/* * Copyright (C) 2007-2009 Gabest * http://www.gabest.org * * This Program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This Program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * http://www.gnu.org/copyleft/gpl.html * */ #include "stdafx.h" #include "GSRendererSW.h" const GSVector4 g_pos_scale(1.0f / 16, 1.0f / 16, 1.0f, 128.0f); GSRendererSW::GSRendererSW(int threads) { InitVertexKick(GSRendererSW); m_tc = new GSTextureCacheSW(this); memset(m_texture, 0, sizeof(m_texture)); m_rl.Create(threads); m_output = (uint8*)_aligned_malloc(1024 * 1024 * sizeof(uint32), 32); } GSRendererSW::~GSRendererSW() { delete m_tc; for(int i = 0; i < countof(m_texture); i++) { delete m_texture[i]; } _aligned_free(m_output); } void GSRendererSW::Reset() { // TODO: GSreset can come from the main thread too => crash // m_tc->RemoveAll(); m_reset = true; GSRendererT::Reset(); } void GSRendererSW::VSync(int field) { GSRendererT::VSync(field); m_tc->IncAge(); if(m_reset) { m_tc->RemoveAll(); m_reset = false; } // if((m_perfmon.GetFrame() & 255) == 0) m_rl.PrintStats(); } void GSRendererSW::ResetDevice() { for(int i = 0; i < countof(m_texture); i++) { delete m_texture[i]; m_texture[i] = NULL; } } GSTexture* GSRendererSW::GetOutput(int i) { const GSRegDISPFB& DISPFB = m_regs->DISP[i].DISPFB; int w = DISPFB.FBW * 64; int h = GetFrameRect(i).bottom; // TODO: round up bottom if(m_dev->ResizeTexture(&m_texture[i], w, h)) { static int pitch = 1024 * 4; GSVector4i r(0, 0, w, h); const GSLocalMemory::psm_t& psm = GSLocalMemory::m_psm[DISPFB.PSM]; (m_mem.*psm.rtx)(m_mem.GetOffset(DISPFB.Block(), DISPFB.FBW, DISPFB.PSM), r.ralign(psm.bs), m_output, pitch, m_env.TEXA); m_texture[i]->Update(r, m_output, pitch); if(s_dump) { if(s_save && s_n >= s_saven) { m_texture[i]->Save(format("c:\\temp1\\_%05d_f%lld_fr%d_%05x_%d.bmp", s_n, m_perfmon.GetFrame(), i, (int)DISPFB.Block(), (int)DISPFB.PSM)); } s_n++; } } return m_texture[i]; } void GSRendererSW::Draw() { if(m_dump) { m_dump.Object(m_vertices, m_count, m_vt.m_primclass); } GSScanlineGlobalData gd; GetScanlineGlobalData(gd); if(!gd.sel.fwrite && !gd.sel.zwrite) { return; } if(s_dump)// && m_context->TEX1.MXL > 0 && m_context->TEX1.MMIN >= 2 && m_context->TEX1.MMIN <= 5 && m_vt.m_lod.x > 0) { uint64 frame = m_perfmon.GetFrame(); string s; if(s_save && s_n >= s_saven && PRIM->TME) { s = format("c:\\temp1\\_%05d_f%lld_tex_%05x_%d.bmp", s_n, frame, (int)m_context->TEX0.TBP0, (int)m_context->TEX0.PSM); m_mem.SaveBMP(s, m_context->TEX0.TBP0, m_context->TEX0.TBW, m_context->TEX0.PSM, 1 << m_context->TEX0.TW, 1 << m_context->TEX0.TH); } s_n++; if(s_save && s_n >= s_saven) { s = format("c:\\temp1\\_%05d_f%lld_rt0_%05x_%d.bmp", s_n, frame, m_context->FRAME.Block(), m_context->FRAME.PSM); m_mem.SaveBMP(s, m_context->FRAME.Block(), m_context->FRAME.FBW, m_context->FRAME.PSM, GetFrameRect().width(), 512);//GetFrameSize(1).cy); } if(s_savez && s_n >= s_saven) { s = format("c:\\temp1\\_%05d_f%lld_rz0_%05x_%d.bmp", s_n, frame, m_context->ZBUF.Block(), m_context->ZBUF.PSM); m_mem.SaveBMP(s, m_context->ZBUF.Block(), m_context->FRAME.FBW, m_context->ZBUF.PSM, GetFrameRect().width(), 512); } s_n++; } GSRasterizerData data; data.scissor = GSVector4i(m_context->scissor.in); data.scissor.z = min(data.scissor.z, (int)m_context->FRAME.FBW * 64); // TODO: find a game that overflows and check which one is the right behaviour data.primclass = m_vt.m_primclass; data.vertices = m_vertices; data.count = m_count; data.frame = m_perfmon.GetFrame(); data.param = &gd; GSVector4i r = GSVector4i(m_vt.m_min.p.xyxy(m_vt.m_max.p)).rintersect(data.scissor); m_rl.Draw(&data, r.width(), r.height()); if(gd.sel.fwrite) { m_tc->InvalidateVideoMem(m_context->offset.fb, r); } if(gd.sel.zwrite) { m_tc->InvalidateVideoMem(m_context->offset.zb, r); } // By only syncing here we can do the two InvalidateVideoMem calls free if the other threads finish // their drawings later than this one (they usually do because they start on an event). m_rl.Sync(); GSRasterizerStats stats; m_rl.GetStats(stats); m_perfmon.Put(GSPerfMon::Prim, stats.prims); m_perfmon.Put(GSPerfMon::Fillrate, stats.pixels); if(s_dump)// && m_context->TEX1.MXL > 0 && m_context->TEX1.MMIN >= 2 && m_context->TEX1.MMIN <= 5 && m_vt.m_lod.x > 0) { uint64 frame = m_perfmon.GetFrame(); string s; if(s_save && s_n >= s_saven) { s = format("c:\\temp1\\_%05d_f%lld_rt1_%05x_%d.bmp", s_n, frame, m_context->FRAME.Block(), m_context->FRAME.PSM); m_mem.SaveBMP(s, m_context->FRAME.Block(), m_context->FRAME.FBW, m_context->FRAME.PSM, GetFrameRect().width(), 512);//GetFrameSize(1).cy); } if(s_savez && s_n >= s_saven) { s = format("c:\\temp1\\_%05d_f%lld_rz1_%05x_%d.bmp", s_n, frame, m_context->ZBUF.Block(), m_context->ZBUF.PSM); m_mem.SaveBMP(s, m_context->ZBUF.Block(), m_context->FRAME.FBW, m_context->ZBUF.PSM, GetFrameRect().width(), 512); } s_n++; } if(0)//stats.ticks > 5000000) { printf("* [%lld | %012llx] ticks %lld prims %d (%d) pixels %d (%d)\n", m_perfmon.GetFrame(), gd.sel.key, stats.ticks, stats.prims, stats.prims > 0 ? (int)(stats.ticks / stats.prims) : -1, stats.pixels, stats.pixels > 0 ? (int)(stats.ticks / stats.pixels) : -1); } } void GSRendererSW::InvalidateVideoMem(const GIFRegBITBLTBUF& BITBLTBUF, const GSVector4i& r) { m_tc->InvalidateVideoMem(m_mem.GetOffset(BITBLTBUF.DBP, BITBLTBUF.DBW, BITBLTBUF.DPSM), r); } #include "GSTextureSW.h" void GSRendererSW::GetScanlineGlobalData(GSScanlineGlobalData& gd) { const GSDrawingEnvironment& env = m_env; const GSDrawingContext* context = m_context; const GS_PRIM_CLASS primclass = m_vt.m_primclass; gd.vm = m_mem.m_vm8; gd.dimx = env.dimx; gd.fbr = context->offset.fb->pixel.row; gd.zbr = context->offset.zb->pixel.row; gd.fbc = context->offset.fb->pixel.col[0]; gd.zbc = context->offset.zb->pixel.col[0]; gd.fzbr = context->offset.fzb->row; gd.fzbc = context->offset.fzb->col; gd.sel.key = 0; gd.sel.fpsm = 3; gd.sel.zpsm = 3; gd.sel.atst = ATST_ALWAYS; gd.sel.tfx = TFX_NONE; gd.sel.ababcd = 255; gd.sel.sprite = primclass == GS_SPRITE_CLASS ? 1 : 0; uint32 fm = context->FRAME.FBMSK; uint32 zm = context->ZBUF.ZMSK || context->TEST.ZTE == 0 ? 0xffffffff : 0; if(context->TEST.ZTE && context->TEST.ZTST == ZTST_NEVER) { fm = 0xffffffff; zm = 0xffffffff; } if(PRIM->TME) { m_mem.m_clut.Read32(context->TEX0, env.TEXA); } if(context->TEST.ATE) { if(!TryAlphaTest(fm, zm)) { gd.sel.atst = context->TEST.ATST; gd.sel.afail = context->TEST.AFAIL; gd.aref = GSVector4i((int)context->TEST.AREF); switch(gd.sel.atst) { case ATST_LESS: gd.sel.atst = ATST_LEQUAL; gd.aref -= GSVector4i::x00000001(); break; case ATST_GREATER: gd.sel.atst = ATST_GEQUAL; gd.aref += GSVector4i::x00000001(); break; } } } bool fwrite = fm != 0xffffffff; bool ftest = gd.sel.atst != ATST_ALWAYS || context->TEST.DATE && context->FRAME.PSM != PSM_PSMCT24; gd.sel.fwrite = fwrite; gd.sel.ftest = ftest; if(fwrite || ftest) { gd.sel.fpsm = GSLocalMemory::m_psm[context->FRAME.PSM].fmt; if((primclass == GS_LINE_CLASS || primclass == GS_TRIANGLE_CLASS) && m_vt.m_eq.rgba != 0xffff) { gd.sel.iip = PRIM->IIP; } if(PRIM->TME) { gd.clut = m_mem.m_clut; gd.sel.tfx = context->TEX0.TFX; gd.sel.tcc = context->TEX0.TCC; gd.sel.fst = PRIM->FST; gd.sel.ltf = m_vt.IsLinear(); gd.sel.tlu = GSLocalMemory::m_psm[context->TEX0.PSM].pal > 0; gd.sel.wms = context->CLAMP.WMS; gd.sel.wmt = context->CLAMP.WMT; if(gd.sel.tfx == TFX_MODULATE && gd.sel.tcc && m_vt.m_eq.rgba == 0xffff && m_vt.m_min.c.eq(GSVector4i(128))) { // modulate does not do anything when vertex color is 0x80 gd.sel.tfx = TFX_DECAL; } GSVector4i r; GetTextureMinMax(r, context->TEX0, context->CLAMP, gd.sel.ltf); const GSTextureCacheSW::Texture* t = m_tc->Lookup(context->TEX0, env.TEXA, r); if(t == NULL) {ASSERT(0); return;} gd.tex[0] = t->m_buff; gd.sel.tw = t->m_tw - 3; if(m_mipmap && context->TEX1.MXL > 0 && context->TEX1.MMIN >= 2 && context->TEX1.MMIN <= 5 && m_vt.m_lod.y > 0) { // TEX1.MMIN // 000 p // 001 l // 010 p round // 011 p tri // 100 l round // 101 l tri // TODO: (int)m_vt.m_lod.x >= mxl => LCM == 1 if(m_vt.m_lod.x > 0) { gd.sel.ltf = (context->TEX1.MMIN & 5) ? 1 : 0; } else { // TODO: isbilinear(mmag) != isbilinear(mmin) && m_vt.m_lod.x <= 0 && m_vt.m_lod.y > 0 } gd.sel.mmin = (context->TEX1.MMIN & 1) + 1; // 1: round, 2: tri gd.sel.lcm = context->TEX1.LCM; int mxl = (std::min((int)context->TEX1.MXL, 6) << 16); int k = context->TEX1.K << 12; if(gd.sel.mmin == 2) { mxl--; } gd.mxl = GSVector4((float)mxl); gd.l = GSVector4((float)(-0x10000 << context->TEX1.L)); gd.k = GSVector4((float)k); if(gd.sel.lcm) { int lod = std::min(k, mxl); gd.lod.i = GSVector4i(lod >> 16); gd.lod.f = GSVector4i(lod & 0xffff).xxxxl().xxzz(); // TODO: lot to optimize when lod is constant } GIFRegTEX0 MIP_TEX0 = context->TEX0; GIFRegCLAMP MIP_CLAMP = context->CLAMP; GSVector4 tmin = m_vt.m_min.t; GSVector4 tmax = m_vt.m_max.t; //static int s_counter = 0; //t->Save(format("c:/temp1/%08d_%05x_0.bmp", s_counter, context->TEX0.TBP0)); for(int i = 1, j = std::min((int)context->TEX1.MXL, 6); i <= j; i++) { switch(i) { case 1: MIP_TEX0.TBP0 = context->MIPTBP1.TBP1; MIP_TEX0.TBW = context->MIPTBP1.TBW1; break; case 2: MIP_TEX0.TBP0 = context->MIPTBP1.TBP2; MIP_TEX0.TBW = context->MIPTBP1.TBW2; break; case 3: MIP_TEX0.TBP0 = context->MIPTBP1.TBP3; MIP_TEX0.TBW = context->MIPTBP1.TBW3; break; case 4: MIP_TEX0.TBP0 = context->MIPTBP2.TBP4; MIP_TEX0.TBW = context->MIPTBP2.TBW4; break; case 5: MIP_TEX0.TBP0 = context->MIPTBP2.TBP5; MIP_TEX0.TBW = context->MIPTBP2.TBW5; break; case 6: MIP_TEX0.TBP0 = context->MIPTBP2.TBP6; MIP_TEX0.TBW = context->MIPTBP2.TBW6; break; default: __assume(0); } if(MIP_TEX0.TW > 0) MIP_TEX0.TW--; if(MIP_TEX0.TH > 0) MIP_TEX0.TH--; MIP_CLAMP.MINU >>= 1; MIP_CLAMP.MINV >>= 1; MIP_CLAMP.MAXU >>= 1; MIP_CLAMP.MAXV >>= 1; m_vt.m_min.t *= 0.5f; m_vt.m_max.t *= 0.5f; GSVector4i r; GetTextureMinMax(r, MIP_TEX0, MIP_CLAMP, gd.sel.ltf); const GSTextureCacheSW::Texture* t = m_tc->Lookup(MIP_TEX0, env.TEXA, r, gd.sel.tw + 3); if(t == NULL) {ASSERT(0); return;} gd.tex[i] = t->m_buff; //t->Save(format("c:/temp1/%08d_%05x_%d.bmp", s_counter, context->TEX0.TBP0, i)); } //s_counter++; m_vt.m_min.t = tmin; m_vt.m_max.t = tmax; } else { // TODO: these shortcuts are not compatible with mipmapping, yet if(gd.sel.fst == 0) { // skip per pixel division if q is constant GSVertexSW* v = m_vertices; if(m_vt.m_eq.q) { gd.sel.fst = 1; if(v[0].t.z != 1.0f) { GSVector4 w = v[0].t.zzzz().rcpnr(); for(int i = 0, j = m_count; i < j; i++) { v[i].t *= w; } } // TODO: q is now destoroyed, but since q is constant we should be able to pre-calc gd.lod and change LCM to 1 } else if(primclass == GS_SPRITE_CLASS) { gd.sel.fst = 1; for(int i = 0, j = m_count; i < j; i += 2) { GSVector4 w = v[i + 1].t.zzzz().rcpnr(); v[i + 0].t *= w; v[i + 1].t *= w; } // TODO: preserve q, or if there only one sprite then see the comment above } } if(gd.sel.ltf && gd.sel.fst) { // if q is constant we can do the half pel shift for bilinear sampling on the vertices // TODO: but not when mipmapping is used!!! GSVector4 half(0x8000, 0x8000); GSVertexSW* v = m_vertices; for(int i = 0, j = m_count; i < j; i++) { v[i].t -= half; } } } uint16 tw = 1u << context->TEX0.TW; uint16 th = 1u << context->TEX0.TH; switch(context->CLAMP.WMS) { case CLAMP_REPEAT: gd.t.min.u16[0] = gd.t.minmax.u16[0] = tw - 1; gd.t.max.u16[0] = gd.t.minmax.u16[2] = 0; gd.t.mask.u32[0] = 0xffffffff; break; case CLAMP_CLAMP: gd.t.min.u16[0] = gd.t.minmax.u16[0] = 0; gd.t.max.u16[0] = gd.t.minmax.u16[2] = tw - 1; gd.t.mask.u32[0] = 0; break; case CLAMP_REGION_CLAMP: gd.t.min.u16[0] = gd.t.minmax.u16[0] = std::min(context->CLAMP.MINU, tw - 1); gd.t.max.u16[0] = gd.t.minmax.u16[2] = std::min(context->CLAMP.MAXU, tw - 1); gd.t.mask.u32[0] = 0; break; case CLAMP_REGION_REPEAT: gd.t.min.u16[0] = gd.t.minmax.u16[0] = context->CLAMP.MINU; gd.t.max.u16[0] = gd.t.minmax.u16[2] = context->CLAMP.MAXU; gd.t.mask.u32[0] = 0xffffffff; break; default: __assume(0); } switch(context->CLAMP.WMT) { case CLAMP_REPEAT: gd.t.min.u16[4] = gd.t.minmax.u16[1] = th - 1; gd.t.max.u16[4] = gd.t.minmax.u16[3] = 0; gd.t.mask.u32[2] = 0xffffffff; break; case CLAMP_CLAMP: gd.t.min.u16[4] = gd.t.minmax.u16[1] = 0; gd.t.max.u16[4] = gd.t.minmax.u16[3] = th - 1; gd.t.mask.u32[2] = 0; break; case CLAMP_REGION_CLAMP: gd.t.min.u16[4] = gd.t.minmax.u16[1] = std::min(context->CLAMP.MINV, th - 1); gd.t.max.u16[4] = gd.t.minmax.u16[3] = std::min(context->CLAMP.MAXV, th - 1); // ffx anima summon scene, when the anchor appears (th = 256, maxv > 256) gd.t.mask.u32[2] = 0; break; case CLAMP_REGION_REPEAT: gd.t.min.u16[4] = gd.t.minmax.u16[1] = context->CLAMP.MINV; gd.t.max.u16[4] = gd.t.minmax.u16[3] = context->CLAMP.MAXV; gd.t.mask.u32[2] = 0xffffffff; break; default: __assume(0); } gd.t.min = gd.t.min.xxxxlh(); gd.t.max = gd.t.max.xxxxlh(); gd.t.mask = gd.t.mask.xxzz(); gd.t.invmask = ~gd.t.mask; } if(PRIM->FGE) { gd.sel.fge = 1; gd.frb = GSVector4i((int)env.FOGCOL.u32[0] & 0x00ff00ff); gd.fga = GSVector4i((int)(env.FOGCOL.u32[0] >> 8) & 0x00ff00ff); } if(context->FRAME.PSM != PSM_PSMCT24) { gd.sel.date = context->TEST.DATE; gd.sel.datm = context->TEST.DATM; } if(!IsOpaque()) { gd.sel.abe = PRIM->ABE; gd.sel.ababcd = context->ALPHA.u32[0]; if(env.PABE.PABE) { gd.sel.pabe = 1; } if(m_aa1 && PRIM->AA1 && (primclass == GS_LINE_CLASS || primclass == GS_TRIANGLE_CLASS)) { gd.sel.aa1 = 1; } gd.afix = GSVector4i((int)context->ALPHA.FIX << 7).xxzzlh(); } if(gd.sel.date || gd.sel.aba == 1 || gd.sel.abb == 1 || gd.sel.abc == 1 || gd.sel.abd == 1 || gd.sel.atst != ATST_ALWAYS && gd.sel.afail == AFAIL_RGB_ONLY || gd.sel.fpsm == 0 && fm != 0 && fm != 0xffffffff || gd.sel.fpsm == 1 && (fm & 0x00ffffff) != 0 && (fm & 0x00ffffff) != 0x00ffffff || gd.sel.fpsm == 2 && (fm & 0x80f8f8f8) != 0 && (fm & 0x80f8f8f8) != 0x80f8f8f8) { gd.sel.rfb = 1; } gd.sel.colclamp = env.COLCLAMP.CLAMP; gd.sel.fba = context->FBA.FBA; gd.sel.dthe = env.DTHE.DTHE; } bool zwrite = zm != 0xffffffff; bool ztest = context->TEST.ZTE && context->TEST.ZTST > ZTST_ALWAYS; gd.sel.zwrite = zwrite; gd.sel.ztest = ztest; if(zwrite || ztest) { gd.sel.zpsm = GSLocalMemory::m_psm[context->ZBUF.PSM].fmt; gd.sel.ztst = ztest ? context->TEST.ZTST : ZTST_ALWAYS; gd.sel.zoverflow = GSVector4i(m_vt.m_max.p).z == 0x80000000; } gd.fm = GSVector4i(fm); gd.zm = GSVector4i(zm); if(gd.sel.fpsm == 1) { gd.fm |= GSVector4i::xff000000(); } else if(gd.sel.fpsm == 2) { GSVector4i rb = gd.fm & 0x00f800f8; GSVector4i ga = gd.fm & 0x8000f800; gd.fm = (ga >> 16) | (rb >> 9) | (ga >> 6) | (rb >> 3) | GSVector4i::xffff0000(); } if(gd.sel.zpsm == 1) { gd.zm |= GSVector4i::xff000000(); } else if(gd.sel.zpsm == 2) { gd.zm |= GSVector4i::xffff0000(); } } template void GSRendererSW::VertexKick(bool skip) { const GSDrawingContext* context = m_context; GSVector4i xy = GSVector4i::load((int)m_v.XYZ.u32[0]); xy = xy.insert16<3>(m_v.FOG.F); xy = xy.upl16(); xy -= context->XYOFFSET; GSVertexSW v; v.p = GSVector4(xy) * g_pos_scale; v.c = GSVector4(GSVector4i::load((int)m_v.RGBAQ.u32[0]).u8to32() << 7); if(tme) { if(fst) { v.t = GSVector4(((GSVector4i)m_v.UV).upl16() << (16 - 4)); } else { v.t = GSVector4(m_v.ST.S, m_v.ST.T); v.t *= GSVector4(0x10000 << context->TEX0.TW, 0x10000 << context->TEX0.TH); } v.t = v.t.xyxy(GSVector4::load(m_v.RGBAQ.Q)); } GSVertexSW& dst = m_vl.AddTail(); dst = v; dst.p.z = (float)min(m_v.XYZ.Z, 0xffffff00); // max value which can survive the uint32 => float => uint32 conversion int count = 0; if(GSVertexSW* v = DrawingKick(skip, count)) { if(!m_dump) { GSVector4 pmin, pmax; switch(prim) { case GS_POINTLIST: pmin = v[0].p; pmax = v[0].p; break; case GS_LINELIST: case GS_LINESTRIP: case GS_SPRITE: pmin = v[0].p.min(v[1].p); pmax = v[0].p.max(v[1].p); break; case GS_TRIANGLELIST: case GS_TRIANGLESTRIP: case GS_TRIANGLEFAN: pmin = v[0].p.min(v[1].p).min(v[2].p); pmax = v[0].p.max(v[1].p).max(v[2].p); break; } GSVector4 scissor = context->scissor.ex; GSVector4 test = (pmax < scissor) | (pmin > scissor.zwxy()); switch(prim) { case GS_TRIANGLELIST: case GS_TRIANGLESTRIP: case GS_TRIANGLEFAN: case GS_SPRITE: test |= pmin.ceil() == pmax.ceil(); break; } switch(prim) { case GS_TRIANGLELIST: case GS_TRIANGLESTRIP: case GS_TRIANGLEFAN: // are in line or just two of them are the same (cross product == 0) GSVector4 tmp = (v[1].p - v[0].p) * (v[2].p - v[0].p).yxwz(); test |= tmp == tmp.yxwz(); break; } if(test.mask() & 3) { return; } } switch(prim) { case GS_POINTLIST: break; case GS_LINELIST: case GS_LINESTRIP: if(PRIM->IIP == 0) {v[0].c = v[1].c;} break; case GS_TRIANGLELIST: case GS_TRIANGLESTRIP: case GS_TRIANGLEFAN: if(PRIM->IIP == 0) {v[0].c = v[2].c; v[1].c = v[2].c;} break; case GS_SPRITE: break; } if(m_count < 30 && m_count >= 3) { GSVertexSW* v = &m_vertices[m_count - 3]; int tl = 0; int br = 0; bool isquad = false; switch(prim) { case GS_TRIANGLESTRIP: case GS_TRIANGLEFAN: case GS_TRIANGLELIST: isquad = GSVertexSW::IsQuad(v, tl, br); break; } if(isquad) { m_count -= 3; if(m_count > 0) { tl += m_count; br += m_count; Flush(); } if(tl != 0) m_vertices[0] = m_vertices[tl]; if(br != 1) m_vertices[1] = m_vertices[br]; m_count = 2; uint32 tmp = PRIM->PRIM; PRIM->PRIM = GS_SPRITE; Flush(); PRIM->PRIM = tmp; m_perfmon.Put(GSPerfMon::Quad, 1); return; } } m_count += count; } }