/* ZZ Open GL graphics plugin * Copyright (c)2009-2010 zeydlitz@gmail.com, arcum42@gmail.com * Based on Zerofrog's ZeroGS KOSMOS (c)2005-2008 * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include "GS.h" #include "Mem.h" #include "Mem_Swizzle.h" #ifdef ZEROGS_SSE2 #include #endif // WARNING a sfence instruction must be call after SwizzleBlock sse2 function #ifdef ZEROGS_SSE2 static const __aligned16 u32 mask_24b_H[4] = {0xFF000000, 0x0000FFFF, 0xFF000000, 0x0000FFFF}; static const __aligned16 u32 mask_24b_L[4] = {0x00FFFFFF, 0x00000000, 0x00FFFFFF, 0x00000000}; template __forceinline void SwizzleBlock32_sse2_I(u8 *dst, u8 *src, int pitch) { __m128i src_0; __m128i src_1; __m128i src_2; __m128i src_3; for (int i=3 ; i >= 0 ; --i) { // load if (aligned) { src_0 = _mm_load_si128((__m128i*)src); // 5 4 1 0 src_1 = _mm_load_si128((__m128i*)(src+16)); // 13 12 9 8 src_2 = _mm_load_si128((__m128i*)(src+pitch)); // 7 6 3 2 src_3 = _mm_load_si128((__m128i*)(src+16+pitch)); // 15 14 11 10 } else { src_0 = _mm_loadu_si128((__m128i*)src); // 5 4 1 0 src_1 = _mm_loadu_si128((__m128i*)(src+16)); // 13 12 9 8 src_2 = _mm_loadu_si128((__m128i*)(src+pitch)); // 7 6 3 2 src_3 = _mm_loadu_si128((__m128i*)(src+16+pitch)); // 15 14 11 10 } // Reorder __m128i dst_0 = _mm_unpacklo_epi64(src_0, src_2); // 3 2 1 0 __m128i dst_1 = _mm_unpackhi_epi64(src_0, src_2); // 7 6 5 4 __m128i dst_2 = _mm_unpacklo_epi64(src_1, src_3); // 11 10 9 8 __m128i dst_3 = _mm_unpackhi_epi64(src_1, src_3); // 15 14 13 12 // store _mm_stream_si128((__m128i*)dst, dst_0); _mm_stream_si128(((__m128i*)dst)+1, dst_1); _mm_stream_si128(((__m128i*)dst)+2, dst_2); _mm_stream_si128(((__m128i*)dst)+3, dst_3); // update the pointer dst += 64; src += 2*pitch; } } template __forceinline void SwizzleBlock16_sse2_I(u8 *dst, u8 *src, int pitch) { __m128i src_0_L; __m128i src_0_H; __m128i src_2_L; __m128i src_2_H; for (int i=3 ; i >= 0 ; --i) { // load if (aligned) { src_0_L = _mm_load_si128((__m128i*)src); // 13L 12L 9L 8L 5L 4L 1L 0L src_0_H = _mm_load_si128((__m128i*)(src+16)); // 13H 12H 9H 8H 5H 4H 1H 0H src_2_L = _mm_load_si128((__m128i*)(src+pitch)); // 15L 14L 11L 10L 7L 6L 3L 2L src_2_H = _mm_load_si128((__m128i*)(src+16+pitch)); // 15H 14H 11H 10H 7H 6H 3H 2H } else { src_0_L = _mm_loadu_si128((__m128i*)src); // 13L 12L 9L 8L 5L 4L 1L 0L src_0_H = _mm_loadu_si128((__m128i*)(src+16)); // 13H 12H 9H 8H 5H 4H 1H 0H src_2_L = _mm_loadu_si128((__m128i*)(src+pitch)); // 15L 14L 11L 10L 7L 6L 3L 2L src_2_H = _mm_loadu_si128((__m128i*)(src+16+pitch)); // 15H 14H 11H 10H 7H 6H 3H 2H } // Interleave L and H to obtains 32 bits packets __m128i dst_0_tmp = _mm_unpacklo_epi16(src_0_L, src_0_H); // 5H 5L 4H 4L 1H 1L 0H 0L __m128i dst_1_tmp = _mm_unpacklo_epi16(src_2_L, src_2_H); // 7H 7L 6H 6L 3H 3L 2H 2L __m128i dst_2_tmp = _mm_unpackhi_epi16(src_0_L, src_0_H); // 13H 13L 12H 12L 9H 9L 8H 8L __m128i dst_3_tmp = _mm_unpackhi_epi16(src_2_L, src_2_H); // 15H 15L 14H 14L 11H 11L 10H 10L // Reorder __m128i dst_0 = _mm_unpacklo_epi64(dst_0_tmp, dst_1_tmp); // 3 2 1 0 __m128i dst_1 = _mm_unpackhi_epi64(dst_0_tmp, dst_1_tmp); // 7 6 5 4 __m128i dst_2 = _mm_unpacklo_epi64(dst_2_tmp, dst_3_tmp); // 11 10 9 8 __m128i dst_3 = _mm_unpackhi_epi64(dst_2_tmp, dst_3_tmp); // 15 14 13 12 // store _mm_stream_si128((__m128i*)dst, dst_0); _mm_stream_si128(((__m128i*)dst)+1, dst_1); _mm_stream_si128(((__m128i*)dst)+2, dst_2); _mm_stream_si128(((__m128i*)dst)+3, dst_3); // update the pointer dst += 64; src += 2*pitch; } } // Template the code to improve reuse of code template __forceinline void SwizzleColumn8_sse2_I(u8 *dst, u8 *src, int pitch) { __m128i src_0; __m128i src_1; __m128i src_2; __m128i src_3; // load 4 line of 16*8 bits packets if (aligned) { src_0 = _mm_load_si128((__m128i*)src); src_2 = _mm_load_si128((__m128i*)(src+pitch)); src_1 = _mm_load_si128((__m128i*)(src+2*pitch)); src_3 = _mm_load_si128((__m128i*)(src+3*pitch)); } else { src_0 = _mm_loadu_si128((__m128i*)src); src_2 = _mm_loadu_si128((__m128i*)(src+pitch)); src_1 = _mm_loadu_si128((__m128i*)(src+2*pitch)); src_3 = _mm_loadu_si128((__m128i*)(src+3*pitch)); } // shuffle 2 lines to align pixels if (INDEX == 0 || INDEX == 2) { src_1 = _mm_shuffle_epi32(src_1, 0xB1); // 13 12 9 8 5 4 1 0 ... (byte 3 & 1) src_3 = _mm_shuffle_epi32(src_3, 0xB1); // 15 14 11 10 7 6 3 2 ... (byte 3 & 1) } else if (INDEX == 1 || INDEX == 3) { src_0 = _mm_shuffle_epi32(src_0, 0xB1); // 13 12 9 8 5 4 1 0 ... (byte 2 & 0) src_2 = _mm_shuffle_epi32(src_2, 0xB1); // 15 14 11 10 7 6 3 2 ... (byte 2 & 0) } else { assert(0); } // src_0 = 13 12 9 8 5 4 1 0 ... (byte 2 & 0) // src_1 = 13 12 9 8 5 4 1 0 ... (byte 3 & 1) // src_2 = 15 14 11 10 7 6 3 2 ... (byte 2 & 0) // src_3 = 15 14 11 10 7 6 3 2 ... (byte 3 & 1) // Interleave byte 1 & 0 to obtain 16 bits packets __m128i src_0_L = _mm_unpacklo_epi8(src_0, src_1); // 13L 12L 9L 8L 5L 4L 1L 0L __m128i src_1_L = _mm_unpacklo_epi8(src_2, src_3); // 15L 14L 11L 10L 7L 6L 3L 2L // Interleave byte 3 & 2 to obtain 16 bits packets __m128i src_0_H = _mm_unpackhi_epi8(src_0, src_1); // 13H 12H 9H 8H 5H 4H 1H 0H __m128i src_1_H = _mm_unpackhi_epi8(src_2, src_3); // 15H 14H 11H 10H 7H 6H 3H 2H // Interleave H and L to obtain 32 bits packets __m128i dst_0_tmp = _mm_unpacklo_epi16(src_0_L, src_0_H); // 5 4 1 0 __m128i dst_1_tmp = _mm_unpacklo_epi16(src_1_L, src_1_H); // 7 6 3 2 __m128i dst_2_tmp = _mm_unpackhi_epi16(src_0_L, src_0_H); // 13 12 9 8 __m128i dst_3_tmp = _mm_unpackhi_epi16(src_1_L, src_1_H); // 15 14 11 10 // Reorder the 32 bits packets __m128i dst_0 = _mm_unpacklo_epi64(dst_0_tmp, dst_1_tmp); // 3 2 1 0 __m128i dst_1 = _mm_unpackhi_epi64(dst_0_tmp, dst_1_tmp); // 7 6 5 4 __m128i dst_2 = _mm_unpacklo_epi64(dst_2_tmp, dst_3_tmp); // 11 10 9 8 __m128i dst_3 = _mm_unpackhi_epi64(dst_2_tmp, dst_3_tmp); // 15 14 13 12 // store _mm_stream_si128((__m128i*)dst, dst_0); _mm_stream_si128(((__m128i*)dst)+1, dst_1); _mm_stream_si128(((__m128i*)dst)+2, dst_2); _mm_stream_si128(((__m128i*)dst)+3, dst_3); } template __forceinline void SwizzleBlock8_sse2_I(u8 *dst, u8 *src, int pitch) { SwizzleColumn8_sse2_I(dst, src, pitch); dst += 64; src += 4*pitch; SwizzleColumn8_sse2_I(dst, src, pitch); dst += 64; src += 4*pitch; SwizzleColumn8_sse2_I(dst, src, pitch); dst += 64; src += 4*pitch; SwizzleColumn8_sse2_I(dst, src, pitch); } // Template the code to improve reuse of code template __forceinline void SwizzleColumn4_sse2_I(u8 *dst, u8 *src, int pitch) { __m128i src_0; __m128i src_1; __m128i src_2; __m128i src_3; // Build a mask (tranform a u32 to a 4 packets u32) const u32 mask_template = 0x0f0f0f0f; __m128i mask = _mm_cvtsi32_si128(mask_template); mask = _mm_shuffle_epi32(mask, 0); // load 4 line of 32*4 bits packets if (aligned) { src_0 = _mm_load_si128((__m128i*)src); src_2 = _mm_load_si128((__m128i*)(src+pitch)); src_1 = _mm_load_si128((__m128i*)(src+2*pitch)); src_3 = _mm_load_si128((__m128i*)(src+3*pitch)); } else { src_0 = _mm_loadu_si128((__m128i*)src); src_2 = _mm_loadu_si128((__m128i*)(src+pitch)); src_1 = _mm_loadu_si128((__m128i*)(src+2*pitch)); src_3 = _mm_loadu_si128((__m128i*)(src+3*pitch)); } // shuffle 2 lines to align pixels if (INDEX == 0 || INDEX == 2) { src_1 = _mm_shufflelo_epi16(src_1, 0xB1); src_1 = _mm_shufflehi_epi16(src_1, 0xB1); // 13 12 9 8 5 4 1 0 ... (Half-byte 7 & 5 & 3 & 1) src_3 = _mm_shufflelo_epi16(src_3, 0xB1); src_3 = _mm_shufflehi_epi16(src_3, 0xB1); // 15 14 11 10 7 6 3 2 ... (Half-byte 7 & 5 & 3 & 1) } else if (INDEX == 1 || INDEX == 3) { src_0 = _mm_shufflelo_epi16(src_0, 0xB1); src_0 = _mm_shufflehi_epi16(src_0, 0xB1); // 13 12 9 8 5 4 1 0 ... (Half-byte 6 & 4 & 2 & 0) src_2 = _mm_shufflelo_epi16(src_2, 0xB1); src_2 = _mm_shufflehi_epi16(src_2, 0xB1); // 15 14 11 10 7 6 3 2 ... (Half-byte 6 & 4 & 2 & 0) } else { assert(0); } // src_0 = 13 12 9 8 5 4 1 0 ... (Half-byte 6 & 4 & 2 & 0) // src_1 = 13 12 9 8 5 4 1 0 ... (Half-byte 7 & 5 & 3 & 1) // src_2 = 15 14 11 10 7 6 3 2 ... (Half-byte 6 & 4 & 2 & 0) // src_3 = 15 14 11 10 7 6 3 2 ... (Half-byte 7 & 5 & 3 & 1) // ** Interleave Half-byte to obtain 8 bits packets // Shift value to ease 4 bits filter. // Note use a packet shift to allow a 4bits shifts __m128i src_0_shift = _mm_srli_epi64(src_0, 4); // ? 13 12 9 8 5 4 1 ... (Half-byte 6 & 4 & 2 & 0) __m128i src_1_shift = _mm_slli_epi64(src_1, 4); // 12 9 8 5 4 1 0 ? ... (Half-byte 7 & 5 & 3 & 1) __m128i src_2_shift = _mm_srli_epi64(src_2, 4); // ? 15 14 11 10 7 6 3 ... (Half-byte 6 & 4 & 2 & 0) __m128i src_3_shift = _mm_slli_epi64(src_3, 4); // 14 11 10 7 6 3 2 ? ... (Half-byte 7 & 5 & 3 & 1) // 12 - 8 - 4 - 0 - (HB odd) || - 12 - 8 - 4 - 0 (HB even) => 12 8 4 0 (byte 3 & 2 & 1 & 0) src_0 = _mm_or_si128(_mm_andnot_si128(mask, src_1_shift), _mm_and_si128(mask, src_0)); // - 13 - 9 - 5 - 1 (HB even) || 13 - 9 - 5 - 1 - (HB odd) => 13 9 5 1 (byte 3 & 2 & 1 & 0) src_1 = _mm_or_si128(_mm_and_si128(mask, src_0_shift), _mm_andnot_si128(mask, src_1)); // 14 - 10 - 6 - 2 - (HB odd) || - 14 - 10 - 6 - 2 (HB even) => 14 10 6 2 (byte 3 & 2 & 1 & 0) src_2 = _mm_or_si128(_mm_andnot_si128(mask, src_3_shift), _mm_and_si128(mask, src_2)); // - 15 - 11 - 7 - 3 (HB even) || 15 - 11 - 7 - 3 - (HB odd) => 15 11 7 3 (byte 3 & 2 & 1 & 0) src_3 = _mm_or_si128(_mm_and_si128(mask, src_2_shift), _mm_andnot_si128(mask, src_3)); // reorder the 8 bits packets __m128i src_0_tmp = _mm_unpacklo_epi8(src_0, src_1); // 13 12 9 8 5 4 1 0 (byte 1 & 0) __m128i src_1_tmp = _mm_unpackhi_epi8(src_0, src_1); // 13 12 9 8 5 4 1 0 (byte 3 & 2) __m128i src_2_tmp = _mm_unpacklo_epi8(src_2, src_3); // 15 14 11 10 7 6 3 2 (byte 1 & 0) __m128i src_3_tmp = _mm_unpackhi_epi8(src_2, src_3); // 15 14 11 10 7 6 3 2 (byte 3 & 2) // interleave byte to obtain 32 bits packets __m128i src_0_L = _mm_unpacklo_epi8(src_0_tmp, src_1_tmp); // 2.13 0.13 2.12 0.12 2.9 0.9 2.8 0.8 2.5 0.5 2.4 0.4 2.1 0.1 2.0 0.0 __m128i src_0_H = _mm_unpackhi_epi8(src_0_tmp, src_1_tmp); // 3.13 1.13 3.12 1.12 3.9 1.9 3.8 1.8 3.5 1.5 3.4 1.4 3.1 1.1 3.0 1.0 __m128i src_1_L = _mm_unpacklo_epi8(src_2_tmp, src_3_tmp); // 2.15 0.15 2.14 0.14 2.11 0.11 2.10 0.10 2.7 0.7 2.6 0.6 2.3 0.3 2.2 0.2 __m128i src_1_H = _mm_unpackhi_epi8(src_2_tmp, src_3_tmp); // 3.15 1.15 3.14 1.14 3.11 1.11 3.10 1.10 3.7 1.7 3.6 1.6 3.3 1.3 3.2 1.2 __m128i dst_0_tmp = _mm_unpacklo_epi8(src_0_L, src_0_H); // 5 4 1 0 __m128i dst_1_tmp = _mm_unpacklo_epi8(src_1_L, src_1_H); // 7 6 3 2 __m128i dst_2_tmp = _mm_unpackhi_epi8(src_0_L, src_0_H); // 13 12 9 8 __m128i dst_3_tmp = _mm_unpackhi_epi8(src_1_L, src_1_H); // 15 14 11 10 // Reorder the 32 bits packets __m128i dst_0 = _mm_unpacklo_epi64(dst_0_tmp, dst_1_tmp); // 3 2 1 0 __m128i dst_1 = _mm_unpackhi_epi64(dst_0_tmp, dst_1_tmp); // 7 6 5 4 __m128i dst_2 = _mm_unpacklo_epi64(dst_2_tmp, dst_3_tmp); // 11 10 9 8 __m128i dst_3 = _mm_unpackhi_epi64(dst_2_tmp, dst_3_tmp); // 15 14 13 12 // store _mm_stream_si128((__m128i*)dst, dst_0); _mm_stream_si128(((__m128i*)dst)+1, dst_1); _mm_stream_si128(((__m128i*)dst)+2, dst_2); _mm_stream_si128(((__m128i*)dst)+3, dst_3); } template __forceinline void SwizzleBlock4_sse2_I(u8 *dst, u8 *src, int pitch) { SwizzleColumn4_sse2_I(dst, src, pitch); dst += 64; src += 4*pitch; SwizzleColumn4_sse2_I(dst, src, pitch); dst += 64; src += 4*pitch; SwizzleColumn4_sse2_I(dst, src, pitch); dst += 64; src += 4*pitch; SwizzleColumn4_sse2_I(dst, src, pitch); } template __forceinline void SwizzleBlock8H_4H(u8 *dst, u8 *src, int pitch) { __m128i zero_128 = _mm_setzero_si128(); __m128i src_0; __m128i src_1; __m128i src_2; __m128i src_3; __m128i src_0_init_H; __m128i src_0_init_L; __m128i src_2_init_H; __m128i src_2_init_L; __m128i src_0_init; __m128i src_2_init; __m128i upper_mask = _mm_cvtsi32_si128(0xF0F0F0F0); // Build the write_mask (tranform a u32 to a 4 packets u32) __m128i write_mask; if (FOUR_BIT) { if (UPPER) write_mask = _mm_cvtsi32_si128(0xF0000000); else write_mask = _mm_cvtsi32_si128(0x0F000000); } else { write_mask = _mm_cvtsi32_si128(0xFF000000); } write_mask = _mm_shuffle_epi32(write_mask, 0); for (int i=3 ; i >= 0 ; --i) { if (FOUR_BIT) { src_0_init = _mm_cvtsi32_si128(*(u32*)src); src_2_init = _mm_cvtsi32_si128(*(u32*)(src + pitch)); } else { src_0_init = _mm_loadl_epi64((__m128i*)src); src_2_init = _mm_loadl_epi64((__m128i*)(src + pitch)); } // Convert to 8 bits if (FOUR_BIT) { src_0_init_H = _mm_and_si128(upper_mask, src_0_init); src_0_init_L = _mm_andnot_si128(upper_mask, src_0_init); src_2_init_H = _mm_and_si128(upper_mask, src_2_init); src_2_init_L = _mm_andnot_si128(upper_mask, src_2_init); if (UPPER) { src_0_init_L = _mm_slli_epi32(src_0_init_L, 4); src_2_init_L = _mm_slli_epi32(src_2_init_L, 4); } else { src_0_init_H = _mm_srli_epi32(src_0_init_H, 4); src_2_init_H = _mm_srli_epi32(src_2_init_H, 4); } // Repack the src to keep HByte order src_0_init = _mm_unpacklo_epi8(src_0_init_L, src_0_init_H); src_2_init = _mm_unpacklo_epi8(src_2_init_L, src_2_init_H); } // transform to 16 bits (add 0 in low bits) src_0_init = _mm_unpacklo_epi8(zero_128, src_0_init); src_2_init = _mm_unpacklo_epi8(zero_128, src_2_init); // transform to 32 bits (add 0 in low bits) src_0 = _mm_unpacklo_epi16(zero_128, src_0_init); src_1 = _mm_unpackhi_epi16(zero_128, src_0_init); src_2 = _mm_unpacklo_epi16(zero_128, src_2_init); src_3 = _mm_unpackhi_epi16(zero_128, src_2_init); // Reorder the data (same as 32 bits format) __m128i dst_0 = _mm_unpacklo_epi64(src_0, src_2); __m128i dst_1 = _mm_unpackhi_epi64(src_0, src_2); __m128i dst_2 = _mm_unpacklo_epi64(src_1, src_3); __m128i dst_3 = _mm_unpackhi_epi64(src_1, src_3); // Load previous value and apply the ~write_mask __m128i old_dst_0 = _mm_andnot_si128(write_mask, _mm_load_si128((__m128i*)dst)); dst_0 = _mm_or_si128(dst_0, old_dst_0); __m128i old_dst_1 = _mm_andnot_si128(write_mask, _mm_load_si128(((__m128i*)dst)+1)); dst_1 = _mm_or_si128(dst_1, old_dst_1); __m128i old_dst_2 = _mm_andnot_si128(write_mask, _mm_load_si128(((__m128i*)dst)+2)); dst_2 = _mm_or_si128(dst_2, old_dst_2); __m128i old_dst_3 = _mm_andnot_si128(write_mask, _mm_load_si128(((__m128i*)dst)+3)); dst_3 = _mm_or_si128(dst_3, old_dst_3); // store _mm_stream_si128((__m128i*)dst, dst_0); _mm_stream_si128(((__m128i*)dst)+1, dst_1); _mm_stream_si128(((__m128i*)dst)+2, dst_2); _mm_stream_si128(((__m128i*)dst)+3, dst_3); // update the pointer dst += 64; src += 2*pitch; } } // special swizzle macros - which I converted to functions. __forceinline void SwizzleBlock32(u8 *dst, u8 *src, int pitch) { SwizzleBlock32_sse2_I(dst, src, pitch); } __forceinline void SwizzleBlock24(u8 *dst, u8 *src, int pitch) { __m128i mask_H = _mm_load_si128((__m128i*)mask_24b_H); __m128i mask_L = _mm_load_si128((__m128i*)mask_24b_L); // Build the write_mask (tranform a u32 to a 4 packets u32) __m128i write_mask = _mm_cvtsi32_si128(0x00FFFFFF); write_mask = _mm_shuffle_epi32(write_mask, 0); for (int i=3 ; i >= 0 ; --i) { // Note src can be out of bound of GS memory (but there is some spare allocation // to avoid a tricky corner case) __m128i src_0 = _mm_loadu_si128((__m128i*)src); __m128i src_1 = _mm_loadu_si128((__m128i*)(src+12)); __m128i src_2 = _mm_loadu_si128((__m128i*)(src+pitch)); __m128i src_3 = _mm_loadu_si128((__m128i*)(src+pitch+12)); // transform 24 bits value to 32 bits one // 1/ Align a little the data src_0 = _mm_slli_si128(src_0, 2); src_0 = _mm_shufflelo_epi16(src_0, 0x39); src_1 = _mm_slli_si128(src_1, 2); src_1 = _mm_shufflelo_epi16(src_1, 0x39); src_2 = _mm_slli_si128(src_2, 2); src_2 = _mm_shufflelo_epi16(src_2, 0x39); src_3 = _mm_slli_si128(src_3, 2); src_3 = _mm_shufflelo_epi16(src_3, 0x39); // 2/ Filter the 24 bits pixels & do the conversion __m128i src_0_H = _mm_and_si128(src_0, mask_H); __m128i src_0_L = _mm_and_si128(src_0, mask_L); src_0_H = _mm_slli_si128(src_0_H, 1); src_0 = _mm_or_si128(src_0_H, src_0_L); __m128i src_1_H = _mm_and_si128(src_1, mask_H); __m128i src_1_L = _mm_and_si128(src_1, mask_L); src_1_H = _mm_slli_si128(src_1_H, 1); src_1 = _mm_or_si128(src_1_H, src_1_L); __m128i src_2_H = _mm_and_si128(src_2, mask_H); __m128i src_2_L = _mm_and_si128(src_2, mask_L); src_2_H = _mm_slli_si128(src_2_H, 1); src_2 = _mm_or_si128(src_2_H, src_2_L); __m128i src_3_H = _mm_and_si128(src_3, mask_H); __m128i src_3_L = _mm_and_si128(src_3, mask_L); src_3_H = _mm_slli_si128(src_3_H, 1); src_3 = _mm_or_si128(src_3_H, src_3_L); // Reorder the data (same as 32 bits format) __m128i dst_0 = _mm_unpacklo_epi64(src_0, src_2); __m128i dst_1 = _mm_unpackhi_epi64(src_0, src_2); __m128i dst_2 = _mm_unpacklo_epi64(src_1, src_3); __m128i dst_3 = _mm_unpackhi_epi64(src_1, src_3); // Load previous value and apply the ~write_mask __m128i old_dst_0 = _mm_andnot_si128(write_mask, _mm_load_si128((__m128i*)dst)); dst_0 = _mm_or_si128(dst_0, old_dst_0); __m128i old_dst_1 = _mm_andnot_si128(write_mask, _mm_load_si128(((__m128i*)dst)+1)); dst_1 = _mm_or_si128(dst_1, old_dst_1); __m128i old_dst_2 = _mm_andnot_si128(write_mask, _mm_load_si128(((__m128i*)dst)+2)); dst_2 = _mm_or_si128(dst_2, old_dst_2); __m128i old_dst_3 = _mm_andnot_si128(write_mask, _mm_load_si128(((__m128i*)dst)+3)); dst_3 = _mm_or_si128(dst_3, old_dst_3); // store _mm_stream_si128((__m128i*)dst, dst_0); _mm_stream_si128(((__m128i*)dst)+1, dst_1); _mm_stream_si128(((__m128i*)dst)+2, dst_2); _mm_stream_si128(((__m128i*)dst)+3, dst_3); // update the pointer dst += 64; src += 2*pitch; } } __forceinline void SwizzleBlock16(u8 *dst, u8 *src, int pitch) { SwizzleBlock16_sse2_I(dst, src, pitch); } __forceinline void SwizzleBlock8(u8 *dst, u8 *src, int pitch) { SwizzleBlock8_sse2_I(dst, src, pitch); } __forceinline void SwizzleBlock4(u8 *dst, u8 *src, int pitch) { SwizzleBlock4_sse2_I(dst, src, pitch); } __forceinline void SwizzleBlock32u(u8 *dst, u8 *src, int pitch) { SwizzleBlock32_sse2_I(dst, src, pitch); } __forceinline void SwizzleBlock16u(u8 *dst, u8 *src, int pitch) { SwizzleBlock16_sse2_I(dst, src, pitch); } __forceinline void SwizzleBlock8u(u8 *dst, u8 *src, int pitch) { SwizzleBlock8_sse2_I(dst, src, pitch); } __forceinline void SwizzleBlock4u(u8 *dst, u8 *src, int pitch) { SwizzleBlock4_sse2_I(dst, src, pitch); } __forceinline void SwizzleBlock8H(u8 *dst, u8 *src, int pitch) { SwizzleBlock8H_4H(dst, src, pitch); } __forceinline void SwizzleBlock4HH(u8 *dst, u8 *src, int pitch) { SwizzleBlock8H_4H(dst, src, pitch); } __forceinline void SwizzleBlock4HL(u8 *dst, u8 *src, int pitch) { SwizzleBlock8H_4H(dst, src, pitch); } #else __forceinline void SwizzleBlock32(u8 *dst, u8 *src, int pitch) { SwizzleBlock32_c(dst, src, pitch); } __forceinline void SwizzleBlock16(u8 *dst, u8 *src, int pitch) { SwizzleBlock16_c(dst, src, pitch); } __forceinline void SwizzleBlock8(u8 *dst, u8 *src, int pitch) { SwizzleBlock8_c(dst, src, pitch); } __forceinline void SwizzleBlock4(u8 *dst, u8 *src, int pitch) { SwizzleBlock4_c(dst, src, pitch); } __forceinline void SwizzleBlock32u(u8 *dst, u8 *src, int pitch) { SwizzleBlock32_c(dst, src, pitch); } __forceinline void SwizzleBlock16u(u8 *dst, u8 *src, int pitch) { SwizzleBlock16_c(dst, src, pitch); } __forceinline void SwizzleBlock8u(u8 *dst, u8 *src, int pitch) { SwizzleBlock8_c(dst, src, pitch); } __forceinline void SwizzleBlock4u(u8 *dst, u8 *src, int pitch) { SwizzleBlock4_c(dst, src, pitch); } __forceinline void __fastcall SwizzleBlock32_mask(u8* dst, u8* src, int srcpitch, u32 WriteMask) { u32* d = &g_columnTable32[0][0]; if (WriteMask == 0xffffffff) { for (int j = 0; j < 8; j++, d += 8, src += srcpitch) for (int i = 0; i < 8; i++) ((u32*)dst)[d[i]] = ((u32*)src)[i]; } else { for (int j = 0; j < 8; j++, d += 8, src += srcpitch) for (int i = 0; i < 8; i++) ((u32*)dst)[d[i]] = (((u32*)dst)[d[i]] & ~WriteMask) | (((u32*)src)[i] & WriteMask); } } __forceinline void __fastcall SwizzleBlock32_c(u8* dst, u8* src, int srcpitch) { SwizzleBlock32_mask(dst, src, srcpitch, 0xffffffff); } __forceinline void __fastcall SwizzleBlock16_c(u8* dst, u8* src, int srcpitch) { u32* d = &g_columnTable16[0][0]; for (int j = 0; j < 8; j++, d += 16, src += srcpitch) for (int i = 0; i < 16; i++) ((u16*)dst)[d[i]] = ((u16*)src)[i]; } __forceinline void __fastcall SwizzleBlock8_c(u8* dst, u8* src, int srcpitch) { u32* d = &g_columnTable8[0][0]; for (int j = 0; j < 16; j++, d += 16, src += srcpitch) for (int i = 0; i < 16; i++) dst[d[i]] = src[i]; } __forceinline void __fastcall SwizzleBlock4_c(u8* dst, u8* src, int srcpitch) { u32* d = &g_columnTable4[0][0]; for (int j = 0; j < 16; j++, d += 32, src += srcpitch) { for (int i = 0; i < 32; i++) { u32 addr = d[i]; u8 c = (src[i>>1] >> ((i & 1) << 2)) & 0x0f; u32 shift = (addr & 1) << 2; dst[addr >> 1] = (dst[addr >> 1] & (0xf0 >> shift)) | (c << shift); } } } __forceinline void SwizzleBlock24(u8 *dst, u8 *src, int pitch) { u8* pnewsrc = src; u32* pblock = tempblock; // Note src can be out of bound of GS memory (but there is some spare allocation // to avoid a tricky corner case) for (int by = 0; by < 8; ++by, pblock += 8, pnewsrc += pitch - 24) { for (int bx = 0; bx < 8; ++bx, pnewsrc += 3) { pblock[bx] = *(u32*)pnewsrc; } } SwizzleBlock32_mask((u8*)dst, (u8*)tempblock, 32, 0x00ffffff); } __forceinline void SwizzleBlock8H(u8 *dst, u8 *src, int pitch) { u8* pnewsrc = src; u32* pblock = tempblock; for (int by = 0; by < 8; ++by, pblock += 8, pnewsrc += pitch) { u32 u = *(u32*)pnewsrc; pblock[0] = u << 24; pblock[1] = u << 16; pblock[2] = u << 8; pblock[3] = u; u = *(u32*)(pnewsrc + 4); pblock[4] = u << 24; pblock[5] = u << 16; pblock[6] = u << 8; pblock[7] = u; } SwizzleBlock32_mask((u8*)dst, (u8*)tempblock, 32, 0xff000000); } __forceinline void SwizzleBlock4HH(u8 *dst, u8 *src, int pitch) { u8* pnewsrc = src; u32* pblock = tempblock; for (int by = 0; by < 8; ++by, pblock += 8, pnewsrc += pitch) { u32 u = *(u32*)pnewsrc; pblock[0] = u << 28; pblock[1] = u << 24; pblock[2] = u << 20; pblock[3] = u << 16; pblock[4] = u << 12; pblock[5] = u << 8; pblock[6] = u << 4; pblock[7] = u; } SwizzleBlock32_mask((u8*)dst, (u8*)tempblock, 32, 0xf0000000); } __forceinline void SwizzleBlock4HL(u8 *dst, u8 *src, int pitch) { u8* pnewsrc = src; u32* pblock = tempblock; for (int by = 0; by < 8; ++by, pblock += 8, pnewsrc += pitch) { u32 u = *(u32*)pnewsrc; pblock[0] = u << 24; pblock[1] = u << 20; pblock[2] = u << 16; pblock[3] = u << 12; pblock[4] = u << 8; pblock[5] = u << 4; pblock[6] = u; pblock[7] = u >> 4; } SwizzleBlock32_mask((u8*)dst, (u8*)tempblock, 32, 0x0f000000); } #endif