//#version 420 // Keep it for text editor detection // Require for bit operation //#extension GL_ARB_gpu_shader5 : enable #define FMT_32 0 #define FMT_24 1 #define FMT_16 2 // APITRACE_DEBUG enables forced pixel output to easily detect // the fragment computed by primitive #define APITRACE_DEBUG 0 // TEX_COORD_DEBUG output the uv coordinate as color. It is useful // to detect bad sampling due to upscaling //#define TEX_COORD_DEBUG // Just copy directly the texture coordinate #ifdef TEX_COORD_DEBUG #define PS_TFX 1 #define PS_TCC 1 #endif #define SW_BLEND (PS_BLEND_A || PS_BLEND_B || PS_BLEND_D) #ifdef FRAGMENT_SHADER #if !defined(BROKEN_DRIVER) && defined(GL_ARB_enhanced_layouts) && GL_ARB_enhanced_layouts layout(location = 0) #endif in SHADER { vec4 t_float; vec4 t_int; #if PS_IIP != 0 vec4 c; #else flat vec4 c; #endif } PSin; // Same buffer but 2 colors for dual source blending layout(location = 0, index = 0) out vec4 SV_Target0; layout(location = 0, index = 1) out vec4 SV_Target1; layout(binding = 1) uniform sampler2D PaletteSampler; layout(binding = 3) uniform sampler2D RtSampler; // note 2 already use by the image below layout(binding = 4) uniform sampler2D RawTextureSampler; #ifndef DISABLE_GL42_image #if PS_DATE > 0 // Performance note: images mustn't be declared if they are unused. Otherwise it will // require extra shader validation. // FIXME how to declare memory access layout(r32i, binding = 2) uniform iimage2D img_prim_min; // WARNING: // You can't enable it if you discard the fragment. The depth is still // updated (shadow in Shin Megami Tensei Nocturne) // // early_fragment_tests must still be enabled in the first pass of the 2 passes algo // First pass search the first primitive that will write the bad alpha value. Value // won't be written if the fragment fails the depth test. // // In theory the best solution will be do // 1/ copy the depth buffer // 2/ do the full depth (current depth writes are disabled) // 3/ restore the depth buffer for 2nd pass // Of course, it is likely too costly. #if PS_DATE == 1 || PS_DATE == 2 layout(early_fragment_tests) in; #endif // I don't remember why I set this parameter but it is surely useless //layout(pixel_center_integer) in vec4 gl_FragCoord; #endif #else // use basic stencil #endif vec4 sample_c(vec2 uv) { #if PS_TEX_IS_FB == 1 return texelFetch(RtSampler, ivec2(gl_FragCoord.xy), 0); #else #if PS_POINT_SAMPLER // Weird issue with ATI/AMD cards, // it looks like they add 127/128 of a texel to sampling coordinates // occasionally causing point sampling to erroneously round up. // I'm manually adjusting coordinates to the centre of texels here, // though the centre is just paranoia, the top left corner works fine. // As of 2018 this issue is still present. uv = (trunc(uv * WH.zw) + vec2(0.5, 0.5)) / WH.zw; #endif #if PS_AUTOMATIC_LOD == 1 return texture(TextureSampler, uv); #elif PS_MANUAL_LOD == 1 // FIXME add LOD: K - ( LOG2(Q) * (1 << L)) float K = MinMax.x; float L = MinMax.y; float bias = MinMax.z; float max_lod = MinMax.w; float gs_lod = K - log2(abs(PSin.t_float.w)) * L; // FIXME max useful ? //float lod = max(min(gs_lod, max_lod) - bias, 0.0f); float lod = min(gs_lod, max_lod) - bias; return textureLod(TextureSampler, uv, lod); #else return textureLod(TextureSampler, uv, 0); // No lod #endif #endif } vec4 sample_p(float idx) { return texture(PaletteSampler, vec2(idx, 0.0f)); } vec4 clamp_wrap_uv(vec4 uv) { vec4 uv_out = uv; #if PS_INVALID_TEX0 == 1 vec4 tex_size = WH.zwzw; #else vec4 tex_size = WH.xyxy; #endif #if PS_WMS == PS_WMT #if PS_WMS == 2 uv_out = clamp(uv, MinMax.xyxy, MinMax.zwzw); #elif PS_WMS == 3 #if PS_FST == 0 // wrap negative uv coords to avoid an off by one error that shifted // textures. Fixes Xenosaga's hair issue. uv = fract(uv); #endif uv_out = vec4((uvec4(uv * tex_size) & MskFix.xyxy) | MskFix.zwzw) / tex_size; #endif #else // PS_WMS != PS_WMT #if PS_WMS == 2 uv_out.xz = clamp(uv.xz, MinMax.xx, MinMax.zz); #elif PS_WMS == 3 #if PS_FST == 0 uv.xz = fract(uv.xz); #endif uv_out.xz = vec2((uvec2(uv.xz * tex_size.xx) & MskFix.xx) | MskFix.zz) / tex_size.xx; #endif #if PS_WMT == 2 uv_out.yw = clamp(uv.yw, MinMax.yy, MinMax.ww); #elif PS_WMT == 3 #if PS_FST == 0 uv.yw = fract(uv.yw); #endif uv_out.yw = vec2((uvec2(uv.yw * tex_size.yy) & MskFix.yy) | MskFix.ww) / tex_size.yy; #endif #endif return uv_out; } mat4 sample_4c(vec4 uv) { mat4 c; // Note: texture gather can't be used because of special clamping/wrapping // Also it doesn't support lod c[0] = sample_c(uv.xy); c[1] = sample_c(uv.zy); c[2] = sample_c(uv.xw); c[3] = sample_c(uv.zw); return c; } vec4 sample_4_index(vec4 uv) { vec4 c; // Either GS will send a texture that contains a single channel // in this case the red channel is remapped as alpha channel // // Or we have an old RT (ie RGBA8) that contains index (4/8) in the alpha channel // Note: texture gather can't be used because of special clamping/wrapping // Also it doesn't support lod c.x = sample_c(uv.xy).a; c.y = sample_c(uv.zy).a; c.z = sample_c(uv.xw).a; c.w = sample_c(uv.zw).a; uvec4 i = uvec4(c * 255.0f + 0.5f); // Denormalize value #if PS_PAL_FMT == 1 // 4HL return vec4(i & 0xFu) / 255.0f; #elif PS_PAL_FMT == 2 // 4HH return vec4(i >> 4u) / 255.0f; #else // Most of texture will hit this code so keep normalized float value // 8 bits return c; #endif } mat4 sample_4p(vec4 u) { mat4 c; c[0] = sample_p(u.x); c[1] = sample_p(u.y); c[2] = sample_p(u.z); c[3] = sample_p(u.w); return c; } int fetch_raw_depth() { return int(texelFetch(RawTextureSampler, ivec2(gl_FragCoord.xy), 0).r * exp2(32.0f)); } vec4 fetch_raw_color() { return texelFetch(RawTextureSampler, ivec2(gl_FragCoord.xy), 0); } vec4 fetch_c(ivec2 uv) { return texelFetch(TextureSampler, ivec2(uv), 0); } ////////////////////////////////////////////////////////////////////// // Depth sampling ////////////////////////////////////////////////////////////////////// ivec2 clamp_wrap_uv_depth(ivec2 uv) { ivec2 uv_out = uv; // Keep the full precision // It allow to multiply the ScalingFactor before the 1/16 coeff ivec4 mask = ivec4(MskFix) << 4; #if PS_WMS == PS_WMT #if PS_WMS == 2 uv_out = clamp(uv, mask.xy, mask.zw); #elif PS_WMS == 3 uv_out = (uv & mask.xy) | mask.zw; #endif #else // PS_WMS != PS_WMT #if PS_WMS == 2 uv_out.x = clamp(uv.x, mask.x, mask.z); #elif PS_WMS == 3 uv_out.x = (uv.x & mask.x) | mask.z; #endif #if PS_WMT == 2 uv_out.y = clamp(uv.y, mask.y, mask.w); #elif PS_WMT == 3 uv_out.y = (uv.y & mask.y) | mask.w; #endif #endif return uv_out; } vec4 sample_depth(vec2 st) { vec2 uv_f = vec2(clamp_wrap_uv_depth(ivec2(st))) * vec2(float(PS_SCALE_FACTOR)) * vec2(1.0f/16.0f); ivec2 uv = ivec2(uv_f); vec4 t = vec4(0.0f); #if PS_TALES_OF_ABYSS_HLE == 1 // Warning: UV can't be used in channel effect int depth = fetch_raw_depth(); // Convert msb based on the palette t = texelFetch(PaletteSampler, ivec2((depth >> 8) & 0xFF, 0), 0) * 255.0f; #elif PS_URBAN_CHAOS_HLE == 1 // Depth buffer is read as a RGB5A1 texture. The game try to extract the green channel. // So it will do a first channel trick to extract lsb, value is right-shifted. // Then a new channel trick to extract msb which will shifted to the left. // OpenGL uses a FLOAT32 format for the depth so it requires a couple of conversion. // To be faster both steps (msb&lsb) are done in a single pass. // Warning: UV can't be used in channel effect int depth = fetch_raw_depth(); // Convert lsb based on the palette t = texelFetch(PaletteSampler, ivec2((depth & 0xFF), 0), 0) * 255.0f; // Msb is easier float green = float((depth >> 8) & 0xFF) * 36.0f; green = min(green, 255.0f); t.g += green; #elif PS_DEPTH_FMT == 1 // Based on ps_main11 of convert // Convert a GL_FLOAT32 depth texture into a RGBA color texture const vec4 bitSh = vec4(exp2(24.0f), exp2(16.0f), exp2(8.0f), exp2(0.0f)); const vec4 bitMsk = vec4(0.0, 1.0/256.0, 1.0/256.0, 1.0/256.0); vec4 res = fract(vec4(fetch_c(uv).r) * bitSh); t = (res - res.xxyz * bitMsk) * 256.0f; #elif PS_DEPTH_FMT == 2 // Based on ps_main12 of convert // Convert a GL_FLOAT32 (only 16 lsb) depth into a RGB5A1 color texture const vec4 bitSh = vec4(exp2(32.0f), exp2(27.0f), exp2(22.0f), exp2(17.0f)); const uvec4 bitMsk = uvec4(0x1F, 0x1F, 0x1F, 0x1); uvec4 color = uvec4(vec4(fetch_c(uv).r) * bitSh) & bitMsk; t = vec4(color) * vec4(8.0f, 8.0f, 8.0f, 128.0f); #elif PS_DEPTH_FMT == 3 // Convert a RGBA/RGB5A1 color texture into a RGBA/RGB5A1 color texture t = fetch_c(uv) * 255.0f; #endif // warning t ranges from 0 to 255 #if (PS_AEM_FMT == FMT_24) t.a = ( (PS_AEM == 0) || any(bvec3(t.rgb)) ) ? 255.0f * TA.x : 0.0f; #elif (PS_AEM_FMT == FMT_16) t.a = t.a >= 128.0f ? 255.0f * TA.y : ( (PS_AEM == 0) || any(bvec3(t.rgb)) ) ? 255.0f * TA.x : 0.0f; #endif return t; } ////////////////////////////////////////////////////////////////////// // Fetch a Single Channel ////////////////////////////////////////////////////////////////////// vec4 fetch_red() { #if PS_DEPTH_FMT == 1 || PS_DEPTH_FMT == 2 int depth = (fetch_raw_depth()) & 0xFF; vec4 rt = vec4(depth) / 255.0f; #else vec4 rt = fetch_raw_color(); #endif return sample_p(rt.r) * 255.0f; } vec4 fetch_green() { #if PS_DEPTH_FMT == 1 || PS_DEPTH_FMT == 2 int depth = (fetch_raw_depth() >> 8) & 0xFF; vec4 rt = vec4(depth) / 255.0f; #else vec4 rt = fetch_raw_color(); #endif return sample_p(rt.g) * 255.0f; } vec4 fetch_blue() { #if PS_DEPTH_FMT == 1 || PS_DEPTH_FMT == 2 int depth = (fetch_raw_depth() >> 16) & 0xFF; vec4 rt = vec4(depth) / 255.0f; #else vec4 rt = fetch_raw_color(); #endif return sample_p(rt.b) * 255.0f; } vec4 fetch_alpha() { vec4 rt = fetch_raw_color(); return sample_p(rt.a) * 255.0f; } vec4 fetch_rgb() { vec4 rt = fetch_raw_color(); vec4 c = vec4(sample_p(rt.r).r, sample_p(rt.g).g, sample_p(rt.b).b, 1.0f); return c * 255.0f; } vec4 fetch_gXbY() { #if PS_DEPTH_FMT == 1 || PS_DEPTH_FMT == 2 int depth = fetch_raw_depth(); int bg = (depth >> (8 + ChannelShuffle.w)) & 0xFF; return vec4(bg); #else ivec4 rt = ivec4(fetch_raw_color() * 255.0f); int green = (rt.g >> ChannelShuffle.w) & ChannelShuffle.z; int blue = (rt.b << ChannelShuffle.y) & ChannelShuffle.x; return vec4(green | blue); #endif } ////////////////////////////////////////////////////////////////////// vec4 sample_color(vec2 st) { #if (PS_TCOFFSETHACK == 1) st += TC_OffsetHack.xy; #endif vec4 t; mat4 c; vec2 dd; // FIXME I'm not sure this condition is useful (I think code will be optimized) #if (PS_LTF == 0 && PS_AEM_FMT == FMT_32 && PS_PAL_FMT == 0 && PS_WMS < 2 && PS_WMT < 2) // No software LTF and pure 32 bits RGBA texure without special texture wrapping c[0] = sample_c(st); #ifdef TEX_COORD_DEBUG c[0].rg = st.xy; #endif #else vec4 uv; if(PS_LTF != 0) { uv = st.xyxy + HalfTexel; dd = fract(uv.xy * WH.zw); #if (PS_FST == 0) // Background in Shin Megami Tensei Lucifers // I suspect that uv isn't a standard number, so fract is outside of the [0;1] range // Note: it is free on GPU but let's do it only for float coordinate dd = clamp(dd, vec2(0.0f), vec2(1.0f)); #endif } else { uv = st.xyxy; } uv = clamp_wrap_uv(uv); #if PS_PAL_FMT != 0 c = sample_4p(sample_4_index(uv)); #else c = sample_4c(uv); #endif #ifdef TEX_COORD_DEBUG c[0].rg = uv.xy; c[1].rg = uv.xy; c[2].rg = uv.xy; c[3].rg = uv.xy; #endif #endif // PERF note: using dot product reduces by 1 the number of instruction // but I'm not sure it is equivalent neither faster. for (int i = 0; i < 4; i++) { //float sum = dot(c[i].rgb, vec3(1.0f)); #if (PS_AEM_FMT == FMT_24) c[i].a = ( (PS_AEM == 0) || any(bvec3(c[i].rgb)) ) ? TA.x : 0.0f; //c[i].a = ( (PS_AEM == 0) || (sum > 0.0f) ) ? TA.x : 0.0f; #elif (PS_AEM_FMT == FMT_16) c[i].a = c[i].a >= 0.5 ? TA.y : ( (PS_AEM == 0) || any(bvec3(c[i].rgb)) ) ? TA.x : 0.0f; //c[i].a = c[i].a >= 0.5 ? TA.y : ( (PS_AEM == 0) || (sum > 0.0f) ) ? TA.x : 0.0f; #endif } #if(PS_LTF != 0) t = mix(mix(c[0], c[1], dd.x), mix(c[2], c[3], dd.x), dd.y); #else t = c[0]; #endif // The 0.05f helps to fix the overbloom of sotc // I think the issue is related to the rounding of texture coodinate. The linear (from fixed unit) // interpolation could be slightly below the correct one. return trunc(t * 255.0f + 0.05f); } vec4 tfx(vec4 T, vec4 C) { vec4 C_out; vec4 FxT = trunc(trunc(C) * T / 128.0f); #if (PS_TFX == 0) C_out = FxT; #elif (PS_TFX == 1) C_out = T; #elif (PS_TFX == 2) C_out.rgb = FxT.rgb + C.a; C_out.a = T.a + C.a; #elif (PS_TFX == 3) C_out.rgb = FxT.rgb + C.a; C_out.a = T.a; #else C_out = C; #endif #if (PS_TCC == 0) C_out.a = C.a; #endif #if (PS_TFX == 0) || (PS_TFX == 2) || (PS_TFX == 3) // Clamp only when it is useful C_out = min(C_out, 255.0f); #endif return C_out; } void atst(vec4 C) { float a = C.a; #if (PS_ATST == 0) // nothing to do #elif (PS_ATST == 1) if (a > AREF) discard; #elif (PS_ATST == 2) if (a < AREF) discard; #elif (PS_ATST == 3) if (abs(a - AREF) > 0.5f) discard; #elif (PS_ATST == 4) if (abs(a - AREF) < 0.5f) discard; #endif } void fog(inout vec4 C, float f) { #if PS_FOG != 0 C.rgb = trunc(mix(FogColor, C.rgb, f)); #endif } vec4 ps_color() { //FIXME: maybe we can set gl_Position.w = q in VS #if (PS_FST == 0) && (PS_INVALID_TEX0 == 1) // Re-normalize coordinate from invalid GS to corrected texture size vec2 st = (PSin.t_float.xy * WH.xy) / (vec2(PSin.t_float.w) * WH.zw); // no st_int yet #elif (PS_FST == 0) vec2 st = PSin.t_float.xy / vec2(PSin.t_float.w); vec2 st_int = PSin.t_int.zw / vec2(PSin.t_float.w); #else // Note xy are normalized coordinate vec2 st = PSin.t_int.xy; vec2 st_int = PSin.t_int.zw; #endif #if PS_CHANNEL_FETCH == 1 vec4 T = fetch_red(); #elif PS_CHANNEL_FETCH == 2 vec4 T = fetch_green(); #elif PS_CHANNEL_FETCH == 3 vec4 T = fetch_blue(); #elif PS_CHANNEL_FETCH == 4 vec4 T = fetch_alpha(); #elif PS_CHANNEL_FETCH == 5 vec4 T = fetch_rgb(); #elif PS_CHANNEL_FETCH == 6 vec4 T = fetch_gXbY(); #elif PS_DEPTH_FMT > 0 // Integral coordinate vec4 T = sample_depth(st_int); #else vec4 T = sample_color(st); #endif vec4 C = tfx(T, PSin.c); atst(C); fog(C, PSin.t_float.z); #if (PS_CLR1 != 0) // needed for Cd * (As/Ad/F + 1) blending modes C.rgb = vec3(255.0f); #endif return C; } void ps_fbmask(inout vec4 C) { // FIXME do I need special case for 16 bits #if PS_FBMASK vec4 RT = trunc(texelFetch(RtSampler, ivec2(gl_FragCoord.xy), 0) * 255.0f + 0.1f); C = vec4((uvec4(C) & ~FbMask) | (uvec4(RT) & FbMask)); #endif } void ps_dither(inout vec3 C) { #if PS_DITHER #if PS_DITHER == 2 ivec2 fpos = ivec2(gl_FragCoord.xy); #else ivec2 fpos = ivec2(gl_FragCoord.xy / float(PS_SCALE_FACTOR)); #endif C += DitherMatrix[fpos.y&3][fpos.x&3]; #endif } void ps_color_clamp_wrap(inout vec3 C) { // When dithering the bottom 3 bits become meaningless and cause lines in the picture // so we need to limit the color depth on dithered items #if SW_BLEND || PS_DITHER // Correct the Color value based on the output format #if PS_COLCLIP == 0 && PS_HDR == 0 // Standard Clamp C = clamp(C, vec3(0.0f), vec3(255.0f)); #endif // FIXME rouding of negative float? // compiler uses trunc but it might need floor // Warning: normally blending equation is mult(A, B) = A * B >> 7. GPU have the full accuracy // GS: Color = 1, Alpha = 255 => output 1 // GPU: Color = 1/255, Alpha = 255/255 * 255/128 => output 1.9921875 #if PS_DFMT == FMT_16 // In 16 bits format, only 5 bits of colors are used. It impacts shadows computation of Castlevania C = vec3(ivec3(C) & ivec3(0xF8)); #elif PS_COLCLIP == 1 && PS_HDR == 0 C = vec3(ivec3(C) & ivec3(0xFF)); #endif #endif } void ps_blend(inout vec4 Color, float As) { #if SW_BLEND vec4 RT = trunc(texelFetch(RtSampler, ivec2(gl_FragCoord.xy), 0) * 255.0f + 0.1f); #if PS_DFMT == FMT_24 float Ad = 1.0f; #else // FIXME FMT_16 case // FIXME Ad or Ad * 2? float Ad = RT.a / 128.0f; #endif // Let the compiler do its jobs ! vec3 Cd = RT.rgb; vec3 Cs = Color.rgb; #if PS_BLEND_A == 0 vec3 A = Cs; #elif PS_BLEND_A == 1 vec3 A = Cd; #else vec3 A = vec3(0.0f); #endif #if PS_BLEND_B == 0 vec3 B = Cs; #elif PS_BLEND_B == 1 vec3 B = Cd; #else vec3 B = vec3(0.0f); #endif #if PS_BLEND_C == 0 float C = As; #elif PS_BLEND_C == 1 float C = Ad; #else float C = Af; #endif #if PS_BLEND_D == 0 vec3 D = Cs; #elif PS_BLEND_D == 1 vec3 D = Cd; #else vec3 D = vec3(0.0f); #endif // As/Af clamp alpha for Blend mix #if PS_ALPHA_CLAMP C = min(C, float(1.0f)); #endif #if PS_BLEND_A == PS_BLEND_B Color.rgb = D; #else Color.rgb = trunc((A - B) * C + D); #endif // PABE #if PS_PABE Color.rgb = (As >= 1.0f) ? Color.rgb : Cs; #endif #endif } void ps_main() { #if PS_SCANMSK & 2 // fail depth test on prohibited lines if ((int(gl_FragCoord.y) & 1) == (PS_SCANMSK & 1)) discard; #endif #if ((PS_DATE & 3) == 1 || (PS_DATE & 3) == 2) #if PS_WRITE_RG == 1 // Pseudo 16 bits access. float rt_a = texelFetch(RtSampler, ivec2(gl_FragCoord.xy), 0).g; #else float rt_a = texelFetch(RtSampler, ivec2(gl_FragCoord.xy), 0).a; #endif #if (PS_DATE & 3) == 1 // DATM == 0: Pixel with alpha equal to 1 will failed bool bad = (127.5f / 255.0f) < rt_a; #elif (PS_DATE & 3) == 2 // DATM == 1: Pixel with alpha equal to 0 will failed bool bad = rt_a < (127.5f / 255.0f); #endif if (bad) { #if PS_DATE >= 5 || defined(DISABLE_GL42_image) discard; #else imageStore(img_prim_min, ivec2(gl_FragCoord.xy), ivec4(-1)); return; #endif } #endif #if PS_DATE == 3 && !defined(DISABLE_GL42_image) int stencil_ceil = imageLoad(img_prim_min, ivec2(gl_FragCoord.xy)).r; // Note gl_PrimitiveID == stencil_ceil will be the primitive that will update // the bad alpha value so we must keep it. if (gl_PrimitiveID > stencil_ceil) { discard; } #endif vec4 C = ps_color(); #if (APITRACE_DEBUG & 1) == 1 C.r = 255f; #endif #if (APITRACE_DEBUG & 2) == 2 C.g = 255f; #endif #if (APITRACE_DEBUG & 4) == 4 C.b = 255f; #endif #if (APITRACE_DEBUG & 8) == 8 C.a = 128f; #endif #if PS_SHUFFLE uvec4 denorm_c = uvec4(C); uvec2 denorm_TA = uvec2(vec2(TA.xy) * 255.0f + 0.5f); // Write RB part. Mask will take care of the correct destination #if PS_READ_BA C.rb = C.bb; #else C.rb = C.rr; #endif // FIXME precompute my_TA & 0x80 // Write GA part. Mask will take care of the correct destination // Note: GLSL 4.50/GL_EXT_shader_integer_mix support a mix instruction to select a component\n" // However Nvidia emulate it with an if (at least on kepler arch) ...\n" #if PS_READ_BA // bit field operation requires GL4 HW. Could be nice to merge it with step/mix below // uint my_ta = (bool(bitfieldExtract(denorm_c.a, 7, 1))) ? denorm_TA.y : denorm_TA.x; // denorm_c.a = bitfieldInsert(denorm_c.a, bitfieldExtract(my_ta, 7, 1), 7, 1); // c.ga = vec2(float(denorm_c.a)); if (bool(denorm_c.a & 0x80u)) C.ga = vec2(float((denorm_c.a & 0x7Fu) | (denorm_TA.y & 0x80u))); else C.ga = vec2(float((denorm_c.a & 0x7Fu) | (denorm_TA.x & 0x80u))); #else if (bool(denorm_c.g & 0x80u)) C.ga = vec2(float((denorm_c.g & 0x7Fu) | (denorm_TA.y & 0x80u))); else C.ga = vec2(float((denorm_c.g & 0x7Fu) | (denorm_TA.x & 0x80u))); // Nice idea but step/mix requires 4 instructions // set / trunc / I2F / Mad // // float sel = step(128.0f, c.g); // vec2 c_shuffle = vec2((denorm_c.gg & 0x7Fu) | (denorm_TA & 0x80u)); // c.ga = mix(c_shuffle.xx, c_shuffle.yy, sel); #endif #endif // Must be done before alpha correction float alpha_blend = C.a / 128.0f; // Correct the ALPHA value based on the output format #if (PS_DFMT == FMT_16) float A_one = 128.0f; // alpha output will be 0x80 C.a = (PS_FBA != 0) ? A_one : step(128.0f, C.a) * A_one; #elif (PS_DFMT == FMT_32) && (PS_FBA != 0) if(C.a < 128.0f) C.a += 128.0f; #endif // Get first primitive that will write a failling alpha value #if PS_DATE == 1 && !defined(DISABLE_GL42_image) // DATM == 0 // Pixel with alpha equal to 1 will failed (128-255) if (C.a > 127.5f) { imageAtomicMin(img_prim_min, ivec2(gl_FragCoord.xy), gl_PrimitiveID); } return; #elif PS_DATE == 2 && !defined(DISABLE_GL42_image) // DATM == 1 // Pixel with alpha equal to 0 will failed (0-127) if (C.a < 127.5f) { imageAtomicMin(img_prim_min, ivec2(gl_FragCoord.xy), gl_PrimitiveID); } return; #endif ps_blend(C, alpha_blend); ps_dither(C.rgb); // Color clamp/wrap needs to be done after sw blending and dithering ps_color_clamp_wrap(C.rgb); ps_fbmask(C); SV_Target0 = C / 255.0f; SV_Target1 = vec4(alpha_blend); #if PS_ZCLAMP gl_FragDepth = min(gl_FragCoord.z, MaxDepthPS); #endif } #endif