//#version 420 // Keep it for text editor detection // note lerp => mix #define FMT_32 0 #define FMT_24 1 #define FMT_16 2 #define FMT_PAL 4 /* flag bit */ // APITRACE_DEBUG allows to force pixel output to easily detect // the fragment computed by primitive #define APITRACE_DEBUG 0 // TEX_COORD_DEBUG output the uv coordinate as color. It is useful // to detect bad sampling due to upscaling //#define TEX_COORD_DEBUG // Not sure we have same issue on opengl. Doesn't work anyway on ATI card // And I say this as an ATI user. #define ATI_SUCKS 0 #ifndef VS_BPPZ #define VS_BPPZ 0 #define VS_TME 1 #define VS_FST 1 #define VS_LOGZ 0 #endif #ifndef PS_FST #define PS_FST 0 #define PS_WMS 0 #define PS_WMT 0 #define PS_FMT FMT_32 #define PS_AEM 0 #define PS_TFX 0 #define PS_TCC 1 #define PS_ATST 1 #define PS_FOG 0 #define PS_CLR1 0 #define PS_FBA 0 #define PS_AOUT 0 #define PS_LTF 1 #define PS_COLCLIP 0 #define PS_DATE 0 #define PS_SPRITEHACK 0 #define PS_POINT_SAMPLER 0 #define PS_TCOFFSETHACK 0 #define PS_IIP 1 #endif struct vertex { vec4 t; vec4 c; vec4 fc; }; #ifdef VERTEX_SHADER layout(location = 0) in vec2 i_st; layout(location = 2) in vec4 i_c; layout(location = 3) in float i_q; layout(location = 4) in uvec2 i_p; layout(location = 5) in uint i_z; layout(location = 6) in uvec2 i_uv; layout(location = 7) in vec4 i_f; out SHADER { vec4 t; vec4 c; flat vec4 fc; } VSout; #define VSout_t (VSout.t) #define VSout_c (VSout.c) #define VSout_fc (VSout.fc) out gl_PerVertex { invariant vec4 gl_Position; float gl_PointSize; #if !pGL_ES float gl_ClipDistance[]; #endif }; layout(std140, binding = 20) uniform cb20 { vec2 VertexScale; vec2 VertexOffset; vec2 TextureScale; }; #ifdef ZERO_TO_ONE_DEPTH const float exp_min32 = exp2(-32.0f); #else const float exp_min31 = exp2(-31.0f); #endif #ifdef SUBROUTINE_GL40 // Function pointer type subroutine void TextureCoordType(void); // a function pointer variable layout(location = 0) subroutine uniform TextureCoordType texture_coord; layout(index = 0) subroutine(TextureCoordType) void tme_0() { VSout_t.xy = vec2(0.0f, 0.0f); VSout_t.w = 1.0f; } layout(index = 1) subroutine(TextureCoordType) void tme_1_fst_0() { VSout_t.xy = i_st; VSout_t.w = i_q; } layout(index = 2) subroutine(TextureCoordType) void tme_1_fst_1() { VSout_t.xy = vec2(i_uv) * TextureScale; VSout_t.w = 1.0f; } #else void texture_coord() { if(VS_TME != 0) { if(VS_FST != 0) { if (VS_WILDHACK == 1) { VSout_t.xy = vec2(i_uv & uvec2(0x3FEF, 0x3FEF)) * TextureScale; } else { VSout_t.xy = vec2(i_uv) * TextureScale; } VSout_t.w = 1.0f; } else { VSout_t.xy = i_st; VSout_t.w = i_q; } } else { VSout_t.xy = vec2(0.0f, 0.0f); VSout_t.w = 1.0f; } } #endif void vs_main() { highp uint z; if(VS_BPPZ == 1) // 24 z = i_z & uint(0xffffff); else if(VS_BPPZ == 2) // 16 z = i_z & uint(0xffff); else z = i_z; // pos -= 0.05 (1/320 pixel) helps avoiding rounding problems (integral part of pos is usually 5 digits, 0.05 is about as low as we can go) // example: ceil(afterseveralvertextransformations(y = 133)) => 134 => line 133 stays empty // input granularity is 1/16 pixel, anything smaller than that won't step drawing up/left by one pixel // example: 133.0625 (133 + 1/16) should start from line 134, ceil(133.0625 - 0.05) still above 133 vec4 p; p.xy = vec2(i_p) - vec2(0.05f, 0.05f); p.xy = p.xy * VertexScale - VertexOffset; p.w = 1.0f; #ifdef ZERO_TO_ONE_DEPTH if(VS_LOGZ == 1) { p.z = log2(float(1u+z)) / 32.0f; } else { p.z = float(z) * exp_min32; } #else if(VS_LOGZ == 1) { p.z = log2(float(1u+z)) / 31.0f - 1.0f; } else { p.z = float(z) * exp_min31 - 1.0f; } #endif gl_Position = p; texture_coord(); VSout_c = i_c; VSout_fc = i_c; VSout_t.z = i_f.r; } #endif #ifdef GEOMETRY_SHADER in gl_PerVertex { invariant vec4 gl_Position; float gl_PointSize; #if !pGL_ES float gl_ClipDistance[]; #endif } gl_in[]; //in int gl_PrimitiveIDIn; out gl_PerVertex { vec4 gl_Position; float gl_PointSize; #if !pGL_ES float gl_ClipDistance[]; #endif }; //out int gl_PrimitiveID; in SHADER { vec4 t; vec4 c; flat vec4 fc; } GSin[]; out SHADER { vec4 t; vec4 c; flat vec4 fc; } GSout; void out_vertex(in vertex v) { GSout.t = v.t; GSout.c = v.c; GSout.fc = v.fc; gl_PrimitiveID = gl_PrimitiveIDIn; EmitVertex(); } layout(lines) in; layout(triangle_strip, max_vertices = 6) out; void gs_main() { // left top => GSin[0]; // right bottom => GSin[1]; vertex rb = vertex(GSin[1].t, GSin[1].c, GSin[1].fc); vertex lt = vertex(GSin[0].t, GSin[0].c, GSin[0].fc); vec4 rb_p = gl_in[1].gl_Position; vec4 lb_p = gl_in[1].gl_Position; vec4 rt_p = gl_in[1].gl_Position; vec4 lt_p = gl_in[0].gl_Position; // flat depth lt_p.z = rb_p.z; // flat fog and texture perspective lt.t.zw = rb.t.zw; // flat color lt.c = rb.c; // Swap texture and position coordinate vertex lb = rb; lb_p.x = lt_p.x; lb.t.x = lt.t.x; vertex rt = rb; rt_p.y = lt_p.y; rt.t.y = lt.t.y; // Triangle 1 gl_Position = lt_p; out_vertex(lt); gl_Position = lb_p; out_vertex(lb); gl_Position = rt_p; out_vertex(rt); EndPrimitive(); // Triangle 2 gl_Position = lb_p; out_vertex(lb); gl_Position = rt_p; out_vertex(rt); gl_Position = rb_p; out_vertex(rb); EndPrimitive(); } #endif #ifdef FRAGMENT_SHADER in SHADER { vec4 t; vec4 c; flat vec4 fc; } PSin; #define PSin_t (PSin.t) #define PSin_c (PSin.c) #define PSin_fc (PSin.fc) // Same buffer but 2 colors for dual source blending #if pGL_ES layout(location = 0) out vec4 SV_Target0; #else layout(location = 0, index = 0) out vec4 SV_Target0; layout(location = 0, index = 1) out vec4 SV_Target1; #endif #ifdef ENABLE_BINDLESS_TEX layout(bindless_sampler, location = 0) uniform sampler2D TextureSampler; layout(bindless_sampler, location = 1) uniform sampler2D PaletteSampler; #else layout(binding = 0) uniform sampler2D TextureSampler; layout(binding = 1) uniform sampler2D PaletteSampler; #endif #ifndef DISABLE_GL42_image #if PS_DATE > 0 // FIXME how to declare memory access layout(r32i, binding = 2) coherent uniform iimage2D img_prim_min; #endif #else // use basic stencil #endif #ifndef DISABLE_GL42_image #if PS_DATE > 0 // origin_upper_left layout(pixel_center_integer) in vec4 gl_FragCoord; //in int gl_PrimitiveID; #endif #endif layout(std140, binding = 21) uniform cb21 { vec3 FogColor; float AREF; vec4 WH; vec2 MinF; vec2 TA; uvec4 MskFix; vec4 HalfTexel; vec4 MinMax; vec4 TC_OffsetHack; }; vec4 sample_c(vec2 uv) { // FIXME: check the issue on openGL if (ATI_SUCKS == 1 && PS_POINT_SAMPLER == 1) { // Weird issue with ATI cards (happens on at least HD 4xxx and 5xxx), // it looks like they add 127/128 of a texel to sampling coordinates // occasionally causing point sampling to erroneously round up. // I'm manually adjusting coordinates to the centre of texels here, // though the centre is just paranoia, the top left corner works fine. uv = (trunc(uv * WH.zw) + vec2(0.5, 0.5)) / WH.zw; } return texture(TextureSampler, uv); } vec4 sample_p(float u) { //FIXME do we need a 1D sampler. Big impact on opengl to find 1 dim // So for the moment cheat with 0.0f dunno if it work return texture(PaletteSampler, vec2(u, 0.0f)); } #if 0 vec4 sample_rt(vec2 uv) { return texture(RTCopySampler, uv); } #endif // FIXME crash nvidia #if 0 // Function pointer type subroutine vec4 WrapType(vec4 uv); // a function pointer variable layout(location = 4) subroutine uniform WrapType wrapuv; layout(index = 24) subroutine(WrapType) vec4 wrapuv_wms_wmt_2(vec4 uv) { vec4 uv_out = uv; uv_out = clamp(uv, MinMax.xyxy, MinMax.zwzw); return uv_out; } layout(index = 25) subroutine(WrapType) vec4 wrapuv_wms_wmt3(vec4 uv) { vec4 uv_out = uv; uv_out = vec4((ivec4(uv * WH.xyxy) & ivec4(MskFix.xyxy)) | ivec4(MskFix.zwzw)) / WH.xyxy; return uv_out; } layout(index = 26) subroutine(WrapType) vec4 wrapuv_wms2_wmt3(vec4 uv) { vec4 uv_out = uv; uv_out.xz = clamp(uv.xz, MinMax.xx, MinMax.zz); uv_out.yw = vec2((ivec2(uv.yw * WH.yy) & ivec2(MskFix.yy)) | ivec2(MskFix.ww)) / WH.yy; return uv_out; } layout(index = 27) subroutine(WrapType) vec4 wrapuv_wms3_wmt2(vec4 uv) { vec4 uv_out = uv; uv_out.xz = vec2((ivec2(uv.xz * WH.xx) & ivec2(MskFix.xx)) | ivec2(MskFix.zz)) / WH.xx; uv_out.yw = clamp(uv.yw, MinMax.yy, MinMax.ww); return uv_out; } layout(index = 28) subroutine(WrapType) vec4 wrapuv_wms2_wmtx(vec4 uv) { vec4 uv_out = uv; uv_out.xz = clamp(uv.xz, MinMax.xx, MinMax.zz); return uv_out; } layout(index = 29) subroutine(WrapType) vec4 wrapuv_wmsx_wmt3(vec4 uv) { vec4 uv_out = uv; uv_out.yw = vec2((ivec2(uv.yw * WH.yy) & ivec2(MskFix.yy)) | ivec2(MskFix.ww)) / WH.yy; return uv_out; } layout(index = 30) subroutine(WrapType) vec4 wrapuv_wms3_wmtx(vec4 uv) { vec4 uv_out = uv; uv_out.xz = vec2((ivec2(uv.xz * WH.xx) & ivec2(MskFix.xx)) | ivec2(MskFix.zz)) / WH.xx; return uv_out; } layout(index = 31) subroutine(WrapType) vec4 wrapuv_wmsx_wmt2(vec4 uv) { vec4 uv_out = uv; uv_out.yw = clamp(uv.yw, MinMax.yy, MinMax.ww); return uv_out; } layout(index = 32) subroutine(WrapType) vec4 wrapuv_dummy(vec4 uv) { return uv; } #else vec4 wrapuv(vec4 uv) { vec4 uv_out = uv; if(PS_WMS == PS_WMT) { if(PS_WMS == 2) { uv_out = clamp(uv, MinMax.xyxy, MinMax.zwzw); } else if(PS_WMS == 3) { uv_out = vec4((ivec4(uv * WH.xyxy) & ivec4(MskFix.xyxy)) | ivec4(MskFix.zwzw)) / WH.xyxy; } } else { if(PS_WMS == 2) { uv_out.xz = clamp(uv.xz, MinMax.xx, MinMax.zz); } else if(PS_WMS == 3) { uv_out.xz = vec2((ivec2(uv.xz * WH.xx) & ivec2(MskFix.xx)) | ivec2(MskFix.zz)) / WH.xx; } if(PS_WMT == 2) { uv_out.yw = clamp(uv.yw, MinMax.yy, MinMax.ww); } else if(PS_WMT == 3) { uv_out.yw = vec2((ivec2(uv.yw * WH.yy) & ivec2(MskFix.yy)) | ivec2(MskFix.ww)) / WH.yy; } } return uv_out; } #endif // FIXME crash nvidia #if 0 // Function pointer type subroutine vec2 ClampType(vec2 uv); // a function pointer variable layout(location = 3) subroutine uniform ClampType clampuv; layout(index = 20) subroutine(ClampType) vec2 clampuv_wms2_wmt2(vec2 uv) { return clamp(uv, MinF, MinMax.zw); } layout(index = 21) subroutine(ClampType) vec2 clampuv_wms2(vec2 uv) { vec2 uv_out = uv; uv_out.x = clamp(uv.x, MinF.x, MinMax.z); return uv_out; } layout(index = 22) subroutine(ClampType) vec2 clampuv_wmt2(vec2 uv) { vec2 uv_out = uv; uv_out.y = clamp(uv.y, MinF.y, MinMax.w); return uv_out; } layout(index = 23) subroutine(ClampType) vec2 clampuv_dummy(vec2 uv) { return uv; } #else vec2 clampuv(vec2 uv) { vec2 uv_out = uv; if(PS_WMS == 2 && PS_WMT == 2) { uv_out = clamp(uv, MinF, MinMax.zw); } else if(PS_WMS == 2) { uv_out.x = clamp(uv.x, MinF.x, MinMax.z); } else if(PS_WMT == 2) { uv_out.y = clamp(uv.y, MinF.y, MinMax.w); } return uv_out; } #endif mat4 sample_4c(vec4 uv) { mat4 c; c[0] = sample_c(uv.xy); c[1] = sample_c(uv.zy); c[2] = sample_c(uv.xw); c[3] = sample_c(uv.zw); return c; } vec4 sample_4a(vec4 uv) { vec4 c; // Dx used the alpha channel. // Opengl is only 8 bits on red channel. c.x = sample_c(uv.xy).r; c.y = sample_c(uv.zy).r; c.z = sample_c(uv.xw).r; c.w = sample_c(uv.zw).r; return c * 255.0/256.0 + 0.5/256.0; } mat4 sample_4p(vec4 u) { mat4 c; c[0] = sample_p(u.x); c[1] = sample_p(u.y); c[2] = sample_p(u.z); c[3] = sample_p(u.w); return c; } vec4 sample_color(vec2 st, float q) { if(PS_FST == 0) st /= q; if(PS_TCOFFSETHACK == 1) st += TC_OffsetHack.xy; vec4 t; mat4 c; vec2 dd; if (PS_LTF == 0 && PS_FMT <= FMT_16 && PS_WMS < 3 && PS_WMT < 3) { c[0] = sample_c(clampuv(st)); #ifdef TEX_COORD_DEBUG c[0].rg = clampuv(st).xy; #endif } else { vec4 uv; if(PS_LTF != 0) { uv = st.xyxy + HalfTexel; dd = fract(uv.xy * WH.zw); } else { uv = st.xyxy; } uv = wrapuv(uv); if((PS_FMT & FMT_PAL) != 0) { c = sample_4p(sample_4a(uv)); } else { c = sample_4c(uv); } #ifdef TEX_COORD_DEBUG c[0].rg = uv.xy; #endif } // PERF: see the impact of the exansion before/after the interpolation for (int i = 0; i < 4; i++) { if((PS_FMT & ~FMT_PAL) == FMT_24) { // FIXME GLSL any only support bvec so try to mix it with notEqual bvec3 rgb_check = notEqual( c[i].rgb, vec3(0.0f, 0.0f, 0.0f) ); c[i].a = ( (PS_AEM == 0) || any(rgb_check) ) ? TA.x : 0.0f; } else if((PS_FMT & ~FMT_PAL) == FMT_16) { // FIXME GLSL any only support bvec so try to mix it with notEqual bvec3 rgb_check = notEqual( c[i].rgb, vec3(0.0f, 0.0f, 0.0f) ); c[i].a = c[i].a >= 0.5 ? TA.y : ( (PS_AEM == 0) || any(rgb_check) ) ? TA.x : 0.0f; } } if(PS_LTF != 0) { t = mix(mix(c[0], c[1], dd.x), mix(c[2], c[3], dd.x), dd.y); } else { t = c[0]; } return t; } #ifdef SUBROUTINE_GL40 // Function pointer type subroutine vec4 TfxType(vec4 t, vec4 c); // a function pointer variable layout(location = 2) subroutine uniform TfxType tfx; layout(index = 11) subroutine(TfxType) vec4 tfx_0_tcc_0(vec4 t, vec4 c) { vec4 c_out = c; c_out.rgb = c.rgb * t.rgb * 255.0f / 128.0f; return c_out; } layout(index = 12) subroutine(TfxType) vec4 tfx_1_tcc_0(vec4 t, vec4 c) { vec4 c_out = c; c_out.rgb = t.rgb; return c_out; } layout(index = 13) subroutine(TfxType) vec4 tfx_2_tcc_0(vec4 t, vec4 c) { vec4 c_out = c; c_out.rgb = c.rgb * t.rgb * 255.0f / 128.0f + c.a; return c_out; } layout(index = 14) subroutine(TfxType) vec4 tfx_3_tcc_0(vec4 t, vec4 c) { vec4 c_out = c; c_out.rgb = c.rgb * t.rgb * 255.0f / 128.0f + c.a; return c_out; } layout(index = 15) subroutine(TfxType) vec4 tfx_0_tcc_1(vec4 t, vec4 c) { vec4 c_out = c; c_out = c * t * 255.0f / 128.0f; return c_out; } layout(index = 16) subroutine(TfxType) vec4 tfx_1_tcc_1(vec4 t, vec4 c) { vec4 c_out = c; c_out = t; return c_out; } layout(index = 17) subroutine(TfxType) vec4 tfx_2_tcc_1(vec4 t, vec4 c) { vec4 c_out = c; c_out.rgb = c.rgb * t.rgb * 255.0f / 128.0f + c.a; c_out.a += t.a; return c_out; } layout(index = 18) subroutine(TfxType) vec4 tfx_3_tcc_1(vec4 t, vec4 c) { vec4 c_out = c; c_out.rgb = c.rgb * t.rgb * 255.0f / 128.0f + c.a; c_out.a = t.a; return c_out; } layout(index = 19) subroutine(TfxType) vec4 tfx_dummy(vec4 t, vec4 c) { return c; } #else vec4 tfx(vec4 t, vec4 c) { vec4 c_out = c; if(PS_TFX == 0) { if(PS_TCC != 0) { c_out = c * t * 255.0f / 128.0f; } else { c_out.rgb = c.rgb * t.rgb * 255.0f / 128.0f; } } else if(PS_TFX == 1) { if(PS_TCC != 0) { c_out = t; } else { c_out.rgb = t.rgb; } } else if(PS_TFX == 2) { c_out.rgb = c.rgb * t.rgb * 255.0f / 128.0f + c.a; if(PS_TCC != 0) { c_out.a += t.a; } } else if(PS_TFX == 3) { c_out.rgb = c.rgb * t.rgb * 255.0f / 128.0f + c.a; if(PS_TCC != 0) { c_out.a = t.a; } } return c_out; } #endif #if 0 void datst() { #if PS_DATE > 0 float alpha = sample_rt(PSin_tp.xy).a; float alpha0x80 = 128.0 / 255; if (PS_DATE == 1 && alpha >= alpha0x80) discard; else if (PS_DATE == 2 && alpha < alpha0x80) discard; #endif } #endif #ifdef SUBROUTINE_GL40 // Function pointer type subroutine void AlphaTestType(vec4 c); // a function pointer variable layout(location = 0) subroutine uniform AlphaTestType atst; layout(index = 0) subroutine(AlphaTestType) void atest_never(vec4 c) { discard; } layout(index = 1) subroutine(AlphaTestType) void atest_always(vec4 c) { // Nothing to do } layout(index = 2) subroutine(AlphaTestType) void atest_l(vec4 c) { float a = trunc(c.a * 255.0 + 0.01); if (PS_SPRITEHACK == 0) if ((AREF - a - 0.5f) < 0.0f) discard; } layout(index = 3) subroutine(AlphaTestType) void atest_le(vec4 c) { float a = trunc(c.a * 255.0 + 0.01); if ((AREF - a + 0.5f) < 0.0f) discard; } layout(index = 4) subroutine(AlphaTestType) void atest_e(vec4 c) { float a = trunc(c.a * 255.0 + 0.01); if ((0.5f - abs(a - AREF)) < 0.0f) discard; } layout(index = 5) subroutine(AlphaTestType) void atest_ge(vec4 c) { float a = trunc(c.a * 255.0 + 0.01); if ((a-AREF + 0.5f) < 0.0f) discard; } layout(index = 6) subroutine(AlphaTestType) void atest_g(vec4 c) { float a = trunc(c.a * 255.0 + 0.01); if ((a-AREF - 0.5f) < 0.0f) discard; } layout(index = 7) subroutine(AlphaTestType) void atest_ne(vec4 c) { float a = trunc(c.a * 255.0 + 0.01); if ((abs(a - AREF) - 0.5f) < 0.0f) discard; } #else void atst(vec4 c) { float a = trunc(c.a * 255.0 + 0.01); if(PS_ATST == 0) // never { discard; } else if(PS_ATST == 1) // always { // nothing to do } else if(PS_ATST == 2 ) // l { if (PS_SPRITEHACK == 0) if ((AREF - a - 0.5f) < 0.0f) discard; } else if(PS_ATST == 3 ) // le { if ((AREF - a + 0.5f) < 0.0f) discard; } else if(PS_ATST == 4) // e { if ((0.5f - abs(a - AREF)) < 0.0f) discard; } else if(PS_ATST == 5) // ge { if ((a-AREF + 0.5f) < 0.0f) discard; } else if(PS_ATST == 6) // g { if ((a-AREF - 0.5f) < 0.0f) discard; } else if(PS_ATST == 7) // ne { if ((abs(a - AREF) - 0.5f) < 0.0f) discard; } } #endif // Note layout stuff might require gl4.3 #ifdef SUBROUTINE_GL40 // Function pointer type subroutine void ColClipType(inout vec4 c); // a function pointer variable layout(location = 1) subroutine uniform ColClipType colclip; layout(index = 8) subroutine(ColClipType) void colclip_0(inout vec4 c) { // nothing to do } layout(index = 9) subroutine(ColClipType) void colclip_1(inout vec4 c) { // FIXME !!!! //c.rgb *= c.rgb < 128./255; bvec3 factor = bvec3(128.0f/255.0f, 128.0f/255.0f, 128.0f/255.0f); c.rgb *= vec3(factor); } layout(index = 10) subroutine(ColClipType) void colclip_2(inout vec4 c) { c.rgb = 256.0f/255.0f - c.rgb; // FIXME !!!! //c.rgb *= c.rgb < 128./255; bvec3 factor = bvec3(128.0f/255.0f, 128.0f/255.0f, 128.0f/255.0f); c.rgb *= vec3(factor); } #else void colclip(inout vec4 c) { if (PS_COLCLIP == 2) { c.rgb = 256.0f/255.0f - c.rgb; } if (PS_COLCLIP > 0) { // FIXME !!!! //c.rgb *= c.rgb < 128./255; bvec3 factor = bvec3(128.0f/255.0f, 128.0f/255.0f, 128.0f/255.0f); c.rgb *= vec3(factor); } } #endif void fog(inout vec4 c, float f) { if(PS_FOG != 0) { c.rgb = mix(FogColor, c.rgb, f); } } vec4 ps_color() { vec4 t = sample_color(PSin_t.xy, PSin_t.w); vec4 zero = vec4(0.0f, 0.0f, 0.0f, 0.0f); vec4 one = vec4(1.0f, 1.0f, 1.0f, 1.0f); #ifdef TEX_COORD_DEBUG vec4 c = clamp(t, zero, one); #else #if PS_IIP == 1 vec4 c = clamp(tfx(t, PSin_c), zero, one); #else vec4 c = clamp(tfx(t, PSin_fc), zero, one); #endif #endif atst(c); fog(c, PSin_t.z); colclip(c); if(PS_CLR1 != 0) // needed for Cd * (As/Ad/F + 1) blending modes { c.rgb = vec3(1.0f, 1.0f, 1.0f); } return c; } #if pGL_ES void ps_main() { vec4 c = ps_color(); c.a *= 2.0; SV_Target0 = c; } #endif #if !pGL_ES void ps_main() { #if PS_DATE == 3 && !defined(DISABLE_GL42_image) int stencil_ceil = imageLoad(img_prim_min, ivec2(gl_FragCoord.xy)); // Note gl_PrimitiveID == stencil_ceil will be the primitive that will update // the bad alpha value so we must keep it. if (gl_PrimitiveID > stencil_ceil) { discard; } #endif vec4 c = ps_color(); #if (APITRACE_DEBUG & 1) == 1 c.r = 1.0f; #endif #if (APITRACE_DEBUG & 2) == 2 c.g = 1.0f; #endif #if (APITRACE_DEBUG & 4) == 4 c.b = 1.0f; #endif #if (APITRACE_DEBUG & 8) == 8 c.a = 0.5f; #endif float alpha = c.a * 2.0; if(PS_AOUT != 0) // 16 bit output { float a = 128.0f / 255.0; // alpha output will be 0x80 c.a = (PS_FBA != 0) ? a : step(0.5, c.a) * a; } else if(PS_FBA != 0) { if(c.a < 0.5) c.a += 0.5; } // Get first primitive that will write a failling alpha value #if PS_DATE == 1 && !defined(DISABLE_GL42_image) // DATM == 0 // Pixel with alpha equal to 1 will failed if (c.a > 127.5f / 255.0f) { imageAtomicMin(img_prim_min, ivec2(gl_FragCoord.xy), gl_PrimitiveID); } //memoryBarrier(); #elif PS_DATE == 2 && !defined(DISABLE_GL42_image) // DATM == 1 // Pixel with alpha equal to 0 will failed if (c.a < 127.5f / 255.0f) { imageAtomicMin(img_prim_min, ivec2(gl_FragCoord.xy), gl_PrimitiveID); } #endif #if (PS_DATE == 2 || PS_DATE == 1) && !defined(DISABLE_GL42_image) // Don't write anything on the framebuffer // Note: you can't use discard because it will also drop // image operation #else SV_Target0 = c; SV_Target1 = vec4(alpha, alpha, alpha, alpha); #endif } #endif // !pGL_ES #endif