/* SPU2-X, A plugin for Emulating the Sound Processing Unit of the Playstation 2 * Developed and maintained by the Pcsx2 Development Team. * * Original portions from SPU2ghz are (c) 2008 by David Quintana [gigaherz] * * This library is free software; you can redistribute it and/or modify it under * the terms of the GNU Lesser General Public License as published by the Free * Software Foundation; either version 2.1 of the the License, or (at your * option) any later version. * * This library is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License * for more details. * * You should have received a copy of the GNU Lesser General Public License along * with this library; if not, write to the Free Software Foundation, Inc., 59 * Temple Place, Suite 330, Boston, MA 02111-1307 USA * */ #include "Spu2.h" extern u8 callirq; FILE *DMA4LogFile=0; FILE *DMA7LogFile=0; FILE *ADMA4LogFile=0; FILE *ADMA7LogFile=0; FILE *ADMAOutLogFile=0; FILE *REGWRTLogFile[2]={0,0}; int packcount=0; u16* MBASE[2] = {0,0}; u16* DMABaseAddr; void DMALogOpen() { if(!DMALog()) return; DMA4LogFile = fopen( Unicode::Convert( DMA4LogFileName ).c_str(), "wb"); DMA7LogFile = fopen( Unicode::Convert( DMA7LogFileName ).c_str(), "wb"); ADMA4LogFile = fopen( "logs/adma4.raw", "wb" ); ADMA7LogFile = fopen( "logs/adma7.raw", "wb" ); ADMAOutLogFile = fopen( "logs/admaOut.raw", "wb" ); //REGWRTLogFile[0]=fopen("logs/RegWrite0.raw","wb"); //REGWRTLogFile[1]=fopen("logs/RegWrite1.raw","wb"); } void DMA4LogWrite(void *lpData, u32 ulSize) { if(!DMALog()) return; if (!DMA4LogFile) return; fwrite(lpData,ulSize,1,DMA4LogFile); } void DMA7LogWrite(void *lpData, u32 ulSize) { if(!DMALog()) return; if (!DMA7LogFile) return; fwrite(lpData,ulSize,1,DMA7LogFile); } void ADMA4LogWrite(void *lpData, u32 ulSize) { if(!DMALog()) return; if (!ADMA4LogFile) return; fwrite(lpData,ulSize,1,ADMA4LogFile); } void ADMA7LogWrite(void *lpData, u32 ulSize) { if(!DMALog()) return; if (!ADMA7LogFile) return; fwrite(lpData,ulSize,1,ADMA7LogFile); } void ADMAOutLogWrite(void *lpData, u32 ulSize) { if(!DMALog()) return; if (!ADMAOutLogFile) return; fwrite(lpData,ulSize,1,ADMAOutLogFile); } void RegWriteLog(u32 core,u16 value) { if(!DMALog()) return; if (!REGWRTLogFile[core]) return; fwrite(&value,2,1,REGWRTLogFile[core]); } void DMALogClose() { if(!DMALog()) return; if (DMA4LogFile) fclose(DMA4LogFile); if (DMA7LogFile) fclose(DMA7LogFile); if (REGWRTLogFile[0]) fclose(REGWRTLogFile[0]); if (REGWRTLogFile[1]) fclose(REGWRTLogFile[1]); if (ADMA4LogFile) fclose(ADMA4LogFile); if (ADMA7LogFile) fclose(ADMA7LogFile); if (ADMAOutLogFile) fclose(ADMAOutLogFile); } __forceinline u16 DmaRead(u32 core) { const u16 ret = (u16)spu2M_Read(Cores[core].TDA); Cores[core].TDA++; Cores[core].TDA&=0xfffff; return ret; } __forceinline void DmaWrite(u32 core, u16 value) { spu2M_Write( Cores[core].TSA, value ); Cores[core].TSA++; Cores[core].TSA&=0xfffff; } void AutoDMAReadBuffer(int core, int mode) //mode: 0= split stereo; 1 = do not split stereo { int spos=((Cores[core].InputPos+0xff)&0x100); //starting position of the free buffer if(core==0) ADMA4LogWrite(Cores[core].DMAPtr+Cores[core].InputDataProgress,0x400); else ADMA7LogWrite(Cores[core].DMAPtr+Cores[core].InputDataProgress,0x400); if(mode) { //hacky :p memcpy((Cores[core].ADMATempBuffer+(spos<<1)),Cores[core].DMAPtr+Cores[core].InputDataProgress,0x400); Cores[core].MADR+=0x400; Cores[core].InputDataLeft-=0x200; Cores[core].InputDataProgress+=0x200; } else { memcpy((Cores[core].ADMATempBuffer+spos),Cores[core].DMAPtr+Cores[core].InputDataProgress,0x200); //memcpy((spu2mem+0x2000+(core<<10)+spos),Cores[core].DMAPtr+Cores[core].InputDataProgress,0x200); Cores[core].MADR+=0x200; Cores[core].InputDataLeft-=0x100; Cores[core].InputDataProgress+=0x100; memcpy((Cores[core].ADMATempBuffer+spos+0x200),Cores[core].DMAPtr+Cores[core].InputDataProgress,0x200); //memcpy((spu2mem+0x2200+(core<<10)+spos),Cores[core].DMAPtr+Cores[core].InputDataProgress,0x200); Cores[core].MADR+=0x200; Cores[core].InputDataLeft-=0x100; Cores[core].InputDataProgress+=0x100; } // See ReadInput at mixer.cpp for explanation on the commented out lines // } void StartADMAWrite(int core,u16 *pMem, u32 sz) { int size=(sz)&(~511); if(MsgAutoDMA()) ConLog(" * SPU2: DMA%c AutoDMA Transfer of %d bytes to %x (%02x %x %04x).\n", (core==0)?'4':'7',size<<1,Cores[core].TSA,Cores[core].DMABits,Cores[core].AutoDMACtrl,(~Cores[core].Regs.ATTR)&0x7fff); Cores[core].InputDataProgress=0; if((Cores[core].AutoDMACtrl&(core+1))==0) { Cores[core].TSA=0x2000+(core<<10); Cores[core].DMAICounter=size; } else if(size>=512) { Cores[core].InputDataLeft=size; if(Cores[core].AdmaInProgress==0) { #ifdef PCM24_S1_INTERLEAVE if((core==1)&&((PlayMode&8)==8)) { AutoDMAReadBuffer(core,1); } else { AutoDMAReadBuffer(core,0); } #else if(((PlayMode&4)==4)&&(core==0)) Cores[0].InputPos=0; AutoDMAReadBuffer(core,0); #endif if(size==512) Cores[core].DMAICounter=size; } Cores[core].AdmaInProgress=1; } else { Cores[core].InputDataLeft=0; Cores[core].DMAICounter=1; } Cores[core].TADR=Cores[core].MADR+(size<<1); } void DoDMAWrite(int core,u16 *pMem,u32 size) { // Perform an alignment check. // Not really important. Everything should work regardless, // but it could be indicative of an emulation foopah elsewhere. #if 0 uptr pa = ((uptr)pMem)&7; uptr pm = Cores[core].TSA&0x7; if( pa ) { fprintf(stderr, "* SPU2 DMA Write > Missaligned SOURCE! Core: %d TSA: 0x%x TDA: 0x%x Size: 0x%x\n", core, Cores[core].TSA, Cores[core].TDA, size); } if( pm ) { fprintf(stderr, "* SPU2 DMA Write > Missaligned TARGET! Core: %d TSA: 0x%x TDA: 0x%x Size: 0x%x\n", core, Cores[core].TSA, Cores[core].TDA, size ); } #endif if(core==0) DMA4LogWrite(pMem,size<<1); else DMA7LogWrite(pMem,size<<1); if(MsgDMA()) ConLog(" * SPU2: DMA%c Transfer of %d bytes to %x (%02x %x %04x).\n",(core==0)?'4':'7',size<<1,Cores[core].TSA,Cores[core].DMABits,Cores[core].AutoDMACtrl,(~Cores[core].Regs.ATTR)&0x7fff); Cores[core].TSA &= 0xfffff; u32 buff1end = Cores[core].TSA + size; u32 buff2end=0; if( buff1end > 0x100000 ) { buff2end = buff1end - 0x100000; buff1end = 0x100000; } const int cacheIdxStart = Cores[core].TSA / pcm_WordsPerBlock; const int cacheIdxEnd = (buff1end+pcm_WordsPerBlock-1) / pcm_WordsPerBlock; PcmCacheEntry* cacheLine = &pcm_cache_data[cacheIdxStart]; PcmCacheEntry& cacheEnd = pcm_cache_data[cacheIdxEnd]; do { cacheLine->Validated = false; cacheLine++; } while ( cacheLine != &cacheEnd ); //ConLog( " * SPU2 : Cache Clear Range! TSA=0x%x, TDA=0x%x (low8=0x%x, high8=0x%x, len=0x%x)\n", // Cores[core].TSA, buff1end, flagTSA, flagTDA, clearLen ); // First Branch needs cleared: // It starts at TSA and goes to buff1end. const u32 buff1size = (buff1end-Cores[core].TSA); memcpy( GetMemPtr( Cores[core].TSA ), pMem, buff1size*2 ); if( buff2end > 0 ) { // second branch needs copied: // It starts at the beginning of memory and moves forward to buff2end // endpoint cache should be irrelevant, since it's almost certainly dynamic // memory below 0x2800 (registers and such) //const u32 endpt2 = (buff2end + roundUp) / indexer_scalar; //memset( pcm_cache_flags, 0, endpt2 ); // Emulation Grayarea: Should addresses wrap around to zero, or wrap around to // 0x2800? Hard to know for usre (almost no games depend on this) memcpy( GetMemPtr( 0 ), &pMem[buff1size], buff2end*2 ); Cores[core].TDA = (buff2end+1) & 0xfffff; if(Cores[core].IRQEnable) { // Flag interrupt? // If IRQA occurs between start and dest, flag it. // Since the buffer wraps, the conditional might seem odd, but it works. if( ( Cores[core].IRQA >= Cores[core].TSA ) || ( Cores[core].IRQA < Cores[core].TDA ) ) { Spdif.Info = 4 << core; SetIrqCall(); } } } else { // Buffer doesn't wrap/overflow! // Just set the TDA and check for an IRQ... Cores[core].TDA = buff1end; if(Cores[core].IRQEnable) { // Flag interrupt? // If IRQA occurs between start and dest, flag it. // (start is inclusive, dest exclusive -- fixes DMC1 and hopefully won't break // other games. ;) if( ( Cores[core].IRQA >= Cores[core].TSA ) && ( Cores[core].IRQA < Cores[core].TDA ) ) { Spdif.Info = 4 << core; SetIrqCall(); } } } Cores[core].TSA=Cores[core].TDA&0xFFFF0; Cores[core].DMAICounter=size; Cores[core].TADR=Cores[core].MADR+(size<<1); } void SPU2readDMA(int core, u16* pMem, u32 size) { if(hasPtr) TimeUpdate(*cPtr); Cores[core].TSA &= 0xffff8; u32 buff1end = Cores[core].TSA + size; u32 buff2end = 0; if( buff1end > 0x100000 ) { buff2end = buff1end - 0x100000; buff1end = 0x100000; } const u32 buff1size = (buff1end-Cores[core].TSA); memcpy( pMem, GetMemPtr( Cores[core].TSA ), buff1size*2 ); // Note on TSA's position after our copy finishes: // IRQA should be measured by the end of the writepos+0x20. But the TDA // should be written back at the precise endpoint of the xfer. if( buff2end > 0 ) { // second branch needs cleared: // It starts at the beginning of memory and moves forward to buff2end memcpy( &pMem[buff1size], GetMemPtr( 0 ), buff2end*2 ); Cores[core].TDA = (buff2end+0x20) & 0xfffff; for( int i=0; i<2; i++ ) { if(Cores[i].IRQEnable) { // Flag interrupt? // If IRQA occurs between start and dest, flag it. // Since the buffer wraps, the conditional might seem odd, but it works. if( ( Cores[i].IRQA >= Cores[core].TSA ) || ( Cores[i].IRQA <= Cores[core].TDA ) ) { Spdif.Info=4<= Cores[i].TSA ) && ( Cores[i].IRQA < Cores[i].TDA ) ) { Spdif.Info=4<