TEXA); m_texture[i]->Update(r, m_output, pitch); if(s_dump) { if(s_save && s_n >= s_saven) { m_texture[i]->Save(format("c:\\temp1\\_%05d_f%lld_fr%d_%05x_%d.bmp", s_n, m_perfmon.GetFrame(), i, (int)DISPFB.Block(), (int)DISPFB.PSM)); } s_n++; } } return m_texture[i]; } template void GSRendererSW::ConvertVertex(size_t dst_index, size_t src_index) { GSVertex* s = (GSVertex*)((GSVertexSW*)m_vertex.buff + src_index); GSVertexSW* d = (GSVertexSW*)m_vertex.buff + dst_index; ASSERT(d->_pad.u32[0] != 0x12345678); uint32 z = s->XYZ.Z; GSVector4i xy = GSVector4i::load((int)s->XYZ.u32[0]).upl16() - (GSVector4i)m_context->XYOFFSET; GSVector4i zf = GSVector4i((int)std::min(z, 0xffffff00), s->FOG); // NOTE: larger values of z may roll over to 0 when converting back to uint32 later GSVector4 p, t, c; p = GSVector4(xy).xyxy(GSVector4(zf) + (GSVector4::m_x4f800000 & GSVector4::cast(zf.sra32(31)))) * g_pos_scale; if(tme) { if(fst) { t = GSVector4(GSVector4i::load(s->UV).upl16() << (16 - 4)); } else { t = GSVector4(s->ST.S, s->ST.T) * GSVector4(0x10000 << m_context->TEX0.TW, 0x10000 << m_context->TEX0.TH); t = t.xyxy(GSVector4::load(s->RGBAQ.Q)); } } c = GSVector4::rgba32(s->RGBAQ.u32[0], 7); d->p = p; d->c = c; d->t = t; #ifdef _DEBUG d->_pad.u32[0] = 0x12345678; // means trouble if this has already been set, should only convert each vertex once #endif if(prim == GS_SPRITE) { d->t.u32[3] = z; } } #define LOG 0 FILE* s_fp = LOG ? fopen("c:\\temp1\\_.txt", "w") : NULL; void GSRendererSW::Draw() { SharedData* sd = new SharedData(this); shared_ptr data(sd); sd->primclass = m_vt->m_primclass; sd->buff = (uint8*)_aligned_malloc(sizeof(GSVertexSW) * m_vertex.next + sizeof(uint32) * m_index.tail, 32); sd->vertex = (GSVertexSW*)sd->buff; sd->vertex_count = m_vertex.next; sd->index = (uint32*)(sd->buff + sizeof(GSVertexSW) * m_vertex.next); sd->index_count = m_index.tail; memcpy(sd->vertex, m_vertex.buff, sizeof(GSVertexSW) * m_vertex.next); memcpy(sd->index, m_index.buff, sizeof(uint32) * m_index.tail); for(size_t i = 0; i < m_index.tail; i++) { ASSERT(((GSVertexSW*)m_vertex.buff + m_index.buff[i])->_pad.u32[0] == 0x12345678); } // TODO: delay texture update, do it later along with the syncing on the dispatcher thread, then this thread does not have to wait and can continue assembling more jobs // TODO: if(any texture page is used as a target) GSRasterizerData::syncpoint = true; // TODO: virtual void GSRasterizerData::Update() {texture[all levels]->Update();}, call it from the dispatcher thread before sending to workers // TODO: m_tc->InvalidatePages must be called after texture->Update, move that inside GSRasterizerData::Update too if(!GetScanlineGlobalData(sd)) return; // const GSDrawingContext* context = m_context; GSScanlineGlobalData& gd = sd->global; GSVector4i scissor = GSVector4i(context->scissor.in); GSVector4i bbox = GSVector4i(m_vt->m_min.p.floor().xyxy(m_vt->m_max.p.ceil())); scissor.z = std::min(scissor.z, (int)context->FRAME.FBW * 64); // TODO: find a game that overflows and check which one is the right behaviour sd->scissor = scissor; sd->bbox = bbox; sd->frame = m_perfmon.GetFrame(); // uint32* fb_pages = NULL; uint32* zb_pages = NULL; GSVector4i r = bbox.rintersect(scissor); if(gd.sel.fwrite) { fb_pages = context->offset.fb->GetPages(r); m_tc->InvalidatePages(fb_pages, context->offset.fb->psm); } if(gd.sel.zwrite) { zb_pages = context->offset.zb->GetPages(r); m_tc->InvalidatePages(zb_pages, context->offset.zb->psm); } // set data->syncpoint if(m_fzb != context->offset.fzb) { // hmm, what if "r" gets bigger next time and slips through unchecked, need to trace that too sd->syncpoint = true; // TODO if(!sd->syncpoint) { if(fb_pages == NULL) { fb_pages = context->offset.fb->GetPages(r); } if(CheckTargetPages<0xffffffff>(fb_pages)) { sd->syncpoint = true; if(LOG) fprintf(s_fp, "syncpoint 0\n"); } } if(!sd->syncpoint) { if(zb_pages == NULL) { zb_pages = context->offset.zb->GetPages(r); } if(CheckTargetPages<0xffffffff>(zb_pages)) { sd->syncpoint = true; if(LOG) fprintf(s_fp, "syncpoint 1\n"); } } if(!sd->syncpoint) { if(LOG) fprintf(s_fp, "no syncpoint *\n"); } m_fzb = context->offset.fzb; } else { // chross-check frame and z-buffer pages, they cannot overlap with eachother and with previous batches in queue, // m_fzb filters out most of these cases, only have to be careful when the addresses stay the same and the output // is mutually enabled/disabled and alternating (Bully FBP/ZBP = 0x2300) if(!sd->syncpoint) { if(gd.sel.fwrite) { if(CheckTargetPages<0xffff0000>(fb_pages)) // already used as a z-buffer { sd->syncpoint = true; if(LOG) fprintf(s_fp, "syncpoint 2\n"); } } } if(!sd->syncpoint) { if(gd.sel.zwrite) { if(CheckTargetPages<0x0000ffff>(zb_pages)) // already used as a frame buffer { sd->syncpoint = true; if(LOG) fprintf(s_fp, "syncpoint 3\n"); } } } } // sd->UseTargetPages(fb_pages, zb_pages); // if(s_dump) { Sync(3); uint64 frame = m_perfmon.GetFrame(); string s; if(s_save && s_n >= s_saven && PRIM->TME) { s = format("c:\\temp1\\_%05d_f%lld_tex_%05x_%d.bmp", s_n, frame, (int)m_context->TEX0.TBP0, (int)m_context->TEX0.PSM); m_mem.SaveBMP(s, m_context->TEX0.TBP0, m_context->TEX0.TBW, m_context->TEX0.PSM, 1 << m_context->TEX0.TW, 1 << m_context->TEX0.TH); } s_n++; if(s_save && s_n >= s_saven) { s = format("c:\\temp1\\_%05d_f%lld_rt0_%05x_%d.bmp", s_n, frame, m_context->FRAME.Block(), m_context->FRAME.PSM); m_mem.SaveBMP(s, m_context->FRAME.Block(), m_context->FRAME.FBW, m_context->FRAME.PSM, GetFrameRect().width(), 512); } if(s_savez && s_n >= s_saven) { s = format("c:\\temp1\\_%05d_f%lld_rz0_%05x_%d.bmp", s_n, frame, m_context->ZBUF.Block(), m_context->ZBUF.PSM); m_mem.SaveBMP(s, m_context->ZBUF.Block(), m_context->FRAME.FBW, m_context->ZBUF.PSM, GetFrameRect().width(), 512); } s_n++; m_rl->Queue(data); Sync(4); if(s_save && s_n >= s_saven) { s = format("c:\\temp1\\_%05d_f%lld_rt1_%05x_%d.bmp", s_n, frame, m_context->FRAME.Block(), m_context->FRAME.PSM); m_mem.SaveBMP(s, m_context->FRAME.Block(), m_context->FRAME.FBW, m_context->FRAME.PSM, GetFrameRect().width(), 512); } if(s_savez && s_n >= s_saven) { s = format("c:\\temp1\\_%05d_f%lld_rz1_%05x_%d.bmp", s_n, frame, m_context->ZBUF.Block(), m_context->ZBUF.PSM); m_mem.SaveBMP(s, m_context->ZBUF.Block(), m_context->FRAME.FBW, m_context->ZBUF.PSM, GetFrameRect().width(), 512); } s_n++; } else { if(LOG) fprintf(s_fp, "queue %05x %d %05x %d %05x %d %dx%d | %d %d %d\n", m_context->FRAME.Block(), m_context->FRAME.PSM, m_context->ZBUF.Block(), m_context->ZBUF.PSM, PRIM->TME ? m_context->TEX0.TBP0 : 0xfffff, m_context->TEX0.PSM, (int)m_context->TEX0.TW, (int)m_context->TEX0.TH, PRIM->PRIM, sd->vertex_count, sd->index_count); m_rl->Queue(data); } /* if(0)//stats.ticks > 5000000) { printf("* [%lld | %012llx] ticks %lld prims %d (%d) pixels %d (%d)\n", m_perfmon.GetFrame(), gd->sel.key, stats.ticks, stats.prims, stats.prims > 0 ? (int)(stats.ticks / stats.prims) : -1, stats.pixels, stats.pixels > 0 ? (int)(stats.ticks / stats.pixels) : -1); } */ } void GSRendererSW::Sync(int reason) { //printf("sync %d\n", reason); GSPerfMonAutoTimer pmat(&m_perfmon, GSPerfMon::Sync); uint64 t = __rdtsc(); m_rl->Sync(); s_n++; t = __rdtsc() - t; if(LOG) fprintf(s_fp, "sync n=%d r=%d t=%lld p=%d %c\n", s_n, reason, t, m_rl->GetPixels(), t > 10000000 ? '*' : ' '); m_perfmon.Put(GSPerfMon::Fillrate, m_rl->GetPixels()); } void GSRendererSW::InvalidateVideoMem(const GIFRegBITBLTBUF& BITBLTBUF, const GSVector4i& r) { GSOffset* o = m_mem.GetOffset(BITBLTBUF.DBP, BITBLTBUF.DBW, BITBLTBUF.DPSM); uint32* RESTRICT p = m_tmp_pages; o->GetPages(r, p); // check if the changing pages either used as a texture or a target for(; *p != GSOffset::EOP; p++) { uint32 page = *p; //while(m_fzb_pages[page] | m_tex_pages[page]) _mm_pause(); if(m_fzb_pages[page] | m_tex_pages[page]) { Sync(5); break; } } m_tc->InvalidatePages(m_tmp_pages, o->psm); // if texture update runs on a thread and Sync(5) happens then this must come later } void GSRendererSW::InvalidateLocalMem(const GIFRegBITBLTBUF& BITBLTBUF, const GSVector4i& r, bool clut) { GSOffset* o = m_mem.GetOffset(BITBLTBUF.SBP, BITBLTBUF.SBW, BITBLTBUF.SPSM); uint32* RESTRICT p = m_tmp_pages; o->GetPages(r, p); for(; *p != GSOffset::EOP; p++) { //while(m_fzb_pages[*p]) _mm_pause(); if(m_fzb_pages[*p]) { Sync(6); break; } } } void GSRendererSW::UsePages(const uint32* pages, int type) { if(type < 2) { for(const uint32* p = pages; *p != GSOffset::EOP; p++) { ASSERT(((short*)&m_fzb_pages[*p])[type] < SHRT_MAX); _InterlockedIncrement16((short*)&m_fzb_pages[*p] + type); } } else { for(const uint32* p = pages; *p != GSOffset::EOP; p++) { //while(m_fzb_pages[*p]) _mm_pause(); if(m_fzb_pages[*p]) // currently being drawn to? => sync (could even spin and wait until it hits 0, not sure if it's worth though, or just create 512 condvars? :D) { Sync(7); break; } } for(const uint32* p = pages; *p != GSOffset::EOP; p++) { ASSERT(m_tex_pages[*p] < SHRT_MAX); _InterlockedIncrement16((short*)&m_tex_pages[*p]); // remember which texture pages are used } } } void GSRendererSW::ReleasePages(const uint32* pages, int type) { if(type < 2) { for(const uint32* p = pages; *p != GSOffset::EOP; p++) { ASSERT(((short*)&m_fzb_pages[*p])[type] > 0); _InterlockedDecrement16((short*)&m_fzb_pages[*p] + type); } } else { for(const uint32* p = pages; *p != GSOffset::EOP; p++) { ASSERT(m_tex_pages[*p] > 0); _InterlockedDecrement16((short*)&m_tex_pages[*p]); } } } template bool GSRendererSW::CheckTargetPages(const uint32* pages) { for(const uint32* p = pages; *p != GSOffset::EOP; p++) { if(mask != 0xffffffff ? (m_fzb_pages[*p] & mask) : m_fzb_pages[*p]) { return true; } } return false; } #include "GSTextureSW.h" bool GSRendererSW::GetScanlineGlobalData(SharedData* data) { GSScanlineGlobalData& gd = data->global; const GSDrawingEnvironment& env = m_env; const GSDrawingContext* context = m_context; const GS_PRIM_CLASS primclass = m_vt->m_primclass; gd.vm = m_mem.m_vm8; gd.fbr = context->offset.fb->pixel.row; gd.zbr = context->offset.zb->pixel.row; gd.fbc = context->offset.fb->pixel.col[0]; gd.zbc = context->offset.zb->pixel.col[0]; gd.fzbr = context->offset.fzb->row; gd.fzbc = context->offset.fzb->col; gd.sel.key = 0; gd.sel.fpsm = 3; gd.sel.zpsm = 3; gd.sel.atst = ATST_ALWAYS; gd.sel.tfx = TFX_NONE; gd.sel.ababcd = 255; gd.sel.prim = primclass; uint32 fm = context->FRAME.FBMSK; uint32 zm = context->ZBUF.ZMSK || context->TEST.ZTE == 0 ? 0xffffffff : 0; if(context->TEST.ZTE && context->TEST.ZTST == ZTST_NEVER) { fm = 0xffffffff; zm = 0xffffffff; } if(PRIM->TME) { m_mem.m_clut.Read32(context->TEX0, env.TEXA); } if(context->TEST.ATE) { if(!TryAlphaTest(fm, zm)) { gd.sel.atst = context->TEST.ATST; gd.sel.afail = context->TEST.AFAIL; gd.aref = GSVector4i((int)context->TEST.AREF); switch(gd.sel.atst) { case ATST_LESS: gd.sel.atst = ATST_LEQUAL; gd.aref -= GSVector4i::x00000001(); break; case ATST_GREATER: gd.sel.atst = ATST_GEQUAL; gd.aref += GSVector4i::x00000001(); break; } } } bool fwrite = fm != 0xffffffff; bool ftest = gd.sel.atst != ATST_ALWAYS || context->TEST.DATE && context->FRAME.PSM != PSM_PSMCT24; bool zwrite = zm != 0xffffffff; bool ztest = context->TEST.ZTE && context->TEST.ZTST > ZTST_ALWAYS; /* printf("%05x %d %05x %d %05x %d %dx%d\n", fwrite || ftest ? m_context->FRAME.Block() : 0xfffff, m_context->FRAME.PSM, zwrite || ztest ? m_context->ZBUF.Block() : 0xfffff, m_context->ZBUF.PSM, PRIM->TME ? m_context->TEX0.TBP0 : 0xfffff, m_context->TEX0.PSM, (int)m_context->TEX0.TW, (int)m_context->TEX0.TH); */ if(!fwrite && !zwrite) return false; gd.sel.fwrite = fwrite; gd.sel.ftest = ftest; if(fwrite || ftest) { gd.sel.fpsm = GSLocalMemory::m_psm[context->FRAME.PSM].fmt; if((primclass == GS_LINE_CLASS || primclass == GS_TRIANGLE_CLASS) && m_vt->m_eq.rgba != 0xffff) { gd.sel.iip = PRIM->IIP; } if(PRIM->TME) { gd.sel.tfx = context->TEX0.TFX; gd.sel.tcc = context->TEX0.TCC; gd.sel.fst = PRIM->FST; gd.sel.ltf = m_vt->IsLinear(); if(GSLocalMemory::m_psm[context->TEX0.PSM].pal > 0) { gd.sel.tlu = 1; gd.clut = (uint32*)_aligned_malloc(sizeof(uint32) * 256, 32); // FIXME: might address uninitialized data of the texture (0xCD) that is not in 0-15 range for 4-bpp formats memcpy(gd.clut, (const uint32*)m_mem.m_clut, sizeof(uint32) * GSLocalMemory::m_psm[context->TEX0.PSM].pal); } gd.sel.wms = context->CLAMP.WMS; gd.sel.wmt = context->CLAMP.WMT; if(gd.sel.tfx == TFX_MODULATE && gd.sel.tcc && m_vt->m_eq.rgba == 0xffff && m_vt->m_min.c.eq(GSVector4i(128))) { // modulate does not do anything when vertex color is 0x80 gd.sel.tfx = TFX_DECAL; } GSTextureCacheSW::Texture* t = m_tc->Lookup(context->TEX0, env.TEXA); if(t == NULL) {ASSERT(0); return false;} data->UseSourcePages(t, 0); GSVector4i r; GetTextureMinMax(r, context->TEX0, context->CLAMP, gd.sel.ltf); if(!t->Update(r)) {ASSERT(0); return false;} if(s_dump)// && m_context->TEX1.MXL > 0 && m_context->TEX1.MMIN >= 2 && m_context->TEX1.MMIN <= 5 && m_vt->m_lod.x > 0) { uint64 frame = m_perfmon.GetFrame(); string s; if(s_save && s_n >= s_saven) { s = format("c:\\temp1\\_%05d_f%lld_tex32_%05x_%d.bmp", s_n, frame, (int)m_context->TEX0.TBP0, (int)m_context->TEX0.PSM); t->Save(s); } } gd.tex[0] = t->m_buff; gd.sel.tw = t->m_tw - 3; if(m_mipmap && context->TEX1.MXL > 0 && context->TEX1.MMIN >= 2 && context->TEX1.MMIN <= 5 && m_vt->m_lod.y > 0) { // TEX1.MMIN // 000 p // 001 l // 010 p round // 011 p tri // 100 l round // 101 l tri if(m_vt->m_lod.x > 0) { gd.sel.ltf = context->TEX1.MMIN >> 2; } else { // TODO: isbilinear(mmag) != isbilinear(mmin) && m_vt->m_lod.x <= 0 && m_vt->m_lod.y > 0 } gd.sel.mmin = (context->TEX1.MMIN & 1) + 1; // 1: round, 2: tri gd.sel.lcm = context->TEX1.LCM; int mxl = (std::min((int)context->TEX1.MXL, 6) << 16); int k = context->TEX1.K << 12; if((int)m_vt->m_lod.x >= (int)context->TEX1.MXL) { k = (int)m_vt->m_lod.x << 16; // set lod to max level gd.sel.lcm = 1; // lod is constant gd.sel.mmin = 1; // tri-linear is meaningless } if(gd.sel.mmin == 2) { mxl--; // don't sample beyond the last level (TODO: add a dummy level instead?) } if(gd.sel.fst) { ASSERT(gd.sel.lcm == 1); ASSERT(((m_vt->m_min.t.uph(m_vt->m_max.t) == GSVector4::zero()).mask() & 3) == 3); // ratchet and clank (menu) gd.sel.lcm = 1; } if(gd.sel.lcm) { int lod = std::max(std::min(k, mxl), 0); if(gd.sel.mmin == 1) { lod = (lod + 0x8000) & 0xffff0000; // rounding } gd.lod.i = GSVector4i(lod >> 16); gd.lod.f = GSVector4i(lod & 0xffff).xxxxl().xxzz(); // TODO: lot to optimize when lod is constant } else { gd.mxl = GSVector4((float)mxl); gd.l = GSVector4((float)(-0x10000 << context->TEX1.L)); gd.k = GSVector4((float)k); } GIFRegTEX0 MIP_TEX0 = context->TEX0; GIFRegCLAMP MIP_CLAMP = context->CLAMP; GSVector4 tmin = m_vt->m_min.t; GSVector4 tmax = m_vt->m_max.t; static int s_counter = 0; if(0) //if(context->TEX0.TH > context->TEX0.TW) //if(s_n >= s_saven && s_n < s_saven + 3) //if(context->TEX0.TBP0 >= 0x2b80 && context->TEX0.TBW == 2 && context->TEX0.PSM == PSM_PSMT4) t->Save(format("c:/temp1/%08d_%05x_0.bmp", s_counter, context->TEX0.TBP0)); for(int i = 1, j = std::min((int)context->TEX1.MXL, 6); i <= j; i++) { switch(i) { case 1: MIP_TEX0.TBP0 = context->MIPTBP1.TBP1; MIP_TEX0.TBW = context->MIPTBP1.TBW1; break; case 2: MIP_TEX0.TBP0 = context->MIPTBP1.TBP2; MIP_TEX0.TBW = context->MIPTBP1.TBW2; break; case 3: MIP_TEX0.TBP0 = context->MIPTBP1.TBP3; MIP_TEX0.TBW = context->MIPTBP1.TBW3; break; case 4: MIP_TEX0.TBP0 = context->MIPTBP2.TBP4; MIP_TEX0.TBW = context->MIPTBP2.TBW4; break; case 5: MIP_TEX0.TBP0 = context->MIPTBP2.TBP5; MIP_TEX0.TBW = context->MIPTBP2.TBW5; break; case 6: MIP_TEX0.TBP0 = context->MIPTBP2.TBP6; MIP_TEX0.TBW = context->MIPTBP2.TBW6; break; default: __assume(0); } if(MIP_TEX0.TW > 0) MIP_TEX0.TW--; if(MIP_TEX0.TH > 0) MIP_TEX0.TH--; MIP_CLAMP.MINU >>= 1; MIP_CLAMP.MINV >>= 1; MIP_CLAMP.MAXU >>= 1; MIP_CLAMP.MAXV >>= 1; m_vt->m_min.t *= 0.5f; m_vt->m_max.t *= 0.5f; GSTextureCacheSW::Texture* t = m_tc->Lookup(MIP_TEX0, env.TEXA, gd.sel.tw + 3); if(t == NULL) {ASSERT(0); return false;} data->UseSourcePages(t, i); GSVector4i r; GetTextureMinMax(r, MIP_TEX0, MIP_CLAMP, gd.sel.ltf); if(!t->Update(r)) {ASSERT(0); return false;} gd.tex[i] = t->m_buff; if(0) //if(context->TEX0.TH > context->TEX0.TW) //if(s_n >= s_saven && s_n < s_saven + 3) //if(context->TEX0.TBP0 >= 0x2b80 && context->TEX0.TBW == 2 && context->TEX0.PSM == PSM_PSMT4) { t->Save(format("c:/temp1/%08d_%05x_%d.bmp", s_counter, context->TEX0.TBP0, i)); /* GIFRegTEX0 TEX0 = MIP_TEX0; TEX0.TBP0 = context->TEX0.TBP0; do { TEX0.TBP0++; const GSTextureCacheSW::Texture* t = m_tc->Lookup(TEX0, env.TEXA, r, gd.sel.tw + 3); if(t == NULL) {ASSERT(0); return false;} t->Save(format("c:/temp1/%08d_%05x_%d.bmp", s_counter, TEX0.TBP0, i)); } while(TEX0.TBP0 < 0x3fff); */ int i = 0; } } s_counter++; m_vt->m_min.t = tmin; m_vt->m_max.t = tmax; } else { if(gd.sel.fst == 0) { // skip per pixel division if q is constant GSVertexSW* RESTRICT v = data->vertex; if(m_vt->m_eq.q) { gd.sel.fst = 1; const GSVector4& t = v[data->index[0]].t; if(t.z != 1.0f) { GSVector4 w = t.zzzz().rcpnr(); for(int i = 0, j = data->vertex_count; i < j; i++) { GSVector4 t = v[i].t; v[i].t = (t * w).xyzw(t); } } } else if(primclass == GS_SPRITE_CLASS) { gd.sel.fst = 1; for(int i = 0, j = data->vertex_count; i < j; i += 2) { GSVector4 t0 = v[i + 0].t; GSVector4 t1 = v[i + 1].t; GSVector4 w = t1.zzzz().rcpnr(); v[i + 0].t = (t0 * w).xyzw(t0); v[i + 1].t = (t1 * w).xyzw(t1); } } } if(gd.sel.ltf && gd.sel.fst) { // if q is constant we can do the half pel shift for bilinear sampling on the vertices // TODO: but not when mipmapping is used!!! GSVector4 half(0x8000, 0x8000); GSVertexSW* RESTRICT v = data->vertex; for(int i = 0, j = data->vertex_count; i < j; i++) { GSVector4 t = v[i].t; v[i].t = (t - half).xyzw(t); } } } uint16 tw = 1u << context->TEX0.TW; uint16 th = 1u << context->TEX0.TH; switch(context->CLAMP.WMS) { case CLAMP_REPEAT: gd.t.min.u16[0] = gd.t.minmax.u16[0] = tw - 1; gd.t.max.u16[0] = gd.t.minmax.u16[2] = 0; gd.t.mask.u32[0] = 0xffffffff; break; case CLAMP_CLAMP: gd.t.min.u16[0] = gd.t.minmax.u16[0] = 0; gd.t.max.u16[0] = gd.t.minmax.u16[2] = tw - 1; gd.t.mask.u32[0] = 0; break; case CLAMP_REGION_CLAMP: gd.t.min.u16[0] = gd.t.minmax.u16[0] = std::min(context->CLAMP.MINU, tw - 1); gd.t.max.u16[0] = gd.t.minmax.u16[2] = std::min(context->CLAMP.MAXU, tw - 1); gd.t.mask.u32[0] = 0; break; case CLAMP_REGION_REPEAT: gd.t.min.u16[0] = gd.t.minmax.u16[0] = context->CLAMP.MINU; gd.t.max.u16[0] = gd.t.minmax.u16[2] = context->CLAMP.MAXU; gd.t.mask.u32[0] = 0xffffffff; break; default: __assume(0); } switch(context->CLAMP.WMT) { case CLAMP_REPEAT: gd.t.min.u16[4] = gd.t.minmax.u16[1] = th - 1; gd.t.max.u16[4] = gd.t.minmax.u16[3] = 0; gd.t.mask.u32[2] = 0xffffffff; break; case CLAMP_CLAMP: gd.t.min.u16[4] = gd.t.minmax.u16[1] = 0; gd.t.max.u16[4] = gd.t.minmax.u16[3] = th - 1; gd.t.mask.u32[2] = 0; break; case CLAMP_REGION_CLAMP: gd.t.min.u16[4] = gd.t.minmax.u16[1] = std::min(context->CLAMP.MINV, th - 1); gd.t.max.u16[4] = gd.t.minmax.u16[3] = std::min(context->CLAMP.MAXV, th - 1); // ffx anima summon scene, when the anchor appears (th = 256, maxv > 256) gd.t.mask.u32[2] = 0; break; case CLAMP_REGION_REPEAT: gd.t.min.u16[4] = gd.t.minmax.u16[1] = context->CLAMP.MINV; gd.t.max.u16[4] = gd.t.minmax.u16[3] = context->CLAMP.MAXV; gd.t.mask.u32[2] = 0xffffffff; break; default: __assume(0); } gd.t.min = gd.t.min.xxxxlh(); gd.t.max = gd.t.max.xxxxlh(); gd.t.mask = gd.t.mask.xxzz(); gd.t.invmask = ~gd.t.mask; } if(PRIM->FGE) { gd.sel.fge = 1; gd.frb = GSVector4i((int)env.FOGCOL.u32[0] & 0x00ff00ff); gd.fga = GSVector4i((int)(env.FOGCOL.u32[0] >> 8) & 0x00ff00ff); } if(context->FRAME.PSM != PSM_PSMCT24) { gd.sel.date = context->TEST.DATE; gd.sel.datm = context->TEST.DATM; } if(!IsOpaque()) { gd.sel.abe = PRIM->ABE; gd.sel.ababcd = context->ALPHA.u32[0]; if(env.PABE.PABE) { gd.sel.pabe = 1; } if(m_aa1 && PRIM->AA1 && (primclass == GS_LINE_CLASS || primclass == GS_TRIANGLE_CLASS)) { gd.sel.aa1 = 1; } gd.afix = GSVector4i((int)context->ALPHA.FIX << 7).xxzzlh(); } if(gd.sel.date || gd.sel.aba == 1 || gd.sel.abb == 1 || gd.sel.abc == 1 || gd.sel.abd == 1 || gd.sel.atst != ATST_ALWAYS && gd.sel.afail == AFAIL_RGB_ONLY || gd.sel.fpsm == 0 && fm != 0 && fm != 0xffffffff || gd.sel.fpsm == 1 && (fm & 0x00ffffff) != 0 && (fm & 0x00ffffff) != 0x00ffffff || gd.sel.fpsm == 2 && (fm & 0x80f8f8f8) != 0 && (fm & 0x80f8f8f8) != 0x80f8f8f8) { gd.sel.rfb = 1; } gd.sel.colclamp = env.COLCLAMP.CLAMP; gd.sel.fba = context->FBA.FBA; if(env.DTHE.DTHE) { gd.sel.dthe = 1; gd.dimx = (GSVector4i*)_aligned_malloc(sizeof(env.dimx), 32); memcpy(gd.dimx, env.dimx, sizeof(env.dimx)); } } gd.sel.zwrite = zwrite; gd.sel.ztest = ztest; if(zwrite || ztest) { gd.sel.zpsm = GSLocalMemory::m_psm[context->ZBUF.PSM].fmt; gd.sel.ztst = ztest ? context->TEST.ZTST : ZTST_ALWAYS; gd.sel.zoverflow = GSVector4i(m_vt->m_max.p).z == 0x80000000; } gd.fm = GSVector4i(fm); gd.zm = GSVector4i(zm); if(gd.sel.fpsm == 1) { gd.fm |= GSVector4i::xff000000(); } else if(gd.sel.fpsm == 2) { GSVector4i rb = gd.fm & 0x00f800f8; GSVector4i ga = gd.fm & 0x8000f800; gd.fm = (ga >> 16) | (rb >> 9) | (ga >> 6) | (rb >> 3) | GSVector4i::xffff0000(); } if(gd.sel.zpsm == 1) { gd.zm |= GSVector4i::xff000000(); } else if(gd.sel.zpsm == 2) { gd.zm |= GSVector4i::xffff0000(); } return true; } GSRendererSW::SharedData::SharedData(GSRendererSW* parent) : m_parent(parent) , m_fb_pages(NULL) , m_zb_pages(NULL) , m_using_pages(false) { m_tex_pages[0] = NULL; global.sel.key = 0; global.clut = NULL; global.dimx = NULL; } GSRendererSW::SharedData::~SharedData() { if(m_using_pages) { if(global.sel.fwrite) { m_parent->ReleasePages(m_fb_pages, 0); } if(global.sel.zwrite) { m_parent->ReleasePages(m_zb_pages, 1); } } delete m_fb_pages; delete m_zb_pages; for(size_t i = 0; i < countof(m_tex_pages) && m_tex_pages[i] != NULL; i++) { m_parent->ReleasePages(m_tex_pages[i], 2); } if(global.clut) _aligned_free(global.clut); if(global.dimx) _aligned_free(global.dimx); } void GSRendererSW::SharedData::UseTargetPages(const uint32* fb_pages, const uint32* zb_pages) { if(m_using_pages) return; m_fb_pages = fb_pages; m_zb_pages = zb_pages; if(global.sel.fwrite) { m_parent->UsePages(fb_pages, 0); } if(global.sel.zwrite) { m_parent->UsePages(zb_pages, 1); } m_using_pages = true; } void GSRendererSW::SharedData::UseSourcePages(GSTextureCacheSW::Texture* t, int level) { ASSERT(m_tex_pages[level] == NULL); m_tex_pages[level] = t->m_pages.n; m_tex_pages[level + 1] = NULL; m_parent->UsePages(t->m_pages.n, 2); }