/* * Copyright (C) 2007-2009 Gabest * http://www.gabest.org * * This Program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This Program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA. * http://www.gnu.org/copyleft/gpl.html * */ #include "stdafx.h" #include "GSTextureCache.h" #include "GSRendererHW.h" #include "GSUtil.h" bool GSTextureCache::m_disable_partial_invalidation = false; bool GSTextureCache::m_wrap_gs_mem = false; GSTextureCache::GSTextureCache(GSRenderer* r) : m_renderer(r) , m_palette_map(r) { if (theApp.GetConfigB("UserHacks")) { UserHacks_HalfPixelOffset = theApp.GetConfigI("UserHacks_HalfPixelOffset") == 1; m_preload_frame = theApp.GetConfigB("preload_frame_with_gs_data"); m_disable_partial_invalidation = theApp.GetConfigB("UserHacks_DisablePartialInvalidation"); m_can_convert_depth = !theApp.GetConfigB("UserHacks_DisableDepthSupport"); m_cpu_fb_conversion = theApp.GetConfigB("UserHacks_CPU_FB_Conversion"); m_texture_inside_rt = theApp.GetConfigB("UserHacks_TextureInsideRt"); m_wrap_gs_mem = theApp.GetConfigB("wrap_gs_mem"); } else { UserHacks_HalfPixelOffset = false; m_preload_frame = false; m_disable_partial_invalidation = false; m_can_convert_depth = true; m_cpu_fb_conversion = false; m_texture_inside_rt = false; m_wrap_gs_mem = false; } m_paltex = theApp.GetConfigB("paltex"); m_crc_hack_level = theApp.GetConfigT("crc_hack_level"); if (m_crc_hack_level == CRCHackLevel::Automatic) m_crc_hack_level = GSUtil::GetRecommendedCRCHackLevel(theApp.GetCurrentRendererType()); // In theory 4MB is enough but 9MB is safer for overflow (8MB // isn't enough in custom resolution) // Test: onimusha 3 PAL 60Hz m_temp = (uint8*)_aligned_malloc(9 * 1024 * 1024, 32); m_texture_inside_rt_cache.reserve(m_texture_inside_rt_cache_size); } GSTextureCache::~GSTextureCache() { RemoveAll(); m_texture_inside_rt_cache.clear(); _aligned_free(m_temp); } void GSTextureCache::RemovePartial() { //m_src.RemoveAll(); for (int type = 0; type < 2; type++) { for (auto t : m_dst[type]) delete t; m_dst[type].clear(); } } void GSTextureCache::RemoveAll() { m_src.RemoveAll(); for(int type = 0; type < 2; type++) { for (auto t : m_dst[type]) delete t; m_dst[type].clear(); } m_palette_map.Clear(); } GSTextureCache::Source* GSTextureCache::LookupDepthSource(const GIFRegTEX0& TEX0, const GIFRegTEXA& TEXA, const GSVector4i& r, bool palette) { if (!m_can_convert_depth) { GL_CACHE("LookupDepthSource not supported (0x%x, F:0x%x)", TEX0.TBP0, TEX0.PSM); if (m_renderer->m_game.title == CRC::JackieChanAdv || m_renderer->m_game.title == CRC::SVCChaos) { // JackieChan and SVCChaos cause regressions when skipping the draw calls when depth is disabled/not supported. // This way we make sure there are no regressions on D3D as well. return LookupSource(TEX0, TEXA, r); } else { throw GSDXRecoverableError(); } } const GSLocalMemory::psm_t& psm_s = GSLocalMemory::m_psm[TEX0.PSM]; Source* src = NULL; Target* dst = NULL; // Check only current frame, I guess it is only used as a postprocessing effect uint32 bp = TEX0.TBP0; uint32 psm = TEX0.PSM; for(auto t : m_dst[DepthStencil]) { if(t->m_used && t->m_dirty.empty() && GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t->m_TEX0.PSM)) { ASSERT(GSLocalMemory::m_psm[t->m_TEX0.PSM].depth); if (t->m_age == 0) { // Perfect Match dst = t; break; } else if (t->m_age == 1) { // Better than nothing (Full Spectrum Warrior) dst = t; } } } if (!dst) { // Retry on the render target (Silent Hill 4) for(auto t : m_dst[RenderTarget]) { // FIXME: do I need to allow m_age == 1 as a potential match (as DepthStencil) ??? if(!t->m_age && t->m_used && t->m_dirty.empty() && GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t->m_TEX0.PSM)) { ASSERT(GSLocalMemory::m_psm[t->m_TEX0.PSM].depth); dst = t; break; } } } if (dst) { GL_CACHE("TC depth: dst %s hit: %d (0x%x, %s)", to_string(dst->m_type), dst->m_texture ? dst->m_texture->GetID() : 0, TEX0.TBP0, psm_str(psm)); // Create a shared texture source src = new Source(m_renderer, TEX0, TEXA, m_temp, true); src->m_texture = dst->m_texture; src->m_shared_texture = true; src->m_target = true; // So renderer can check if a conversion is required src->m_from_target = dst->m_texture; // avoid complex condition on the renderer src->m_from_target_TEX0 = dst->m_TEX0; src->m_32_bits_fmt = dst->m_32_bits_fmt; src->m_valid_rect = dst->m_valid; // Insert the texture in the hash set to keep track of it. But don't bother with // texture cache list. It means that a new Source is created everytime we need it. // If it is too expensive, one could cut memory allocation in Source constructor for this // use case. if (palette) { AttachPaletteToSource(src, psm_s.pal, true); } m_src.m_surfaces.insert(src); } else { GL_CACHE("TC depth: ERROR miss (0x%x, %s)", TEX0.TBP0, psm_str(psm)); // Possible ? In this case we could call LookupSource // Or just put a basic texture // src->m_texture = m_renderer->m_dev->CreateTexture(tw, th); // In all cases rendering will be broken // // Note: might worth to check previous frame // Note: otherwise return NULL and skip the draw if (m_renderer->m_game.title == CRC::JackieChanAdv || m_renderer->m_game.title == CRC::SVCChaos) { // JackieChan and SVCChaos cause regressions when skipping the draw calls so we reuse the old code for these two. return LookupSource(TEX0, TEXA, r); } else { // Full Spectrum Warrior: first draw call of cut-scene rendering // The game tries to emulate a texture shuffle with an old depth buffer // (don't exists yet for us due to the cache) // Rendering is nicer (less garbage) if we skip the draw call. throw GSDXRecoverableError(); } //ASSERT(0); } return src; } GSTextureCache::Source* GSTextureCache::LookupSource(const GIFRegTEX0& TEX0, const GIFRegTEXA& TEXA, const GSVector4i& r) { const GSLocalMemory::psm_t& psm_s = GSLocalMemory::m_psm[TEX0.PSM]; //const GSLocalMemory::psm_t& cpsm = psm.pal > 0 ? GSLocalMemory::m_psm[TEX0.CPSM] : psm; // Until DX is fixed if(psm_s.pal > 0) m_renderer->m_mem.m_clut.Read32(TEX0, TEXA); const uint32* clut = m_renderer->m_mem.m_clut; Source* src = NULL; auto& m = m_src.m_map[TEX0.TBP0 >> 5]; for(auto i = m.begin(); i != m.end(); ++i) { Source* s = *i; if (((TEX0.u32[0] ^ s->m_TEX0.u32[0]) | ((TEX0.u32[1] ^ s->m_TEX0.u32[1]) & 3)) != 0) // TBP0 TBW PSM TW TH continue; // Target are converted (AEM & palette) on the fly by the GPU. They don't need extra check if (!s->m_target) { // We request a palette texture (psm_s.pal). If the texture was // converted by the CPU (!s->m_palette), we need to ensure // palette content is the same. if (psm_s.pal > 0 && !s->m_palette && !s->ClutMatch({ clut, psm_s.pal })) continue; // We request a 24/16 bit RGBA texture. Alpha expansion was done by // the CPU. We need to check that TEXA is identical if (psm_s.pal == 0 && psm_s.fmt > 0 && s->m_TEXA.u64 != TEXA.u64) continue; } m.MoveFront(i.Index()); src = s; break; } Target* dst = NULL; bool half_right = false; int x_offset = 0; int y_offset = 0; #ifdef DISABLE_HW_TEXTURE_CACHE if( 0 ) #else if(src == NULL) #endif { uint32 bp = TEX0.TBP0; uint32 psm = TEX0.PSM; uint32 bw = TEX0.TBW; int tw = 1 << TEX0.TW; int th = 1 << TEX0.TH; uint32 bp_end = psm_s.bn(tw - 1, th - 1, bp, bw); // Valid only for color formats // Arc the Lad finds the wrong surface here when looking for a depth stencil. // Since we're currently not caching depth stencils (check ToDo in CreateSource) we should not look for it here. // (Simply not doing this code at all makes a lot of previsouly missing stuff show (but breaks pretty much everything // else.) bool texture_inside_rt = ShallSearchTextureInsideRt(); for(auto t : m_dst[RenderTarget]) { if(t->m_used && t->m_dirty.empty()) { // Typical bug (MGS3 blue cloud): // 1/ RT used as 32 bits => alpha channel written // 2/ RT used as 24 bits => no update of alpha channel // 3/ Lookup of texture that used alpha channel as index, HasSharedBits will return false // because of the previous draw call format // // Solution: consider the RT as 32 bits if the alpha was used in the past uint32 t_psm = (t->m_dirty_alpha) ? t->m_TEX0.PSM & ~0x1 : t->m_TEX0.PSM; if (GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t_psm)) { // It is a complex to convert the code in shader. As a reference, let's do it on the CPU, it will be slow but // 1/ it just works :) // 2/ even with upscaling // 3/ for both Direct3D and OpenGL if (m_cpu_fb_conversion && (psm == PSM_PSMT4 || psm == PSM_PSMT8)) // Forces 4-bit and 8-bit frame buffer conversion to be done on the CPU instead of the GPU, but performance will be slower. // There is no dedicated shader to handle 4-bit conversion (Stuntman has been confirmed to use 4-bit). // Direct3D10/11 and OpenGL support 8-bit fb conversion but don't render some corner cases properly (Harry Potter games). // The hack can fix glitches in some games. Read(t, t->m_valid); else dst = t; break; } else if ((t->m_TEX0.TBW >= 16) && GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0 + t->m_TEX0.TBW * 0x10, t->m_TEX0.PSM)) { // Detect half of the render target (fix snow engine game) // Target Page (8KB) have always a width of 64 pixels // Half of the Target is TBW/2 pages * 8KB / (1 block * 256B) = 0x10 half_right = true; dst = t; break; } else if (texture_inside_rt && psm == PSM_PSMCT32 && t->m_TEX0.PSM == psm && t->m_TEX0.TBP0 < bp && t->m_end_block >= bp) { // Only PSMCT32 to limit false hits // Check if it is possible to hit with valid offset on the given Target // Fixes Jak eyes rendering bool valid_offset_may_exist = true; // CACHE SEARCH: offset for (auto& el : m_texture_inside_rt_cache) { if (el.psm == psm && el.bp == bp && el.bp_end == bp_end && el.bw == bw && el.t_tex0_tbp0 == t->m_TEX0.TBP0 && el.m_end_block == t->m_end_block) { if (el.has_valid_offset) { // CACHE HIT: offset found dst = t; x_offset = el.x_offset; y_offset = el.y_offset; } else { // CACHE HIT: No valid offset exists valid_offset_may_exist = false; } break; } } if (dst != nullptr) break; if (!valid_offset_may_exist) continue; // CACHE MISS // SWEEP SEARCH: offset TexInsideRtCacheEntry entry = { psm, bp, bp_end, bw, t->m_TEX0.TBP0, t->m_end_block, false, 0, 0 }; for (int candidate_x_offset = 0; candidate_x_offset < t->m_valid.z; ++candidate_x_offset) { for (int candidate_y_offset = 0; candidate_y_offset < t->m_valid.w; ++candidate_y_offset) { if (candidate_x_offset == 0 && candidate_y_offset == 0) continue; uint32 candidate_bp = psm_s.bn(candidate_x_offset, candidate_y_offset, t->m_TEX0.TBP0, bw); if (bp == candidate_bp && bp_end <= t->m_end_block) { // SWEEP HIT: offset found dst = t; x_offset = candidate_x_offset; y_offset = candidate_y_offset; // Add result to cache while (m_texture_inside_rt_cache.size() > m_texture_inside_rt_cache_size) { GL_PERF("TC tex in rt: Size of cache %d too big, clearing it.", m_texture_inside_rt_cache.size()); m_texture_inside_rt_cache.clear(); } entry.has_valid_offset = true; entry.x_offset = x_offset; entry.y_offset = y_offset; m_texture_inside_rt_cache.emplace_back(entry); GL_CACHE("TC tex in rt: Cached HIT element (size %d), BW: %d, PSM %s, rt 0x%x <%d,%d> + off <%d,%d> -> 0x%x <%d,%d> (END: 0x%x)", m_texture_inside_rt_cache.size(), bw, psm_str(psm), t->m_TEX0.TBP0, t->m_valid.z, t->m_valid.w, x_offset, y_offset, bp, tw, th, bp_end); break; } } if (dst != nullptr) break; } if (dst != nullptr) break; // SWEEP MISS: no valid offset found while (m_texture_inside_rt_cache.size() > m_texture_inside_rt_cache_size) { GL_PERF("TC tex in rt: Size of cache %d too big, clearing it.", m_texture_inside_rt_cache.size()); m_texture_inside_rt_cache.clear(); } GL_CACHE("TC tex in rt: Cached MISS element (size %d), BW: %d, PSM %s, rt 0x%x <%d,%d> -/-> 0x%x <%d,%d> (END: 0x%x)", m_texture_inside_rt_cache.size(), bw, psm_str(psm), t->m_TEX0.TBP0, t->m_valid.z, t->m_valid.w, bp, tw, th, bp_end); m_texture_inside_rt_cache.emplace_back(entry); } } } // Pure depth texture format will be fetched by LookupDepthSource. // However guess what, some games (GoW) read the depth as a standard // color format (instead of a depth format). All pixels are scrambled // (because color and depth don't have same location). They don't care // pixel will be several draw calls later. // // Sigh... They don't help us. if (dst == NULL && m_can_convert_depth) { // Let's try a trick to avoid to use wrongly a depth buffer // Unfortunately, I don't have any Arc the Lad testcase // // 1/ Check only current frame, I guess it is only used as a postprocessing effect for(auto t : m_dst[DepthStencil]) { if(!t->m_age && t->m_used && t->m_dirty.empty() && GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t->m_TEX0.PSM)) { GL_INS("TC: Warning depth format read as color format. Pixels will be scrambled"); // Let's fetch a depth format texture. Rational, it will avoid the texture allocation and the // rescaling of the current function. if (psm_s.bpp > 8) { GIFRegTEX0 depth_TEX0; depth_TEX0.u32[0] = TEX0.u32[0] | (0x30u << 20u); depth_TEX0.u32[1] = TEX0.u32[1]; return LookupDepthSource(depth_TEX0, TEXA, r); } else { return LookupDepthSource(TEX0, TEXA, r, true); } } } } } bool new_source = false; if(src == NULL) { #ifdef ENABLE_OGL_DEBUG if (dst) { GL_CACHE("TC: dst %s hit (%s): %d (0x%x, %s)", to_string(dst->m_type), half_right ? "half" : "full", dst->m_texture ? dst->m_texture->GetID() : 0, TEX0.TBP0, psm_str(TEX0.PSM)); } else { GL_CACHE("TC: src miss (0x%x, 0x%x, %s)", TEX0.TBP0, psm_s.pal > 0 ? TEX0.CBP : 0, psm_str(TEX0.PSM)); } #endif src = CreateSource(TEX0, TEXA, dst, half_right, x_offset, y_offset); new_source = true; } else { GL_CACHE("TC: src hit: %d (0x%x, 0x%x, %s)", src->m_texture ? src->m_texture->GetID() : 0, TEX0.TBP0, psm_s.pal > 0 ? TEX0.CBP : 0, psm_str(TEX0.PSM)); } if (src->m_palette && !new_source && !src->ClutMatch({ clut, psm_s.pal })) { AttachPaletteToSource(src, psm_s.pal, true); } src->Update(r); m_src.m_used = true; return src; } void GSTextureCache::ScaleTexture(GSTexture* texture) { if (!m_renderer->CanUpscale()) return; float multiplier = static_cast(m_renderer->GetUpscaleMultiplier()); bool custom_resolution = (multiplier == 0); GSVector2 scale_factor(multiplier); if (custom_resolution) { int width = m_renderer->GetDisplayRect().width(); int height = m_renderer->GetDisplayRect().height(); GSVector2i requested_resolution = m_renderer->GetCustomResolution(); scale_factor.x = static_cast(requested_resolution.x) / width; scale_factor.y = static_cast(requested_resolution.y) / height; } texture->SetScale(scale_factor); } bool GSTextureCache::ShallSearchTextureInsideRt() { return m_texture_inside_rt || (m_renderer->m_game.flags & CRC::Flags::TextureInsideRt); } GSTextureCache::Target* GSTextureCache::LookupTarget(const GIFRegTEX0& TEX0, int w, int h, int type, bool used, uint32 fbmask) { const GSLocalMemory::psm_t& psm_s = GSLocalMemory::m_psm[TEX0.PSM]; uint32 bp = TEX0.TBP0; Target* dst = NULL; auto& list = m_dst[type]; for(auto i = list.begin(); i != list.end(); ++i) { Target* t = *i; if(bp == t->m_TEX0.TBP0) { list.MoveFront(i.Index()); dst = t; dst->m_32_bits_fmt |= (psm_s.bpp != 16); dst->m_TEX0 = TEX0; break; } } if (dst) { GL_CACHE("TC: Lookup Target(%s) %dx%d, hit: %d (0x%x, %s)", to_string(type), w, h, dst->m_texture->GetID(), bp, psm_str(TEX0.PSM)); dst->Update(); dst->m_dirty_alpha |= (psm_s.trbpp == 32 && (fbmask & 0xFF000000) != 0xFF000000) || (psm_s.trbpp == 16); } else if (m_can_convert_depth) { int rev_type = (type == DepthStencil) ? RenderTarget : DepthStencil; // Depth stencil/RT can be an older RT/DS but only check recent RT/DS to avoid to pick // some bad data. Target* dst_match = nullptr; for(auto t : m_dst[rev_type]) { if (bp == t->m_TEX0.TBP0) { if (t->m_age == 0) { dst_match = t; break; } else if (t->m_age == 1) { dst_match = t; } } } if (dst_match) { GSVector4 sRect(0, 0, 1, 1); GSVector4 dRect(0, 0, w, h); dst = CreateTarget(TEX0, w, h, type); dst->m_32_bits_fmt = dst_match->m_32_bits_fmt; int shader; bool fmt_16_bits = (psm_s.bpp == 16 && GSLocalMemory::m_psm[dst_match->m_TEX0.PSM].bpp == 16); if (type == DepthStencil) { GL_CACHE("TC: Lookup Target(Depth) %dx%d, hit Color (0x%x, %s was %s)", w, h, bp, psm_str(TEX0.PSM), psm_str(dst_match->m_TEX0.PSM)); shader = (fmt_16_bits) ? ShaderConvert_RGB5A1_TO_FLOAT16 : ShaderConvert_RGBA8_TO_FLOAT32 + psm_s.fmt; } else { GL_CACHE("TC: Lookup Target(Color) %dx%d, hit Depth (0x%x, %s was %s)", w, h, bp, psm_str(TEX0.PSM), psm_str(dst_match->m_TEX0.PSM)); shader = (fmt_16_bits) ? ShaderConvert_FLOAT16_TO_RGB5A1 : ShaderConvert_FLOAT32_TO_RGBA8; } m_renderer->m_dev->StretchRect(dst_match->m_texture, sRect, dst->m_texture, dRect, shader, false); } } if(dst == NULL) { GL_CACHE("TC: Lookup Target(%s) %dx%d, miss (0x%x, %s)", to_string(type), w, h, bp, psm_str(TEX0.PSM)); dst = CreateTarget(TEX0, w, h, type); // In theory new textures contain invalidated data. Still in theory a new target // must contains the content of the GS memory. // In practice, TC will wrongly invalidate some RT. For example due to write on the alpha // channel but colors is still valid. Unfortunately TC doesn't support the upload of data // in target. // // Cleaning the code here will likely break several games. However it might reduce // the noise in draw call debugging. It is the main reason to enable it on debug build. // // From a performance point of view, it might cost a little on big upscaling // but normally few RT are miss so it must remain reasonable. bool supported_fmt = m_can_convert_depth || psm_s.depth == 0; if (m_preload_frame && TEX0.TBW > 0 && supported_fmt) { GL_INS("Preloading the RT DATA"); // RT doesn't have height but if we use a too big value, we will read outside of the GS memory. int page0 = TEX0.TBP0 >> 5; int max_page = (MAX_PAGES - page0); int max_h = 32 * max_page / TEX0.TBW; // h is likely smaller than w (true most of the time). Reduce the upload size (speed) max_h = std::min(max_h, TEX0.TBW * 64); dst->m_dirty.push_back(GSDirtyRect(GSVector4i(0, 0, TEX0.TBW * 64, max_h), TEX0.PSM)); dst->Update(); } else { #ifdef ENABLE_OGL_DEBUG switch (type) { case RenderTarget: m_renderer->m_dev->ClearRenderTarget(dst->m_texture, 0); break; case DepthStencil: m_renderer->m_dev->ClearDepth(dst->m_texture); break; default: break; } #endif } } ScaleTexture(dst->m_texture); if(used) { dst->m_used = true; } return dst; } GSTextureCache::Target* GSTextureCache::LookupTarget(const GIFRegTEX0& TEX0, int w, int h, int real_h) { uint32 bp = TEX0.TBP0; Target* dst = NULL; #if 0 // Dump the list of targets for debug for(auto t : m_dst[RenderTarget]) { GL_INS("TC: frame 0x%x -> 0x%x : %d (age %d)", t->m_TEX0.TBP0, t->m_end_block, t->m_texture->GetID(), t->m_age); } #endif // Let's try to find a perfect frame that contains valid data for(auto t : m_dst[RenderTarget]) { if(bp == t->m_TEX0.TBP0 && t->m_end_block >= bp) { dst = t; GL_CACHE("TC: Lookup Frame %dx%d, perfect hit: %d (0x%x -> 0x%x %s)", w, h, dst->m_texture->GetID(), bp, t->m_end_block, psm_str(TEX0.PSM)); break; } } // 2nd try ! Try to find a frame that include the bp if (dst == NULL) { for(auto t : m_dst[RenderTarget]) { if (t->m_TEX0.TBP0 < bp && bp <= t->m_end_block) { dst = t; GL_CACHE("TC: Lookup Frame %dx%d, inclusive hit: %d (0x%x, took 0x%x -> 0x%x %s)", w, h, t->m_texture->GetID(), bp, t->m_TEX0.TBP0, t->m_end_block, psm_str(TEX0.PSM)); break; } } } // 3rd try ! Try to find a frame that doesn't contain valid data (honestly I'm not sure we need to do it) if (dst == NULL) { for(auto t : m_dst[RenderTarget]) { if(bp == t->m_TEX0.TBP0) { dst = t; GL_CACHE("TC: Lookup Frame %dx%d, empty hit: %d (0x%x -> 0x%x %s)", w, h, dst->m_texture->GetID(), bp, t->m_end_block, psm_str(TEX0.PSM)); break; } } } #if 0 for(auto t : m_dst[RenderTarget]) { if(bp == t->m_TEX0.TBP0) { dst = t; GL_CACHE("TC: Lookup Frame %dx%d, perfect hit: %d (0x%x -> 0x%x)", w, h, dst->m_texture->GetID(), bp, t->m_end_block); break; } else { // HACK: try to find something close to the base pointer if(t->m_TEX0.TBP0 <= bp && bp < t->m_TEX0.TBP0 + 0xe00UL && (!dst || t->m_TEX0.TBP0 >= dst->m_TEX0.TBP0)) { GL_CACHE("TC: Lookup Frame %dx%d, close hit: %d (0x%x, took 0x%x -> 0x%x)", w, h, t->m_texture->GetID(), bp, t->m_TEX0.TBP0, t->m_end_block); dst = t; } } } #endif if(dst == NULL) { GL_CACHE("TC: Lookup Frame %dx%d, miss (0x%x %s)", w, h, bp, psm_str(TEX0.PSM)); dst = CreateTarget(TEX0, w, h, RenderTarget); ScaleTexture(dst->m_texture); m_renderer->m_dev->ClearRenderTarget(dst->m_texture, 0); // new frame buffers after reset should be cleared, don't display memory garbage if (m_preload_frame) { // Load GS data into frame. Game can directly uploads a background or the full image in // "CTRC" buffer. It will also avoid various black screen issue in gs dump. // // Code is more or less an equivalent of the SW renderer // // Option is hidden and not enabled by default to avoid any regression dst->m_dirty.push_back(GSDirtyRect(GSVector4i(0, 0, TEX0.TBW * 64, real_h), TEX0.PSM)); dst->Update(); } } else { dst->Update(); } dst->m_used = true; dst->m_dirty_alpha = false; return dst; } // Goal: Depth And Target at the same address is not possible. On GS it is // the same memory but not on the Dx/GL. Therefore a write to the Depth/Target // must invalidate the Target/Depth respectively void GSTextureCache::InvalidateVideoMemType(int type, uint32 bp) { if (!m_can_convert_depth) return; auto& list = m_dst[type]; for(auto i = list.begin(); i != list.end(); ++i) { Target* t = *i; if(bp == t->m_TEX0.TBP0) { GL_CACHE("TC: InvalidateVideoMemType: Remove Target(%s) %d (0x%x)", to_string(type), t->m_texture ? t->m_texture->GetID() : 0, t->m_TEX0.TBP0); list.erase(i); delete t; break; } } } // Goal: invalidate data sent to the GPU when the source (GS memory) is modified // Called each time you want to write to the GS memory void GSTextureCache::InvalidateVideoMem(GSOffset* off, const GSVector4i& rect, bool target) { if(!off) return; // Fixme. Crashes Dual Hearts, maybe others as well. Was fine before r1549. uint32 bp = off->bp; uint32 bw = off->bw; uint32 psm = off->psm; if(!target) { // Remove Source that have same BP as the render target (color&dss) // rendering will dirty the copy auto& list = m_src.m_map[bp >> 5]; for(auto i = list.begin(); i != list.end(); ) { Source* s = *i; ++i; if (GSUtil::HasSharedBits(bp, psm, s->m_TEX0.TBP0, s->m_TEX0.PSM) || GSUtil::HasSharedBits(bp, psm, s->m_from_target_TEX0.TBP0, s->m_TEX0.PSM)) { m_src.RemoveAt(s); } } uint32 bbp = bp + bw * 0x10; if (bw >= 16 && bbp < 16384) { // Detect half of the render target (fix snow engine game) // Target Page (8KB) have always a width of 64 pixels // Half of the Target is TBW/2 pages * 8KB / (1 block * 256B) = 0x10 auto& list = m_src.m_map[bbp >> 5]; for(auto i = list.begin(); i != list.end(); ) { Source* s = *i; ++i; if(GSUtil::HasSharedBits(bbp, psm, s->m_TEX0.TBP0, s->m_TEX0.PSM)) { m_src.RemoveAt(s); } } } // Haunting ground write frame buffer 0x3000 and expect to write data to 0x3380 // Note: the game only does a 0 direct write. If some games expect some real data // we are screwed. if (m_renderer->m_game.title == CRC::HauntingGround) { uint32 end_block = GSLocalMemory::m_psm[psm].bn(rect.z - 1, rect.w - 1, bp, bw); // Valid only for color formats auto type = RenderTarget; for(auto t : m_dst[type]) { if (t->m_TEX0.TBP0 > bp && t->m_end_block <= end_block) { // Haunting ground expect to clean buffer B with a rendering into buffer A. // Situation is quite messy as it would require to extract the data from the buffer A // and to move in buffer B. // // Of course buffers don't share the same line width. You can't delete the buffer as next // miss will load invalid data. // // So just clear the damn buffer and forget about it. GL_CACHE("TC: Clear Sub Target(%s) %d (0x%x)", to_string(type), t->m_texture ? t->m_texture->GetID() : 0, t->m_TEX0.TBP0); m_renderer->m_dev->ClearRenderTarget(t->m_texture, 0); } } } } GSVector4i r; uint32* pages = (uint32*)m_temp; off->GetPages(rect, pages, &r); bool found = false; for(const uint32* p = pages; *p != GSOffset::EOP; p++) { uint32 page = *p; auto& list = m_src.m_map[page]; for(auto i = list.begin(); i != list.end(); ) { Source* s = *i; ++i; if(GSUtil::HasSharedBits(psm, s->m_TEX0.PSM)) { bool b = bp == s->m_TEX0.TBP0; if(!s->m_target) { if(m_disable_partial_invalidation && s->m_repeating) { m_src.RemoveAt(s); } else { uint32* RESTRICT valid = s->m_valid; // Invalidate data of input texture if(s->m_repeating) { // Note: very hot path on snowbling engine game for(const GSVector2i& k : s->m_p2t[page]) { valid[k.x] &= k.y; } } else { valid[page] = 0; } s->m_complete = false; found |= b; } } else { // render target used as input texture // TODO b |= bp == s->m_from_target_TEX0.TBP0; if(b) { m_src.RemoveAt(s); } } } } } if(!target) return; for(int type = 0; type < 2; type++) { auto& list = m_dst[type]; for(auto i = list.begin(); i != list.end(); ) { auto j = i++; Target* t = *j; // GH: (I think) this code is completely broken. Typical issue: // EE write an alpha channel into 32 bits texture // Results: the target is deleted (because HasCompatibleBits is false) // // Major issues are expected if the game try to reuse the target // If we dirty the RT, it will likely upload partially invalid data. // (The color on the previous example) if(GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t->m_TEX0.PSM)) { if(!found && GSUtil::HasCompatibleBits(psm, t->m_TEX0.PSM)) { GL_CACHE("TC: Dirty Target(%s) %d (0x%x) r(%d,%d,%d,%d)", to_string(type), t->m_texture ? t->m_texture->GetID() : 0, t->m_TEX0.TBP0, r.x, r.y, r.z, r.w); t->m_dirty.push_back(GSDirtyRect(r, psm)); t->m_TEX0.TBW = bw; } else { list.erase(j); GL_CACHE("TC: Remove Target(%s) %d (0x%x)", to_string(type), t->m_texture ? t->m_texture->GetID() : 0, t->m_TEX0.TBP0); delete t; continue; } } else if (bp == t->m_TEX0.TBP0) { // EE writes the ALPHA channel. Mark it as invalid for // the texture cache. Otherwise it will generate a wrong // hit on the texture cache. // Game: Conflict - Desert Storm (flickering) t->m_dirty_alpha = false; } // GH: Try to detect texture write that will overlap with a target buffer if(GSUtil::HasSharedBits(psm, t->m_TEX0.PSM)) { if (bp < t->m_TEX0.TBP0) { uint32 rowsize = bw * 8192; uint32 offset = (uint32)((t->m_TEX0.TBP0 - bp) * 256); if(rowsize > 0 && offset % rowsize == 0) { int y = GSLocalMemory::m_psm[psm].pgs.y * offset / rowsize; if(r.bottom > y) { GL_CACHE("TC: Dirty After Target(%s) %d (0x%x)", to_string(type), t->m_texture ? t->m_texture->GetID() : 0, t->m_TEX0.TBP0); // TODO: do not add this rect above too t->m_dirty.push_back(GSDirtyRect(GSVector4i(r.left, r.top - y, r.right, r.bottom - y), psm)); t->m_TEX0.TBW = bw; continue; } } } // FIXME: this code "fixes" black FMV issue with rule of rose. #if 1 // Greg: I'm not sure the 'bw' equality is required but it won't hurt too much // // Ben 10 Alien Force : Vilgax Attacks uses a small temporary target for multiple textures (different bw) // It is too complex to handle, and purpose of the code was to handle FMV (large bw). So let's skip small // (128 pixels) target if (bw > 2 && t->m_TEX0.TBW == bw && t->Inside(bp, bw, psm, rect) && GSUtil::HasCompatibleBits(psm, t->m_TEX0.PSM)) { uint32 rowsize = bw * 8192u; uint32 offset = (uint32)((bp - t->m_TEX0.TBP0) * 256); if(rowsize > 0 && offset % rowsize == 0) { int y = GSLocalMemory::m_psm[psm].pgs.y * offset / rowsize; GL_CACHE("TC: Dirty in the middle of Target(%s) %d (0x%x->0x%x) pos(%d,%d => %d,%d) bw:%u", to_string(type), t->m_texture ? t->m_texture->GetID() : 0, t->m_TEX0.TBP0, t->m_end_block, r.left, r.top + y, r.right, r.bottom + y, bw); t->m_dirty.push_back(GSDirtyRect(GSVector4i(r.left, r.top + y, r.right, r.bottom + y), psm)); t->m_TEX0.TBW = bw; continue; } } #endif } } } } // Goal: retrive the data from the GPU to the GS memory. // Called each time you want to read from the GS memory void GSTextureCache::InvalidateLocalMem(GSOffset* off, const GSVector4i& r) { uint32 bp = off->bp; uint32 psm = off->psm; //uint32 bw = off->bw; // No depth handling please. if (psm == PSM_PSMZ32 || psm == PSM_PSMZ24 || psm == PSM_PSMZ16 || psm == PSM_PSMZ16S) { GL_INS("ERROR: InvalidateLocalMem depth format isn't supported (%d,%d to %d,%d)", r.x, r.y, r.z, r.w); if (m_can_convert_depth) { for(auto t : m_dst[DepthStencil]) { if(GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t->m_TEX0.PSM)) { if (GSUtil::HasCompatibleBits(psm, t->m_TEX0.PSM)) Read(t, r.rintersect(t->m_valid)); } } } return; } // This is a shorter but potentially slower version of the below, commented out code. // It works for all the games mentioned below and fixes a couple of other ones as well // (Busen0: Wizardry and Chaos Legion). // Also in a few games the below code ran the Grandia3 case when it shouldn't :p for(auto t : m_dst[RenderTarget]) { if (t->m_TEX0.PSM != PSM_PSMZ32 && t->m_TEX0.PSM != PSM_PSMZ24 && t->m_TEX0.PSM != PSM_PSMZ16 && t->m_TEX0.PSM != PSM_PSMZ16S) { if(GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t->m_TEX0.PSM)) { // GH Note: Read will do a StretchRect and then will sizzle data to the GS memory // t->m_valid will do the full target texture whereas r.intersect(t->m_valid) will be limited // to the useful part for the transfer. // 1/ Logically intersect must be enough, except if we miss some call to InvalidateLocalMem // or it need the depth part too // 2/ Read function is slow but I suspect the swizzle part to be costly. Maybe a compute shader // that do the swizzle at the same time of the Stretching could save CPU computation. // note: r.rintersect breaks Wizardry and Chaos Legion // Read(t, t->m_valid) works in all tested games but is very slow in GUST titles >< if (GSTextureCache::m_disable_partial_invalidation) { Read(t, r.rintersect(t->m_valid)); } else { if (r.x == 0 && r.y == 0) // Full screen read? Read(t, t->m_valid); else // Block level read? Read(t, r.rintersect(t->m_valid)); } } } else { GL_INS("ERROR: InvalidateLocalMem target is a depth format"); } } //GSTextureCache::Target* rt2 = NULL; //int ymin = INT_MAX; //for(auto i = m_dst[RenderTarget].begin(); i != m_dst[RenderTarget].end(); ) //{ // auto j = i++; // Target* t = *j; // if (t->m_TEX0.PSM != PSM_PSMZ32 && t->m_TEX0.PSM != PSM_PSMZ24 && t->m_TEX0.PSM != PSM_PSMZ16 && t->m_TEX0.PSM != PSM_PSMZ16S) // { // if(GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t->m_TEX0.PSM)) // { // if(GSUtil::HasCompatibleBits(psm, t->m_TEX0.PSM)) // { // Read(t, r.rintersect(t->m_valid)); // return; // } // else if(psm == PSM_PSMCT32 && (t->m_TEX0.PSM == PSM_PSMCT16 || t->m_TEX0.PSM == PSM_PSMCT16S)) // { // // ffx-2 riku changing to her default (shoots some reflecting glass at the end), 16-bit rt read as 32-bit // Read(t, GSVector4i(r.left, r.top, r.right, r.top + (r.bottom - r.top) * 2).rintersect(t->m_valid)); // return; // } // else // { // if (psm == PSM_PSMT4HH && t->m_TEX0.PSM == PSM_PSMCT32) // { // // Silent Hill Origins shadows: Read 8 bit using only the HIGH bits (4 bit) texture as 32 bit. // Read(t, r.rintersect(t->m_valid)); // return; // } // else // { // //printf("Trashing render target. We have a %d type texture and we are trying to write into a %d type texture\n", t->m_TEX0.PSM, psm); // m_dst[RenderTarget].erase(j); // delete t; // } // } // } // // Grandia3, FFX, FFX-2 pause menus. t->m_TEX0.TBP0 magic number checks because otherwise kills xs2 videos // if( (GSUtil::HasSharedBits(psm, t->m_TEX0.PSM) && (bp > t->m_TEX0.TBP0) ) // && ((t->m_TEX0.TBP0 == 0) || (t->m_TEX0.TBP0==3328) || (t->m_TEX0.TBP0==3584) )) // { // //printf("first : %d-%d child : %d-%d\n", psm, bp, t->m_TEX0.PSM, t->m_TEX0.TBP0); // uint32 rowsize = bw * 8192; // uint32 offset = (uint32)((bp - t->m_TEX0.TBP0) * 256); // if(rowsize > 0 && offset % rowsize == 0) // { // int y = GSLocalMemory::m_psm[psm].pgs.y * offset / rowsize; // if(y < ymin && y < 512) // { // rt2 = t; // ymin = y; // } // } // } // } //} //if(rt2) //{ // Read(rt2, GSVector4i(r.left, r.top + ymin, r.right, r.bottom + ymin)); //} // TODO: ds } // Hack: remove Target that are strictly included in current rt. Typically uses for FMV // For example, game is rendered at 0x800->0x1000, fmv will be uploaded to 0x0->0x2800 // FIXME In theory, we ought to report the data from the sub rt to the main rt. But let's // postpone it for later. void GSTextureCache::InvalidateVideoMemSubTarget(GSTextureCache::Target* rt) { if (!rt) return; auto& list = m_dst[RenderTarget]; for(auto i = list.begin(); i != list.end(); ) { Target* t = *i; if((t->m_TEX0.TBP0 > rt->m_TEX0.TBP0) && (t->m_end_block < rt->m_end_block) && (t->m_TEX0.TBW == rt->m_TEX0.TBW) && (t->m_TEX0.TBP0 < t->m_end_block)) { GL_INS("InvalidateVideoMemSubTarget: rt 0x%x -> 0x%x, sub rt 0x%x -> 0x%x", rt->m_TEX0.TBP0, rt->m_end_block, t->m_TEX0.TBP0, t->m_end_block); i = list.erase(i); delete t; } else { ++i; } } } void GSTextureCache::IncAge() { int maxage = m_src.m_used ? 3 : 30; // You can't use m_map[page] because Source* are duplicated on several pages. for(auto i = m_src.m_surfaces.begin(); i != m_src.m_surfaces.end(); ) { Source* s = *i; if(s->m_shared_texture) { // Shared textures are temporary only added in the hash set but not in the texture // cache list therefore you can't use RemoveAt i = m_src.m_surfaces.erase(i); delete s; } else { ++i; if (++s->m_age > maxage) { m_src.RemoveAt(s); } } } m_src.m_used = false; // Clearing of Rendertargets causes flickering in many scene transitions. // Sigh, this seems to be used to invalidate surfaces. So set a huge maxage to avoid flicker, // but still invalidate surfaces. (Disgaea 2 fmv when booting the game through the BIOS) // Original maxage was 4 here, Xenosaga 2 needs at least 240, else it flickers on scene transitions. maxage = 400; // ffx intro scene changes leave the old image untouched for a couple of frames and only then start using it for(int type = 0; type < 2; type++) { auto& list = m_dst[type]; for(auto i = list.begin(); i != list.end(); ) { Target* t = *i; // This variable is used to detect the texture shuffle effect. There is a high // probability that game will do it on the current RT. // Variable is cleared here to avoid issue with game that uses a 16 bits // render target if (t->m_age > 0) { // GoW2 uses the effect at the start of the frame t->m_32_bits_fmt = false; } if(++t->m_age > maxage) { i = list.erase(i); GL_CACHE("TC: Remove Target(%s): %d (0x%x) due to age", to_string(type), t->m_texture ? t->m_texture->GetID() : 0, t->m_TEX0.TBP0); delete t; } else { ++i; } } } } //Fixme: Several issues in here. Not handling depth stencil, pitch conversion doesnt work. GSTextureCache::Source* GSTextureCache::CreateSource(const GIFRegTEX0& TEX0, const GIFRegTEXA& TEXA, Target* dst, bool half_right, int x_offset, int y_offset) { const GSLocalMemory::psm_t& psm = GSLocalMemory::m_psm[TEX0.PSM]; Source* src = new Source(m_renderer, TEX0, TEXA, m_temp); int tw = 1 << TEX0.TW; int th = 1 << TEX0.TH; //int tp = TEX0.TBW << 6; bool hack = false; if (dst && (x_offset != 0 || y_offset != 0)) { GSVector2 scale = dst->m_texture->GetScale(); int x = (int)(scale.x * x_offset); int y = (int)(scale.y * y_offset); int w = (int)(scale.x * tw); int h = (int)(scale.y * th); GSTexture* sTex = dst->m_texture; GSTexture* dTex = m_renderer->m_dev->CreateRenderTarget(w, h); GSVector4i area(x, y, x + w, y + h); m_renderer->m_dev->CopyRect(sTex, dTex, area); // Keep a trace of origin of the texture src->m_texture = dTex; src->m_target = true; src->m_from_target = dst->m_texture; src->m_from_target_TEX0 = dst->m_TEX0; src->m_texture->SetScale(scale); if (psm.pal > 0) { // Attach palette for GPU texture conversion AttachPaletteToSource(src, psm.pal, true); } } else if (dst && static_cast(m_renderer)->IsDummyTexture()) { // This shortcut is a temporary solution. It isn't a good solution // as it won't work with Channel Shuffle/Texture Shuffle pattern // (we need texture cache result to detect those effects). // Instead a better solution would be to defer the copy/StrechRect later // in the rendering. // Still this poor solution is enough for a huge speed up in a couple of games // // Be aware that you can't use StrechRect between BeginScene/EndScene. // So it could be tricky to put in the middle of the DrawPrims // Texture is created to keep code compatibility GSTexture* dTex = m_renderer->m_dev->CreateRenderTarget(tw, th); // Keep a trace of origin of the texture src->m_texture = dTex; src->m_target = true; src->m_from_target = dst->m_texture; src->m_from_target_TEX0 = dst->m_TEX0; // Even if we sample the framebuffer directly we might need the palette // to handle the format conversion on GPU if (psm.pal > 0) AttachPaletteToSource(src, psm.pal, true); } else if (dst) { // TODO: clean up this mess int shader = dst->m_type != RenderTarget ? ShaderConvert_FLOAT32_TO_RGBA8 : ShaderConvert_COPY; bool is_8bits = TEX0.PSM == PSM_PSMT8; if (is_8bits) { GL_INS("Reading RT as a packed-indexed 8 bits format"); shader = ShaderConvert_RGBA_TO_8I; } #ifdef ENABLE_OGL_DEBUG if (TEX0.PSM == PSM_PSMT4) { GL_INS("ERROR: Reading RT as a packed-indexed 4 bits format is not supported"); } #endif if (GSLocalMemory::m_psm[TEX0.PSM].bpp > 8) { src->m_32_bits_fmt = dst->m_32_bits_fmt; } // Keep a trace of origin of the texture src->m_target = true; src->m_from_target = dst->m_texture; src->m_from_target_TEX0 = dst->m_TEX0; src->m_valid_rect = dst->m_valid; dst->Update(); // do not round here!!! if edge becomes a black pixel and addressing mode is clamp => everything outside the clamped area turns into black (kh2 shadows) int w = (int)(dst->m_texture->GetScale().x * tw); int h = (int)(dst->m_texture->GetScale().y * th); if (is_8bits) { // Unscale 8 bits textures, quality won't be nice but format is really awful w = tw; h = th; } GSVector2i dstsize = dst->m_texture->GetSize(); // pitch conversion if(dst->m_TEX0.TBW != TEX0.TBW) // && dst->m_TEX0.PSM == TEX0.PSM { // This is so broken :p ////Better not do the code below, "fixes" like every game that ever gets here.. ////Edit: Ratchet and Clank needs this to show most of it's graphics at all. ////Someone else fix this please, I can't :p ////delete src; return NULL; //// sfex3 uses this trick (bw: 10 -> 5, wraps the right side below the left) //ASSERT(dst->m_TEX0.TBW > TEX0.TBW); // otherwise scale.x need to be reduced to make the larger texture fit (TODO) //src->m_texture = m_renderer->m_dev->CreateRenderTarget(dstsize.x, dstsize.y, false); //GSVector4 size = GSVector4(dstsize).xyxy(); //GSVector4 scale = GSVector4(dst->m_texture->GetScale()).xyxy(); //int blockWidth = 64; //int blockHeight = TEX0.PSM == PSM_PSMCT32 || TEX0.PSM == PSM_PSMCT24 ? 32 : 64; //GSVector4i br(0, 0, blockWidth, blockHeight); //int sw = (int)dst->m_TEX0.TBW << 6; //int dw = (int)TEX0.TBW << 6; //int dh = 1 << TEX0.TH; //if(sw != 0) //for(int dy = 0; dy < dh; dy += blockHeight) //{ // for(int dx = 0; dx < dw; dx += blockWidth) // { // int off = dy * dw / blockHeight + dx; // int sx = off % sw; // int sy = off / sw; // GSVector4 sRect = GSVector4(GSVector4i(sx, sy).xyxy() + br) * scale / size; // GSVector4 dRect = GSVector4(GSVector4i(dx, dy).xyxy() + br) * scale; // m_renderer->m_dev->StretchRect(dst->m_texture, sRect, src->m_texture, dRect); // // TODO: this is quite a lot of StretchRect, do it with one Draw // } //} } else if(tw < 1024) { // FIXME: timesplitters blurs the render target by blending itself over a couple of times hack = true; //if(tw == 256 && th == 128 && (TEX0.TBP0 == 0 || TEX0.TBP0 == 0x00e00)) //{ // delete src; // return NULL; //} } // width/height conversion GSVector2 scale = dst->m_texture->GetScale(); GSVector4 dRect(0, 0, w, h); // Lengthy explanation of the rescaling code. // Here an example in 2x: // RT is 1280x1024 but only contains 512x448 valid data (so 256x224 pixels without upscaling) // // PS2 want to read it back as a 1024x1024 pixels (they don't care about the extra pixels) // So in theory we need to shrink a 2048x2048 RT into a 1024x1024 texture. Obviously the RT is // too small. // // So we will only limit the resize to the available data in RT. // Therefore we will resize the RT from 1280x1024 to 1280x1024/2048x2048 % of the new texture // size (which is 1280x1024) (i.e. 800x512) // From the rendering point of view. UV coordinate will be normalized on the real GS texture size // This way it can be used on an upscaled texture without extra scaling factor (only requirement is // to have same proportion) // // FIXME: The scaling will create a bad offset. For example if texture coordinate start at 0.5 (pixel 0) // At 2x it will become 0.5/128 * 256 = 1 (pixel 1) // I think it is the purpose of the UserHacks_HalfPixelOffset below. However implementation is less // than ideal. // 1/ It suppose games have an half pixel offset on texture coordinate which could be wrong // 2/ It doesn't support rescaling of the RT (tw = 1024) // Maybe it will be more easy to just round the UV value in the Vertex Shader if (!is_8bits) { // 8 bits handling is special due to unscaling. It is better to not execute this code if (w > dstsize.x) { scale.x = (float)dstsize.x / tw; dRect.z = (float)dstsize.x * scale.x / dst->m_texture->GetScale().x; w = dstsize.x; } if (h > dstsize.y) { scale.y = (float)dstsize.y / th; dRect.w = (float)dstsize.y * scale.y / dst->m_texture->GetScale().y; h = dstsize.y; } } GSVector4 sRect(0, 0, w, h); // Don't be fooled by the name. 'dst' is the old target (hence the input) // 'src' is the new texture cache entry (hence the output) GSTexture* sTex = dst->m_texture; GSTexture* dTex = m_renderer->m_dev->CreateRenderTarget(w, h); src->m_texture = dTex; // GH: by default (m_paltex == 0) GSdx converts texture to the 32 bit format // However it is different here. We want to reuse a Render Target as a texture. // Because the texture is already on the GPU, CPU can't convert it. if (psm.pal > 0) { AttachPaletteToSource(src, psm.pal, true); } // Disable linear filtering for various GS post-processing effect // 1/ Palette is used to interpret the alpha channel of the RT as an index. // Star Ocean 3 uses it to emulate a stencil buffer. // 2/ Z formats are a bad idea to interpolate (discontinuties). // 3/ 16 bits buffer is used to move data from a channel to another. // // I keep linear filtering for standard color even if I'm not sure that it is // working correctly. // Indeed, texture is reduced so you need to read all covered pixels (9 in 3x) // to correctly interpolate the value. Linear interpolation is likely acceptable // only in 2x scaling // // Src texture will still be bilinear interpolated so I'm really not sure // that we need to do it here too. // // Future note: instead to do // RT 2048x2048 -> T 1024x1024 -> RT 2048x2048 // We can maybe sample directly a bigger texture // RT 2048x2048 -> T 2048x2048 -> RT 2048x2048 // Pro: better quality. Copy instead of StretchRect (must be faster) // Cons: consume more memory // // In distant future: investigate to reuse the RT directly without any // copy. Likely a speed boost and memory usage reduction. bool linear = (TEX0.PSM == PSM_PSMCT32 || TEX0.PSM == PSM_PSMCT24); if ((sRect == dRect).alltrue() && !shader) { if (half_right) { // You typically hit this code in snow engine game. Dstsize is the size of of Dx/GL RT // which is arbitrary set to 1280 (biggest RT used by GS). h/w are based on the input texture // so the only reliable way to find the real size of the target is to use the TBW value. float real_width = dst->m_TEX0.TBW * 64u * dst->m_texture->GetScale().x; m_renderer->m_dev->CopyRect(sTex, dTex, GSVector4i((int)(real_width/2.0f), 0, (int)real_width, h)); } else { m_renderer->m_dev->CopyRect(sTex, dTex, GSVector4i(0, 0, w, h)); // <= likely wrong dstsize.x could be bigger than w } } else { // Different size or not the same format sRect.z /= sTex->GetWidth(); sRect.w /= sTex->GetHeight(); if (half_right) { sRect.x = sRect.z/2.0f; } m_renderer->m_dev->StretchRect(sTex, sRect, dTex, dRect, shader, linear); } if( src->m_texture ) src->m_texture->SetScale(scale); else ASSERT(0); // Offset hack. Can be enabled via GSdx options. // The offset will be used in Draw(). float modx = 0.0f; float mody = 0.0f; if(UserHacks_HalfPixelOffset && hack) { switch(m_renderer->GetUpscaleMultiplier()) { case 0: //Custom Resolution { const float offset = 0.2f; modx = dst->m_texture->GetScale().x + offset; mody = dst->m_texture->GetScale().y + offset; dst->m_texture->LikelyOffset = true; break; } case 2: modx = 2.2f; mody = 2.2f; dst->m_texture->LikelyOffset = true; break; case 3: modx = 3.1f; mody = 3.1f; dst->m_texture->LikelyOffset = true; break; case 4: modx = 4.2f; mody = 4.2f; dst->m_texture->LikelyOffset = true; break; case 5: modx = 5.3f; mody = 5.3f; dst->m_texture->LikelyOffset = true; break; case 6: modx = 6.2f; mody = 6.2f; dst->m_texture->LikelyOffset = true; break; case 8: modx = 8.2f; mody = 8.2f; dst->m_texture->LikelyOffset = true; break; default: modx = 0.0f; mody = 0.0f; dst->m_texture->LikelyOffset = false; break; } } dst->m_texture->OffsetHack_modx = modx; dst->m_texture->OffsetHack_mody = mody; } else { if (m_paltex && psm.pal > 0) { src->m_texture = m_renderer->m_dev->CreateTexture(tw, th, Get8bitFormat()); AttachPaletteToSource(src, psm.pal, true); } else { src->m_texture = m_renderer->m_dev->CreateTexture(tw, th); if (psm.pal > 0) { AttachPaletteToSource(src, psm.pal, false); } } } ASSERT(src->m_texture); m_src.Add(src, TEX0, m_renderer->m_context->offset.tex); return src; } GSTextureCache::Target* GSTextureCache::CreateTarget(const GIFRegTEX0& TEX0, int w, int h, int type) { ASSERT(type == RenderTarget || type == DepthStencil); Target* t = new Target(m_renderer, TEX0, m_temp, m_can_convert_depth); // FIXME: initial data should be unswizzled from local mem in Update() if dirty t->m_type = type; if(type == RenderTarget) { t->m_texture = m_renderer->m_dev->CreateSparseRenderTarget(w, h); t->m_used = true; // FIXME } else if(type == DepthStencil) { t->m_texture = m_renderer->m_dev->CreateSparseDepthStencil(w, h); } m_dst[type].push_front(t); return t; } void GSTextureCache::PrintMemoryUsage() { #ifdef ENABLE_OGL_DEBUG uint32 tex = 0; uint32 tex_rt = 0; uint32 rt = 0; uint32 dss = 0; for(auto s : m_src.m_surfaces) { if(s && !s->m_shared_texture) { if(s->m_target) tex_rt += s->m_texture->GetMemUsage(); else tex += s->m_texture->GetMemUsage(); } } for(auto t : m_dst[RenderTarget]) { if(t) rt += t->m_texture->GetMemUsage(); } for(auto t : m_dst[DepthStencil]) { if(t) dss += t->m_texture->GetMemUsage(); } GL_PERF("MEM: RO Tex %dMB. RW Tex %dMB. Target %dMB. Depth %dMB", tex >> 20u, tex_rt >> 20u, rt >> 20u, dss >> 20u); #endif } // GSTextureCache::Surface GSTextureCache::Surface::Surface(GSRenderer* r, uint8* temp) : m_renderer(r) , m_texture(NULL) , m_age(0) , m_temp(temp) , m_32_bits_fmt(false) , m_shared_texture(false) { m_TEX0.TBP0 = 0x3fff; } GSTextureCache::Surface::~Surface() { // Shared textures are pointers copy. Therefore no allocation // to recycle. if (!m_shared_texture) m_renderer->m_dev->Recycle(m_texture); } void GSTextureCache::Surface::UpdateAge() { m_age = 0; } // GSTextureCache::Source GSTextureCache::Source::Source(GSRenderer* r, const GIFRegTEX0& TEX0, const GIFRegTEXA& TEXA, uint8* temp, bool dummy_container) : Surface(r, temp) , m_palette_obj(nullptr) , m_palette(nullptr) , m_valid_rect(0, 0) , m_target(false) , m_complete(false) , m_p2t(NULL) , m_from_target(NULL) , m_from_target_TEX0(TEX0) { m_TEX0 = TEX0; m_TEXA = TEXA; if (dummy_container) { // Dummy container only contain a m_texture that is a pointer to another source. m_write.rect = NULL; m_write.count = 0; m_repeating = false; } else { memset(m_layer_TEX0, 0, sizeof(m_layer_TEX0)); memset(m_valid, 0, sizeof(m_valid)); m_write.rect = (GSVector4i*)_aligned_malloc(3 * sizeof(GSVector4i), 32); m_write.count = 0; m_repeating = m_TEX0.IsRepeating(); if(m_repeating) { m_p2t = r->m_mem.GetPage2TileMap(m_TEX0); } GSOffset* off = m_renderer->m_context->offset.tex; m_pages_as_bit = off->GetPagesAsBits(m_TEX0); } } GSTextureCache::Source::~Source() { _aligned_free(m_write.rect); } void GSTextureCache::Source::Update(const GSVector4i& rect, int layer) { Surface::UpdateAge(); if(layer == 0 && (m_complete || m_target)) { return; } const GSVector2i& bs = GSLocalMemory::m_psm[m_TEX0.PSM].bs; int tw = std::max(1 << m_TEX0.TW, bs.x); int th = std::max(1 << m_TEX0.TH, bs.y); GSVector4i r = rect.ralign(bs); if(layer == 0 && r.eq(GSVector4i(0, 0, tw, th))) { m_complete = true; // lame, but better than nothing } const GSOffset* off = m_renderer->m_context->offset.tex; uint32 blocks = 0; if(m_repeating) { for(int y = r.top; y < r.bottom; y += bs.y) { uint32 base = off->block.row[y >> 3u]; for(int x = r.left, i = (y << 7) + x; x < r.right; x += bs.x, i += bs.x) { uint32 block = base + off->block.col[x >> 3u]; if(block < MAX_BLOCKS || m_wrap_gs_mem) { uint32 addr = (i >> 3u) % MAX_BLOCKS; uint32 row = addr >> 5u; uint32 col = 1 << (addr & 31u); if((m_valid[row] & col) == 0) { m_valid[row] |= col; Write(GSVector4i(x, y, x + bs.x, y + bs.y), layer); blocks++; } } } } } else { for(int y = r.top; y < r.bottom; y += bs.y) { uint32 base = off->block.row[y >> 3u]; for(int x = r.left; x < r.right; x += bs.x) { uint32 block = base + off->block.col[x >> 3u]; if(block < MAX_BLOCKS || m_wrap_gs_mem) { block %= MAX_BLOCKS; uint32 row = block >> 5u; uint32 col = 1 << (block & 31u); if((m_valid[row] & col) == 0) { m_valid[row] |= col; Write(GSVector4i(x, y, x + bs.x, y + bs.y), layer); blocks++; } } } } } if(blocks > 0) { m_renderer->m_perfmon.Put(GSPerfMon::Unswizzle, bs.x * bs.y * blocks << (m_palette ? 2 : 0)); Flush(m_write.count, layer); } } void GSTextureCache::Source::UpdateLayer(const GIFRegTEX0& TEX0, const GSVector4i& rect, int layer) { if (layer > 6) return; if (m_target) // Yeah keep dreaming return; if (TEX0 == m_layer_TEX0[layer]) return; GIFRegTEX0 old_TEX0 = m_TEX0; m_layer_TEX0[layer] = TEX0; m_TEX0 = TEX0; Update(rect, layer); m_TEX0 = old_TEX0; } void GSTextureCache::Source::Write(const GSVector4i& r, int layer) { m_write.rect[m_write.count++] = r; while(m_write.count >= 2) { GSVector4i& a = m_write.rect[m_write.count - 2]; GSVector4i& b = m_write.rect[m_write.count - 1]; if((a == b.zyxw()).mask() == 0xfff0) { a.right = b.right; // extend right m_write.count--; } else if((a == b.xwzy()).mask() == 0xff0f) { a.bottom = b.bottom; // extend down m_write.count--; } else { break; } } if(m_write.count > 2) { Flush(1, layer); } } void GSTextureCache::Source::Flush(uint32 count, int layer) { // This function as written will not work for paletted formats copied from framebuffers // because they are 8 or 4 bit formats on the GS and the GS local memory module reads // these into an 8 bit format while the D3D surfaces are 32 bit. // However the function is never called for these cases. This is just for information // should someone wish to use this function for these cases later. const GSLocalMemory::psm_t& psm = GSLocalMemory::m_psm[m_TEX0.PSM]; int tw = 1 << m_TEX0.TW; int th = 1 << m_TEX0.TH; GSVector4i tr(0, 0, tw, th); int pitch = std::max(tw, psm.bs.x) * sizeof(uint32); GSLocalMemory& mem = m_renderer->m_mem; const GSOffset* off = m_renderer->m_context->offset.tex; GSLocalMemory::readTexture rtx = psm.rtx; if(m_palette) { pitch >>= 2; rtx = psm.rtxP; } uint8* buff = m_temp; for(uint32 i = 0; i < count; i++) { GSVector4i r = m_write.rect[i]; if((r > tr).mask() & 0xff00) { (mem.*rtx)(off, r, buff, pitch, m_TEXA); m_texture->Update(r.rintersect(tr), buff, pitch, layer); } else { GSTexture::GSMap m; if(m_texture->Map(m, &r, layer)) { (mem.*rtx)(off, r, m.bits, m.pitch, m_TEXA); m_texture->Unmap(); } else { (mem.*rtx)(off, r, buff, pitch, m_TEXA); m_texture->Update(r, buff, pitch, layer); } } } if(count < m_write.count) { // Warning src and destination overlap. Memmove must be used instead of memcpy memmove(&m_write.rect[0], &m_write.rect[count], (m_write.count - count) * sizeof(m_write.rect[0])); } m_write.count -= count; } bool GSTextureCache::Source::ClutMatch(PaletteKey palette_key) { return PaletteKeyEqual()(palette_key, m_palette_obj->GetPaletteKey()); } // GSTextureCache::Target GSTextureCache::Target::Target(GSRenderer* r, const GIFRegTEX0& TEX0, uint8* temp, bool depth_supported) : Surface(r, temp) , m_type(-1) , m_used(false) , m_depth_supported(depth_supported) , m_end_block(0) { m_TEX0 = TEX0; m_32_bits_fmt |= (GSLocalMemory::m_psm[TEX0.PSM].trbpp != 16); m_dirty_alpha = GSLocalMemory::m_psm[TEX0.PSM].trbpp != 24; m_valid = GSVector4i::zero(); } void GSTextureCache::Target::Update() { Surface::UpdateAge(); // FIXME: the union of the rects may also update wrong parts of the render target (but a lot faster :) // GH: it must be doable // 1/ rescale the new t to the good size // 2/ copy each rectangle (rescale the rectangle) (use CopyRect or multiple vertex) // Alternate // 1/ uses multiple vertex rectangle GSVector2i t_size = default_rt_size; // Ensure buffer width is at least of the minimum required value. // Probably not necessary but doesn't hurt to be on the safe side. // I've seen some games use buffer sizes over 1024, which might bypass our default limit int buffer_width = m_TEX0.TBW << 6; t_size.x = std::max(buffer_width, t_size.x); GSVector4i r = m_dirty.GetDirtyRectAndClear(m_TEX0, t_size); if (r.rempty()) return; // No handling please if ((m_type == DepthStencil) && !m_depth_supported) { // do the most likely thing a direct write would do, clear it GL_INS("ERROR: Update DepthStencil dummy"); return; } else if (m_type == DepthStencil && m_renderer->m_game.title == CRC::FFX2) { GL_INS("ERROR: bad invalidation detected, depth buffer will be cleared"); // FFX2 menu. Invalidation of the depth is wrongly done and only the first // page is invalidated. Technically a CRC hack will be better but I don't expect // any games to only upload a single page of data for the depth. // // FFX2 menu got another bug. I'm not sure the top-left is properly written or not. It // could be a gsdx transfer bug too due to unaligned-page transfer. // // So the quick and dirty solution is just to clean the depth buffer. m_renderer->m_dev->ClearDepth(m_texture); return; } int w = r.width(); int h = r.height(); GIFRegTEXA TEXA; TEXA.AEM = 1; TEXA.TA0 = 0; TEXA.TA1 = 0x80; GSTexture* t = m_renderer->m_dev->CreateTexture(w, h); const GSOffset* off = m_renderer->m_mem.GetOffset(m_TEX0.TBP0, m_TEX0.TBW, m_TEX0.PSM); GSTexture::GSMap m; if(t->Map(m)) { m_renderer->m_mem.ReadTexture(off, r, m.bits, m.pitch, TEXA); t->Unmap(); } else { int pitch = ((w + 3) & ~3) * 4; m_renderer->m_mem.ReadTexture(off, r, m_temp, pitch, TEXA); t->Update(r.rsize(), m_temp, pitch); } // m_renderer->m_perfmon.Put(GSPerfMon::Unswizzle, w * h * 4); // Copy the new GS memory content into the destination texture. if(m_type == RenderTarget) { GL_INS("ERROR: Update RenderTarget 0x%x bw:%d (%d,%d => %d,%d)", m_TEX0.TBP0, m_TEX0.TBW, r.x, r.y, r.z, r.w); m_renderer->m_dev->StretchRect(t, m_texture, GSVector4(r) * GSVector4(m_texture->GetScale()).xyxy()); } else if(m_type == DepthStencil) { GL_INS("ERROR: Update DepthStencil 0x%x", m_TEX0.TBP0); // FIXME linear or not? m_renderer->m_dev->StretchRect(t, m_texture, GSVector4(r) * GSVector4(m_texture->GetScale()).xyxy(), ShaderConvert_RGBA8_TO_FLOAT32); } m_renderer->m_dev->Recycle(t); } void GSTextureCache::Target::UpdateValidity(const GSVector4i& rect) { m_valid = m_valid.runion(rect); // Block of the bottom right texel of the validity rectangle, last valid block of the texture m_end_block = GSLocalMemory::m_psm[m_TEX0.PSM].bn(m_valid.z - 1, m_valid.w - 1, m_TEX0.TBP0, m_TEX0.TBW); // Valid only for color formats // GL_CACHE("UpdateValidity (0x%x->0x%x) from R:%d,%d Valid: %d,%d", m_TEX0.TBP0, m_end_block, rect.z, rect.w, m_valid.z, m_valid.w); } bool GSTextureCache::Target::Inside(uint32 bp, uint32 bw, uint32 psm, const GSVector4i& rect) { uint32 block = GSLocalMemory::m_psm[psm].bn(rect.z - 1, rect.w - 1, bp, bw); // Valid only for color formats return bp >= m_TEX0.TBP0 && block <= m_end_block; } // GSTextureCache::SourceMap void GSTextureCache::SourceMap::Add(Source* s, const GIFRegTEX0& TEX0, GSOffset* off) { m_surfaces.insert(s); if(s->m_target) { // TODO // GH: I don't know why but it seems we only consider the first page for a render target size_t page = TEX0.TBP0 >> 5; s->m_erase_it[page] = m_map[page].InsertFront(s); return; } // The source pointer will be stored/duplicated in all m_map[array of pages] for(size_t i = 0; i < countof(m_pages); i++) { if(uint32 p = s->m_pages_as_bit[i]) { auto* m = &m_map[i << 5]; auto* e = &s->m_erase_it[i << 5]; unsigned long j; while(_BitScanForward(&j, p)) { // FIXME: this statement could be optimized to a single ASM instruction (instead of 4) // Either BTR (AKA bit test and reset). Depends on the previous instruction. // Or BLSR (AKA Reset Lowest Set Bit). No dependency but require BMI1 (basically a recent CPU) p ^= 1U << j; e[j] = m[j].InsertFront(s); } } } } void GSTextureCache::SourceMap::RemoveAll() { for (auto s : m_surfaces) delete s; m_surfaces.clear(); for(size_t i = 0; i < countof(m_map); i++) { m_map[i].clear(); } } void GSTextureCache::SourceMap::RemoveAt(Source* s) { m_surfaces.erase(s); GL_CACHE("TC: Remove Src Texture: %d (0x%x)", s->m_texture ? s->m_texture->GetID() : 0, s->m_TEX0.TBP0); if (s->m_target) { const size_t page = s->m_TEX0.TBP0 >> 5; m_map[page].EraseIndex(s->m_erase_it[page]); } else { for(size_t i = 0; i < countof(m_pages); i++) { if(uint32 p = s->m_pages_as_bit[i]) { auto* m = &m_map[i << 5]; const auto* e = &s->m_erase_it[i << 5]; unsigned long j; while(_BitScanForward(&j, p)) { // FIXME: this statement could be optimized to a single ASM instruction (instead of 4) // Either BTR (AKA bit test and reset). Depends on the previous instruction. // Or BLSR (AKA Reset Lowest Set Bit). No dependency but require BMI1 (basically a recent CPU) p ^= 1U << j; m[j].EraseIndex(e[j]); } } } } delete s; } void GSTextureCache::AttachPaletteToSource(Source* s, uint16 pal, bool need_gs_texture) { s->m_palette_obj = m_palette_map.LookupPalette(pal, need_gs_texture); s->m_palette = need_gs_texture ? s->m_palette_obj->GetPaletteGSTexture() : nullptr; } // GSTextureCache::Palette GSTextureCache::Palette::Palette(const GSRenderer* renderer, uint16 pal, bool need_gs_texture) : m_pal(pal) , m_tex_palette(nullptr) , m_renderer(renderer) { uint16 palette_size = pal * sizeof(uint32); m_clut = (uint32*)_aligned_malloc(palette_size, 64); memcpy(m_clut, (const uint32*)m_renderer->m_mem.m_clut, palette_size); if (need_gs_texture) { InitializeTexture(); } } GSTextureCache::Palette::~Palette() { m_renderer->m_dev->Recycle(m_tex_palette); _aligned_free(m_clut); } GSTexture* GSTextureCache::Palette::GetPaletteGSTexture() { return m_tex_palette; } GSTextureCache::PaletteKey GSTextureCache::Palette::GetPaletteKey() { return { m_clut, m_pal }; } void GSTextureCache::Palette::InitializeTexture() { if (!m_tex_palette) { // A palette texture is always created with dimensions 256x1 (also in the case that m_pal is 16, thus a 16x1 texture // would be enough to store the CLUT data) because the coordinates that the shader uses for // sampling such texture are always normalized by 255. // This is because indexes are stored as normalized values of an RGBA texture (e.g. index 15 will be read as (15/255), // and therefore will read texel 15/255 * texture size). m_tex_palette = m_renderer->m_dev->CreateTexture(256, 1); m_tex_palette->Update(GSVector4i(0, 0, m_pal, 1), m_clut, m_pal * sizeof(m_clut[0])); } } // GSTextureCache::PaletteKeyHash // Hashes the content of the clut. // The hashing function is implemented by taking two things into account: // 1) The clut can be an array of 16 or 256 uint32 (depending on the pal parameter) and in order to speed up the computation of the hash // the array is hashed in blocks of 16 uint32, so for clut of size 16 uint32 the hashing is computed in one pass and for clut of 256 uint32 // it is computed in 16 passes, // 2) The clut can contain many 0s, so as a way to increase the spread of hashing values for small changes in the input clut the hashing function // is using addition in combination with logical XOR operator; The addition constants are large prime numbers, which may help in achieving what intended. std::size_t GSTextureCache::PaletteKeyHash::operator()(const PaletteKey &key) const { uint16 pal = key.pal; const uint32* clut = key.clut; ASSERT((pal & 15) == 0); size_t clut_hash = 3831179159; for (uint16 i = 0; i < pal; i += 16) { clut_hash = (clut_hash + 1488000301) ^ (clut[i ] + 33644011); clut_hash = (clut_hash + 3831179159) ^ (clut[i + 1] + 47627467); clut_hash = (clut_hash + 3659574209) ^ (clut[i + 2] + 577038523); clut_hash = (clut_hash + 33644011) ^ (clut[i + 3] + 3491555267); clut_hash = (clut_hash + 777771959) ^ (clut[i + 4] + 3301075993); clut_hash = (clut_hash + 4019618579) ^ (clut[i + 5] + 4186992613); clut_hash = (clut_hash + 3465668953) ^ (clut[i + 6] + 3043435883); clut_hash = (clut_hash + 3494478943) ^ (clut[i + 7] + 3441897883); clut_hash = (clut_hash + 3432010979) ^ (clut[i + 8] + 2167922789); clut_hash = (clut_hash + 1570862863) ^ (clut[i + 9] + 3401920591); clut_hash = (clut_hash + 1002648679) ^ (clut[i + 10] + 1293530519); clut_hash = (clut_hash + 551381741) ^ (clut[i + 11] + 2539834039); clut_hash = (clut_hash + 3768974459) ^ (clut[i + 12] + 169943507); clut_hash = (clut_hash + 862380703) ^ (clut[i + 13] + 2906932549); clut_hash = (clut_hash + 3433082137) ^ (clut[i + 14] + 4234384109); clut_hash = (clut_hash + 2679083843) ^ (clut[i + 15] + 2719605247); } return clut_hash; }; // GSTextureCache::PaletteKeyEqual bool GSTextureCache::PaletteKeyEqual::operator()(const PaletteKey &lhs, const PaletteKey &rhs) const { if (lhs.pal != rhs.pal) { return false; } return GSVector4i::compare64(lhs.clut, rhs.clut, lhs.pal * sizeof(lhs.clut[0])); }; // GSTextureCache::PaletteMap GSTextureCache::PaletteMap::PaletteMap(const GSRenderer* renderer) : m_renderer(renderer) { for (auto& map : m_maps) { map.reserve(MAX_SIZE); } } std::shared_ptr GSTextureCache::PaletteMap::LookupPalette(uint16 pal, bool need_gs_texture) { ASSERT(pal == 16 || pal == 256); // Choose which hash map search into: // pal == 16 : index 0 // pal == 256 : index 1 auto& map = m_maps[pal == 16 ? 0 : 1]; const uint32* clut = (const uint32*)m_renderer->m_mem.m_clut; // Create PaletteKey for searching into map (clut is actually not copied, so do not store this key into the map) PaletteKey palette_key = { clut, pal }; auto it1 = map.find(palette_key); if (it1 != map.end()) { // Clut content match, HIT if (need_gs_texture && !it1->second->GetPaletteGSTexture()) { // Generate GSTexture and upload clut content if needed and not done yet it1->second->InitializeTexture(); } return it1->second; } // No palette with matching clut content, MISS if (map.size() > MAX_SIZE) { // If the map is too big, try to clean it by disposing and removing unused palettes, before adding the new one GL_INS("WARNING, %u-bit PaletteMap (Size %u): Max size %u exceeded, clearing unused palettes.", pal * sizeof(uint32), map.size(), MAX_SIZE); uint32 current_size = map.size(); for (auto it = map.begin(); it != map.end(); ) { // If the palette is unused, there is only one shared pointers holding a reference to the unused Palette object, // and this shared pointer is the one stored in the map itself if (it->second.use_count() <= 1) { // Palette is unused it = map.erase(it); // Erase element from map // The palette object should now be gone as the shared pointer to the object in the map is deleted } else { ++it; } } uint32 cleared_palette_count = current_size - (uint32)map.size(); if (cleared_palette_count == 0) { GL_INS("ERROR, %u-bit PaletteMap (Size %u): Max size %u exceeded, could not clear any palette, negative performance impact.", pal * sizeof(uint32), map.size(), MAX_SIZE); } else { map.reserve(MAX_SIZE); // Ensure map capacity is not modified by the clearing GL_INS("INFO, %u-bit PaletteMap (Size %u): Cleared %u palettes.", pal * sizeof(uint32), map.size(), cleared_palette_count); } } std::shared_ptr palette = std::make_shared(m_renderer, pal, need_gs_texture); map.emplace(palette->GetPaletteKey(), palette); GL_CACHE("TC, %u-bit PaletteMap (Size %u): Added new palette.", pal * sizeof(uint32), map.size()); return palette; } void GSTextureCache::PaletteMap::Clear() { for (auto& map : m_maps) { map.clear(); // Clear all the nodes of the map, deleting Palette objects managed by shared pointers as they should be unused elsewhere map.reserve(MAX_SIZE); // Ensure map capacity is not modified by the clearing } }