// SPDX-FileCopyrightText: 2002-2024 PCSX2 Dev Team // SPDX-License-Identifier: LGPL-3.0+ #include "common/Threading.h" #include "common/Assertions.h" #include #include // assert #include #include // gettimeofday() #include #include #include #include // mach_error_string() #include #include #include // mach_absolute_time() #include // semaphore_*() #include // semaphore_create() and semaphore_destroy() #include // Note: assuming multicore is safer because it forces the interlocked routines to use // the LOCK prefix. The prefix works on single core CPUs fine (but is slow), but not // having the LOCK prefix is very bad indeed. __forceinline void Threading::Timeslice() { sched_yield(); } // For use in spin/wait loops, acts as a hint to Intel CPUs and should, in theory // improve performance and reduce cpu power consumption. __forceinline void Threading::SpinWait() { // If this doesn't compile you can just comment it out (it only serves as a // performance hint and isn't required). #if defined(_M_X86) __asm__("pause"); #elif defined(_M_ARM64) __asm__ __volatile__("isb"); #endif } __forceinline void Threading::EnableHiresScheduler() { // Darwin has customizable schedulers, see xnu/osfmk/man. Not // implemented yet though (and not sure if useful for pcsx2). } __forceinline void Threading::DisableHiresScheduler() { // see EnableHiresScheduler() } // Just like on Windows, this is not really the number of ticks per second, // but just a factor by which one has to divide GetThreadCpuTime() or // pxThread::GetCpuTime() if one wants to receive a value in seconds. NOTE: // doing this will of course yield precision loss. u64 Threading::GetThreadTicksPerSecond() { return 1000000; // the *CpuTime() functions return values in microseconds } // gets the CPU time used by the current thread (both system and user), in // microseconds, returns 0 on failure static u64 getthreadtime(thread_port_t thread) { mach_msg_type_number_t count = THREAD_BASIC_INFO_COUNT; thread_basic_info_data_t info; kern_return_t kr = thread_info(thread, THREAD_BASIC_INFO, (thread_info_t)&info, &count); if (kr != KERN_SUCCESS) { return 0; } // add system and user time return (u64)info.user_time.seconds * (u64)1e6 + (u64)info.user_time.microseconds + (u64)info.system_time.seconds * (u64)1e6 + (u64)info.system_time.microseconds; } // Returns the current timestamp (not relative to a real world clock) in microseconds u64 Threading::GetThreadCpuTime() { // we could also use mach_thread_self() and mach_port_deallocate(), but // that calls upon mach traps (kinda like system calls). Unless I missed // something in the COMMPAGE (like Linux vDSO) which makes overrides it // to be user-space instead. In contract, // pthread_mach_thread_np(pthread_self()) is entirely in user-space. u64 us = getthreadtime(pthread_mach_thread_np(pthread_self())); return us; } // -------------------------------------------------------------------------------------- // Semaphore Implementation for Darwin/OSX // // Sadly, Darwin/OSX needs its own implementation of Semaphores instead of // relying on phtreads, because OSX unnamed semaphore (the best kind) // support is very poor. // // This implementation makes use of Mach primitives instead. These are also // what Grand Central Dispatch (GCD) is based on, as far as I understand: // http://newosxbook.com/articles/GCD.html. // // -------------------------------------------------------------------------------------- static void MACH_CHECK(kern_return_t mach_retval) { if (mach_retval != KERN_SUCCESS) { fprintf(stderr, "mach error: %s", mach_error_string(mach_retval)); assert(mach_retval == KERN_SUCCESS); } } Threading::KernelSemaphore::KernelSemaphore() { MACH_CHECK(semaphore_create(mach_task_self(), &m_sema, SYNC_POLICY_FIFO, 0)); } Threading::KernelSemaphore::~KernelSemaphore() { MACH_CHECK(semaphore_destroy(mach_task_self(), m_sema)); } void Threading::KernelSemaphore::Post() { MACH_CHECK(semaphore_signal(m_sema)); } void Threading::KernelSemaphore::Wait() { MACH_CHECK(semaphore_wait(m_sema)); } bool Threading::KernelSemaphore::TryWait() { mach_timespec_t time = {}; kern_return_t res = semaphore_timedwait(m_sema, time); if (res == KERN_OPERATION_TIMED_OUT) return false; MACH_CHECK(res); return true; } Threading::ThreadHandle::ThreadHandle() = default; Threading::ThreadHandle::ThreadHandle(const ThreadHandle& handle) : m_native_handle(handle.m_native_handle) { } Threading::ThreadHandle::ThreadHandle(ThreadHandle&& handle) : m_native_handle(handle.m_native_handle) { handle.m_native_handle = nullptr; } Threading::ThreadHandle::~ThreadHandle() = default; Threading::ThreadHandle Threading::ThreadHandle::GetForCallingThread() { ThreadHandle ret; ret.m_native_handle = pthread_self(); return ret; } Threading::ThreadHandle& Threading::ThreadHandle::operator=(ThreadHandle&& handle) { m_native_handle = handle.m_native_handle; handle.m_native_handle = nullptr; return *this; } Threading::ThreadHandle& Threading::ThreadHandle::operator=(const ThreadHandle& handle) { m_native_handle = handle.m_native_handle; return *this; } u64 Threading::ThreadHandle::GetCPUTime() const { return getthreadtime(pthread_mach_thread_np((pthread_t)m_native_handle)); } bool Threading::ThreadHandle::SetAffinity(u64 processor_mask) const { // Doesn't appear to be possible to set affinity. return false; } Threading::Thread::Thread() = default; Threading::Thread::Thread(Thread&& thread) : ThreadHandle(thread) , m_stack_size(thread.m_stack_size) { thread.m_stack_size = 0; } Threading::Thread::Thread(EntryPoint func) : ThreadHandle() { if (!Start(std::move(func))) pxFailRel("Failed to start implicitly started thread."); } Threading::Thread::~Thread() { pxAssertRel(!m_native_handle, "Thread should be detached or joined at destruction"); } void Threading::Thread::SetStackSize(u32 size) { pxAssertRel(!m_native_handle, "Can't change the stack size on a started thread"); m_stack_size = size; } void* Threading::Thread::ThreadProc(void* param) { std::unique_ptr entry(static_cast(param)); (*entry.get())(); return nullptr; } bool Threading::Thread::Start(EntryPoint func) { pxAssertRel(!m_native_handle, "Can't start an already-started thread"); std::unique_ptr func_clone(std::make_unique(std::move(func))); pthread_attr_t attrs; bool has_attributes = false; if (m_stack_size != 0) { has_attributes = true; pthread_attr_init(&attrs); } if (m_stack_size != 0) pthread_attr_setstacksize(&attrs, m_stack_size); pthread_t handle; const int res = pthread_create(&handle, has_attributes ? &attrs : nullptr, ThreadProc, func_clone.get()); if (res != 0) return false; // thread started, it'll release the memory m_native_handle = (void*)handle; func_clone.release(); return true; } void Threading::Thread::Detach() { pxAssertRel(m_native_handle, "Can't detach without a thread"); pthread_detach((pthread_t)m_native_handle); m_native_handle = nullptr; } void Threading::Thread::Join() { pxAssertRel(m_native_handle, "Can't join without a thread"); void* retval; const int res = pthread_join((pthread_t)m_native_handle, &retval); if (res != 0) pxFailRel("pthread_join() for thread join failed"); m_native_handle = nullptr; } // name can be up to 16 bytes void Threading::SetNameOfCurrentThread(const char* name) { pthread_setname_np(name); }