/* ZeroGS KOSMOS * Copyright (C) 2005-2006 zerofrog@gmail.com * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "GS.h" #include #include #include #include #include #include #include #include "Mem.h" #include "x86.h" #include "zerogs.h" #include "targets.h" const float g_filog32 = 0.999f / (32.0f * logf(2.0f)); extern int g_GameSettings; using namespace ZeroGS; extern int g_TransferredToGPU; extern BOOL g_bIsLost; extern BOOL g_bUpdateStencil; extern u32 s_uFramebuffer; #ifndef ZEROGS_DEVBUILD #define INC_RESOLVE() #else #define INC_RESOLVE() ++g_nResolve extern u32 g_nResolve; extern BOOL g_bSaveTrans; #endif namespace ZeroGS { CRenderTargetMngr s_RTs, s_DepthRTs; CBitwiseTextureMngr s_BitwiseTextures; CMemoryTargetMngr g_MemTargs; extern u8 s_AAx, s_AAy; extern Vector g_vdepth; extern int icurctx; extern VERTEXSHADER pvsBitBlt; extern FRAGMENTSHADER ppsBitBlt[2], ppsBitBltDepth, ppsOne; extern FRAGMENTSHADER ppsBaseTexture, ppsConvert16to32, ppsConvert32to16; extern GLuint vboRect; } extern u32 s_ptexCurSet[2]; extern u32 ptexBilinearBlocks; extern u32 ptexConv32to16; BOOL g_bSaveZUpdate = 0; //////////////////// // Render Targets // //////////////////// ZeroGS::CRenderTarget::CRenderTarget() : ptex(0), ptexFeedback(0), psys(NULL) { nUpdateTarg = 0; } ZeroGS::CRenderTarget::~CRenderTarget() { Destroy(); } bool ZeroGS::CRenderTarget::Create(const frameInfo& frame) { Resolve(); Destroy(); lastused = timeGetTime(); fbp = frame.fbp; fbw = frame.fbw; fbh = frame.fbh; psm = (u8)frame.psm; fbm = frame.fbm; vposxy.x = 2.0f * (1.0f / 8.0f) / (float)fbw; vposxy.y = 2.0f * (1.0f / 8.0f) / (float)fbh; vposxy.z = -1-0.5f/fbw; vposxy.w = -1+0.5f/fbh; status = 0; if( fbw > 0 && fbh > 0 ) { GetRectMemAddress(start, end, psm, 0, 0, fbw, fbh, fbp, fbw); psys = _aligned_malloc( (fbh<= fbp ); dy = ((256/bpp)*(fbplocal-fbp)) / fbw; v.x = vposxy.x; v.y = vposxy.y; v.z = vposxy.z; v.w = vposxy.w - dy*2.0f/(float)fbh; cgGLSetParameter4fv(g_vparamPosXY[context], v); } else cgGLSetParameter4fv(g_vparamPosXY[context], vposxy); // set render states scissorrect.x = scissor.x0>>3; scissorrect.y = (scissor.y0>>3) + dy; scissorrect.w = (scissor.x1>>3)+1; scissorrect.h = (scissor.y1>>3)+1+dy; scissorrect.w = min(scissorrect.w, fbw) - scissorrect.x; scissorrect.h = min(scissorrect.h, fbh) - scissorrect.y; scissorrect.x <<= s_AAx; scissorrect.y <<= s_AAy; scissorrect.w <<= s_AAx; scissorrect.h <<= s_AAy; } void ZeroGS::CRenderTarget::SetViewport() { glViewport(0, 0, fbw< 10 || (g_GameSettings&GAME_NOTARGETRESOLVE) ) { // don't resolve if depths aren't used status = TS_Resolved; return; } glBindTexture(GL_TEXTURE_RECTANGLE_NV, ptex); GL_REPORT_ERRORD(); //glGetTexImage(GL_TEXTURE_RECTANGLE_NV, 0, GetRenderTargetFormat(), GetRenderFormat()==RFT_float16?GL_FLOAT:GL_UNSIGNED_BYTE, psys); glGetTexImage(GL_TEXTURE_RECTANGLE_NV, 0, GL_RGBA, GL_UNSIGNED_BYTE, psys); GL_REPORT_ERRORD(); #if defined(ZEROGS_DEVBUILD) && defined(_DEBUG) if( g_bSaveResolved ) { SaveTexture("resolved.tga", GL_TEXTURE_RECTANGLE_NV, ptex, fbw< start ); // make sure it at least intersects if( ptex != 0 && !(status&TS_Resolved) && !(status&TS_NeedUpdate) ) { // flush if necessary if( vb[0].prndr == this || vb[0].pdepth == this ) Flush(0); if( vb[1].prndr == this || vb[1].pdepth == this ) Flush(1); #if defined(ZEROGS_DEVBUILD) && defined(_DEBUG) if( g_bSaveResolved ) { SaveTexture("resolved.tga", GL_TEXTURE_RECTANGLE_NV, ptex, fbw<>6); // in now way should data be overwritten!, instead resolve less if( endrange < end ) { // round down to nearest block and scanline resolveheight = ((endrange-start)/(0x2000*(fbw>>6))) * blockheight; if( resolveheight <= 32 ) { status = TS_Resolved; return; } } else if( startrange > start ) { // round up to nearest block and scanline resolvefbp = startrange + scanlinewidth - 1; resolvefbp -= resolvefbp % scanlinewidth; resolveheight = fbh-((resolvefbp-fbp)*blockheight/scanlinewidth); if( resolveheight <= 64 ) { // this is a total hack, but kh doesn't resolve now status = TS_Resolved; return; } resolvefbp >>= 8; } glBindTexture(GL_TEXTURE_RECTANGLE_NV, ptex); //glGetTexImage(GL_TEXTURE_RECTANGLE_NV, 0, GetRenderTargetFormat(), GetRenderFormat()==RFT_float16?GL_FLOAT:GL_UNSIGNED_BYTE, psys); glGetTexImage(GL_TEXTURE_RECTANGLE_NV, 0, GL_RGBA, GL_UNSIGNED_BYTE, psys); GL_REPORT_ERRORD(); u8* pbits = (u8*)psys; u32 Pitch = (fbw<SetDepthStencilSurface(psurfDepth); ResetRenderTarget(1); SetRenderTarget(0); assert( pdepth != NULL ); ((CDepthTarget*)pdepth)->SetDepthStencilSurface(); Vector v = Vector(1,-1,-0.5f/(float)(fbw<second == this ) { ERROR_LOG("updating self"); nUpdateTarg = 0; } } else if( ittarg->second == this ) { ERROR_LOG("updating self"); nUpdateTarg = 0; } } SetViewport(); if( nUpdateTarg ) { cgGLSetTextureParameter(ppsBaseTexture.sFinal, ittarg->second->ptex); cgGLEnableTextureParameter(ppsBaseTexture.sFinal); //assert( ittarg->second->fbw == fbw ); int offset = (fbp-ittarg->second->fbp)*64/fbw; // 16 bit if (psm & 2) offset *= 2; v.x = (float)(fbw << s_AAx); v.y = (float)(fbh << s_AAy); v.z = 0.25f; v.w = (float)(offset << s_AAy) + 0.25f; cgGLSetParameter4fv(pvsBitBlt.sBitBltPos, v); v.x = v.y = v.z = v.w = 1; cgGLSetParameter4fv(ppsBaseTexture.sOneColor, v); SETPIXELSHADER(ppsBaseTexture.prog); nUpdateTarg = 0; } else { // align the rect to the nearest page // note that fbp is always aligned on page boundaries tex0Info texframe; texframe.tbp0 = fbp; texframe.tbw = fbw; texframe.tw = fbw; texframe.th = fbh; texframe.psm = psm; CMemoryTarget* pmemtarg = g_MemTargs.GetMemoryTarget(texframe, 1); // write color and zero out stencil buf, always 0 context! // force bilinear if using AA SetTexVariablesInt(0, (s_AAx || s_AAy)?2:0, texframe, pmemtarg, &ppsBitBlt[s_AAx], 1); cgGLSetTextureParameter(ppsBitBlt[s_AAx].sMemory, pmemtarg->ptex->tex); cgGLEnableTextureParameter(ppsBitBlt[s_AAx].sMemory); v = Vector(1,1,0,0); cgGLSetParameter4fv(pvsBitBlt.sBitBltTex, v); v.x = 1; v.y = 2; cgGLSetParameter4fv(ppsBitBlt[s_AAx].sOneColor, v); assert( ptex != 0 ); if( conf.options & GSOPTION_WIREFRAME ) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); if( ZeroGS::IsWriteDestAlphaTest() ) { glEnable(GL_STENCIL_TEST); glStencilFunc(GL_ALWAYS, 0, 0xff); glStencilMask(0xff); glStencilOp(GL_KEEP, GL_KEEP, GL_ZERO); } // render with an AA shader if possible (bilinearly interpolates data) //cgGLLoadProgram(ppsBitBlt[s_AAx].prog); SETPIXELSHADER(ppsBitBlt[s_AAx].prog); } SETVERTEXSHADER(pvsBitBlt.prog); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); // fill stencil buf only if( ZeroGS::IsWriteDestAlphaTest() && !(g_GameSettings&GAME_NOSTENCIL)) { glColorMask(0,0,0,0); glEnable(GL_ALPHA_TEST); glAlphaFunc(GL_GEQUAL, 1); glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE); glStencilFunc(GL_ALWAYS, 1, 0xff); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); glColorMask(1,1,1,1); } glEnable(GL_SCISSOR_TEST); if( conf.options & GSOPTION_WIREFRAME ) glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); if( conf.mrtdepth && pdepth != NULL && ZeroGS::IsWriteDepth() ) pdepth->SetRenderTarget(1); status = TS_Resolved; // reset since settings changed vb[0].bVarsTexSync = 0; ZeroGS::ResetAlphaVariables(); } void ZeroGS::CRenderTarget::ConvertTo32() { u32 ptexConv; // create new target glGenTextures(1, &ptexConv); glBindTexture(GL_TEXTURE_RECTANGLE_NV, ptexConv); glTexImage2D(GL_TEXTURE_RECTANGLE_NV, 0, GetRenderTargetFormat(), fbw<= 0 ) { // reset since settings changed vb[icurctx].bVarsTexSync = 0; vb[icurctx].bVarsSetTarg = 0; } vb[0].bVarsTexSync = 0; } void ZeroGS::CRenderTarget::ConvertTo16() { u32 ptexConv; // create new target glGenTextures(1, &ptexConv); glBindTexture(GL_TEXTURE_RECTANGLE_NV, ptexConv); glTexImage2D(GL_TEXTURE_RECTANGLE_NV, 0, GetRenderTargetFormat(), fbw<Create(frame); // s_DepthRTs.mapDummyTargs[(fbw<<16)|fbh] = pnewdepth; // } // else pnewdepth = (CDepthTarget*)itdepth->second; // // assert( pnewdepth != NULL ); // pd3dDevice->SetDepthStencilSurface(pnewdepth->pdepth); SetViewport(); if( conf.options & GSOPTION_WIREFRAME ) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); // render with an AA shader if possible (bilinearly interpolates data) SETVERTEXSHADER(pvsBitBlt.prog); SETPIXELSHADER(ppsConvert32to16.prog); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); #ifdef _DEBUG //g_bSaveZUpdate = 1; if( g_bSaveZUpdate ) { SaveTexture("tex1.tga", GL_TEXTURE_RECTANGLE_NV, ptexConv, fbw<= 0 ) { // reset since settings changed vb[icurctx].bVarsTexSync = 0; vb[icurctx].bVarsSetTarg = 0; } vb[0].bVarsTexSync = 0; } void ZeroGS::CRenderTarget::_CreateFeedback() { if( ptexFeedback == 0 ) { // create glGenTextures(1, &ptexFeedback); glBindTexture(GL_TEXTURE_RECTANGLE_NV, ptexFeedback); glTexImage2D(GL_TEXTURE_RECTANGLE_NV, 0, GetRenderTargetFormat(), fbw<= 0 ) { // reset since settings changed vb[icurctx].bVarsTexSync = 0; } assert( glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT) == GL_FRAMEBUFFER_COMPLETE_EXT ); } void ZeroGS::CRenderTarget::SetRenderTarget(int targ) { glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT+targ, GL_TEXTURE_RECTANGLE_NV, ptex, 0 ); //assert( glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT) == GL_FRAMEBUFFER_COMPLETE_EXT ); } ZeroGS::CDepthTarget::CDepthTarget() : CRenderTarget(), pdepth(0), pstencil(0), icount(0) {} ZeroGS::CDepthTarget::~CDepthTarget() { Destroy(); } bool ZeroGS::CDepthTarget::Create(const frameInfo& frame) { if( !CRenderTarget::Create(frame) ) return false; if( psm == PSMT24Z ) fbm = 0xff000000; else fbm = 0; assert( glGetError() == GL_NO_ERROR ); glGenRenderbuffersEXT( 1, &pdepth ); glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, pdepth); glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, GL_DEPTH24_STENCIL8_EXT, fbw< 0 if depth is used void ZeroGS::CDepthTarget::Resolve() { if( g_nDepthUsed > 0 && conf.mrtdepth && !(status&TS_Virtual) && ZeroGS::IsWriteDepth() && !(g_GameSettings&GAME_NODEPTHRESOLVE) ) CRenderTarget::Resolve(); else { // flush if necessary if( vb[0].prndr == this || vb[0].pdepth == this ) Flush(0); if( vb[1].prndr == this || vb[1].pdepth == this ) Flush(1); if( !(status & TS_Virtual) ) status |= TS_Resolved; } if( !(status&TS_Virtual) ) { ZeroGS::SetWriteDepth(); } } void ZeroGS::CDepthTarget::Resolve(int startrange, int endrange) { if( g_nDepthUsed > 0 && conf.mrtdepth && !(status&TS_Virtual) && ZeroGS::IsWriteDepth() ) CRenderTarget::Resolve(startrange, endrange); else { // flush if necessary if( vb[0].prndr == this || vb[0].pdepth == this ) Flush(0); if( vb[1].prndr == this || vb[1].pdepth == this ) Flush(1); if( !(status & TS_Virtual) ) status |= TS_Resolved; } if( !(status&TS_Virtual) ) { ZeroGS::SetWriteDepth(); } } extern int g_nDepthUpdateCount; void ZeroGS::CDepthTarget::Update(int context, ZeroGS::CRenderTarget* prndr) { assert( !(status & TS_Virtual) ); // align the rect to the nearest page // note that fbp is always aligned on page boundaries tex0Info texframe; texframe.tbp0 = fbp; texframe.tbw = fbw; texframe.tw = fbw; texframe.th = fbh; texframe.psm = psm; CMemoryTarget* pmemtarg = g_MemTargs.GetMemoryTarget(texframe, 1); glDisable(GL_SCISSOR_TEST); glDisable(GL_BLEND); glDisable(GL_ALPHA_TEST); glEnable(GL_DEPTH_TEST); glDepthMask(1); glDisable(GL_STENCIL_TEST); glDepthFunc(GL_ALWAYS); // write color and zero out stencil buf, always 0 context! SetTexVariablesInt(0, 0, texframe, pmemtarg, &ppsBitBltDepth, 1); cgGLSetTextureParameter(ppsBitBltDepth.sMemory, pmemtarg->ptex->tex); cgGLEnableTextureParameter(ppsBaseTexture.sFinal); Vector v = Vector(1,-1,0.5f/(float)fbw,-0.5f/(float)fbh); cgGLSetParameter4fv(pvsBitBlt.sBitBltTex, v); v.z = v.w = 0; v *= 1/32767.0f; cgGLSetParameter4fv(pvsBitBlt.sBitBltPos, v); v.x = 1; v.y = 2; v.z = (psm&3)==2?1.0f:0.0f; v.w = g_filog32; cgGLSetParameter4fv(ppsBitBltDepth.sOneColor, v); Vector vdepth = ((255.0f/256.0f)*g_vdepth); if( psm == PSMT24Z ) vdepth.w = 0; else if( psm != PSMT32Z ) { vdepth.z = vdepth.w = 0; } assert( ppsBitBltDepth.sBitBltZ != 0 ); cgGLSetParameter4fv(ppsBitBltDepth.sBitBltZ, ((255.0f/256.0f)*vdepth)); assert( pdepth != 0 ); glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_RECTANGLE_NV, ptex, 0 ); SetDepthStencilSurface(); glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT1_EXT, GL_TEXTURE_RECTANGLE_NV, 0, 0 ); GLenum buffer = GL_COLOR_ATTACHMENT0_EXT; if( glDrawBuffers != NULL ) glDrawBuffers(1, &buffer); int stat = glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT); assert( glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT) == GL_FRAMEBUFFER_COMPLETE_EXT ); SetViewport(); if( conf.options & GSOPTION_WIREFRAME ) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); glBindBuffer(GL_ARRAY_BUFFER, vboRect); SET_STREAM(); SETVERTEXSHADER(pvsBitBlt.prog); SETPIXELSHADER(ppsBitBltDepth.prog); glDrawArrays(GL_TRIANGLE_STRIP, 0, 4); status = TS_Resolved; if( !ZeroGS::IsWriteDepth() ) { ResetRenderTarget(1); } if( conf.options & GSOPTION_WIREFRAME ) glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); glEnable(GL_SCISSOR_TEST); #ifdef _DEBUG if( g_bSaveZUpdate ) { SaveTex(&texframe, 1); SaveTexture("frame1.tga", GL_TEXTURE_RECTANGLE_NV, ptex, fbw<second; mapTargets.clear(); for(MAPTARGETS::iterator it = mapDummyTargs.begin(); it != mapDummyTargs.end(); ++it) delete it->second; mapDummyTargs.clear(); } void ZeroGS::CRenderTargetMngr::DestroyAllTargs(int start, int end, int fbw) { for(MAPTARGETS::iterator it = mapTargets.begin(); it != mapTargets.end();) { if( it->second->start < end && start < it->second->end ) { // if is depth, only resolve if fbw is the same if( !it->second->IsDepth() ) { // only resolve if the widths are the same or it->second has bit outside the range // shadow of colossus swaps between fbw=256,fbh=256 and fbw=512,fbh=448. This kills the game if doing || it->second->end > end // kh hack, sometimes kh movies do this to clear the target, so have a static count that periodically checks end static int count = 0; if( it->second->fbw == fbw || (it->second->fbw != fbw && (it->second->start < start || ((count++&0xf)?0:it->second->end > end) )) ) it->second->Resolve(); else { if( vb[0].prndr == it->second || vb[0].pdepth == it->second ) Flush(0); if( vb[1].prndr == it->second || vb[1].pdepth == it->second ) Flush(1); it->second->status |= CRenderTarget::TS_Resolved; } } else { if( it->second->fbw == fbw ) it->second->Resolve(); else { if( vb[0].prndr == it->second || vb[0].pdepth == it->second ) Flush(0); if( vb[1].prndr == it->second || vb[1].pdepth == it->second ) Flush(1); it->second->status |= CRenderTarget::TS_Resolved; } } for(int i = 0; i < 2; ++i) { if( it->second == vb[i].prndr ) { vb[i].prndr = NULL; vb[i].bNeedFrameCheck = 1; } if( it->second == vb[i].pdepth ) { vb[i].pdepth = NULL; vb[i].bNeedZCheck = 1; } } u32 dummykey = (it->second->fbw<<16)|it->second->fbh; if( mapDummyTargs.find(dummykey) == mapDummyTargs.end() ) { mapDummyTargs[dummykey] = it->second; } else delete it->second; mapTargets.erase(it++); } else ++it; } } void ZeroGS::CRenderTargetMngr::DestroyTarg(CRenderTarget* ptarg) { for(int i = 0; i < 2; ++i) { if( ptarg == vb[i].prndr ) { vb[i].prndr = NULL; vb[i].bNeedFrameCheck = 1; } if( ptarg == vb[i].pdepth ) { vb[i].pdepth = NULL; vb[i].bNeedZCheck = 1; } } delete ptarg; } void ZeroGS::CRenderTargetMngr::DestroyIntersecting(CRenderTarget* prndr) { assert( prndr != NULL ); int start, end; GetRectMemAddress(start, end, prndr->psm, 0, 0, prndr->fbw, prndr->fbh, prndr->fbp, prndr->fbw); for(MAPTARGETS::iterator it = mapTargets.begin(); it != mapTargets.end();) { if( it->second != prndr && it->second->start < end && start < it->second->end ) { it->second->Resolve(); for(int i = 0; i < 2; ++i) { if( it->second == vb[i].prndr ) { vb[i].prndr = NULL; vb[i].bNeedFrameCheck = 1; } if( it->second == vb[i].pdepth ) { vb[i].pdepth = NULL; vb[i].bNeedZCheck = 1; } } u32 dummykey = (it->second->fbw<<16)|it->second->fbh; if( mapDummyTargs.find(dummykey) == mapDummyTargs.end() ) { mapDummyTargs[dummykey] = it->second; } else delete it->second; mapTargets.erase(it++); } else ++it; } } CRenderTarget* ZeroGS::CRenderTargetMngr::GetTarg(const frameInfo& frame, u32 opts, int maxposheight) { if( frame.fbw <= 0 || frame.fbh <= 0 ) return NULL; GL_REPORT_ERRORD(); u32 key = frame.fbp|(frame.fbw<<16); MAPTARGETS::iterator it = mapTargets.find(key); // only enforce height if frame.fbh <= 0x1c0 bool bfound = it != mapTargets.end(); if( bfound ) { if( opts&TO_StrictHeight ) { bfound = it->second->fbh == frame.fbh; } else { if( (frame.psm&2)==(it->second->psm&2) && !(g_GameSettings & GAME_FULL16BITRES) ) bfound = (frame.fbh > 0x1c0 || it->second->fbh >= frame.fbh) && it->second->fbh <= maxposheight; } } if( !bfound ) { // might be a virtual target it = mapTargets.find(key|TARGET_VIRTUAL_KEY); bfound = it != mapTargets.end() && ((opts&TO_StrictHeight) ? it->second->fbh == frame.fbh : it->second->fbh >= frame.fbh) && it->second->fbh <= maxposheight; } if( bfound ) { // can be both 16bit and 32bit if( (frame.psm&2) != (it->second->psm&2) ) { // a lot of games do this actually... #ifdef _DEBUG WARN_LOG("Really bad formats! %d %d\n", frame.psm, it->second->psm); #endif // if( g_GameSettings & GAME_VSSHACK ) { // if( it->second->psm & 2 ) { // it->second->status |= CRenderTarget::TS_NeedConvert32; // it->second->fbh /= 2; // } // else { // it->second->status |= CRenderTarget::TS_NeedConvert16; // it->second->fbh *= 2; // } // } // recalc extents GetRectMemAddress(it->second->start, it->second->end, frame.psm, 0, 0, frame.fbw, it->second->fbh, it->second->fbp, frame.fbw); } else { // certain variables have to be reset every time if( (it->second->psm&~1) != (frame.psm&~1) ) { #ifdef ZEROGS_DEVBUILD WARN_LOG("bad formats 2: %d %d\n", frame.psm, it->second->psm); #endif it->second->psm = frame.psm; // recalc extents GetRectMemAddress(it->second->start, it->second->end, frame.psm, 0, 0, frame.fbw, it->second->fbh, it->second->fbp, frame.fbw); } } if( it->second->fbm != frame.fbm ) { //WARN_LOG("bad fbm: 0x%8.8x 0x%8.8x, psm: %d\n", frame.fbm, it->second->fbm, frame.psm); } it->second->fbm &= frame.fbm; it->second->psm = frame.psm; // have to convert (ffx2) if( (it->first & TARGET_VIRTUAL_KEY) && !(opts&TO_Virtual) ) { // switch it->second->lastused = timeGetTime(); return Promote(it->first&~TARGET_VIRTUAL_KEY); } // check if there exists a more recent target that this target could update from for(MAPTARGETS::iterator itnew = mapTargets.begin(); itnew != mapTargets.end(); ++itnew) { if( itnew->second != it->second && itnew->second->start <= it->second->start && itnew->second->end >= it->second->end && itnew->second->lastused > it->second->lastused && !(itnew->second->status & CRenderTarget::TS_NeedUpdate) ) { it->second->status |= CRenderTarget::TS_NeedUpdate; it->second->nUpdateTarg = itnew->first; break; } } it->second->lastused = timeGetTime(); return it->second; } // NOTE: instead of resolving, if current render targ is completely outside of old, can transfer // the data like that. // have to change, so recreate (find all intersecting targets and Resolve) u32 besttarg = 0; if( !(opts & CRenderTargetMngr::TO_Virtual) ) { int start, end; GetRectMemAddress(start, end, frame.psm, 0, 0, frame.fbw, frame.fbh, frame.fbp, frame.fbw); if( !(opts & CRenderTargetMngr::TO_StrictHeight) ) { // if there is only one intersecting target and it encompasses the current one, update the new render target with // its data instead of resolving then updating (ffx2). Do not change the original target. for(MAPTARGETS::iterator it = mapTargets.begin(); it != mapTargets.end(); ++it) { if( it->second->start < end && start < it->second->end ) { // if( g_GameSettings&GAME_FASTUPDATE ) { // besttarg = it->first; // //break; // } // else { if( (g_GameSettings&GAME_FASTUPDATE) || (it->second->fbp != frame.fbp && it->second->fbw == frame.fbw) ) { if( besttarg != 0 ) { besttarg = 0; break; } if( start >= it->second->start && end <= it->second->end ) { besttarg = it->first; } } // } } } } if( besttarg == 0 ) { // if none found, resolve all DestroyAllTargs(start, end, frame.fbw); } } if( mapTargets.size() > 8 ) { // release some resources it = GetOldestTarg(mapTargets); // if more than 5s passed since target used, destroy if( timeGetTime()-it->second->lastused > 5000 ) { delete it->second; mapTargets.erase(it); } } if( mapDummyTargs.size() > 8 ) { it = GetOldestTarg(mapDummyTargs); delete it->second; mapDummyTargs.erase(it); } // first search for the target CRenderTarget* ptarg = NULL; it = mapDummyTargs.find( (frame.fbw<<16)|frame.fbh ); if( it != mapDummyTargs.end() ) { ptarg = it->second; mapDummyTargs.erase(it); // restore all setttings ptarg->psm = frame.psm; ptarg->fbm = frame.fbm; ptarg->fbp = frame.fbp; GetRectMemAddress(ptarg->start, ptarg->end, frame.psm, 0, 0, frame.fbw, frame.fbh, frame.fbp, frame.fbw); ptarg->status = CRenderTarget::TS_NeedUpdate; } else { // create anew ptarg = (opts&TO_DepthBuffer) ? new CDepthTarget() : new CRenderTarget(); CRenderTargetMngr* pmngrs[2] = { &s_DepthRTs, this == &s_RTs ? &s_RTs : NULL }; int cur = 0; while( !ptarg->Create(frame) ) { // destroy unused targets if( mapDummyTargs.size() > 0 ) { it = mapDummyTargs.begin(); delete it->second; mapDummyTargs.erase(it); continue; } if( g_MemTargs.listClearedTargets.size() > 0 ) { g_MemTargs.DestroyCleared(); continue; } else if( g_MemTargs.listTargets.size() > 32 ) { g_MemTargs.DestroyOldest(); continue; } if( pmngrs[cur] == NULL ) { cur = !cur; if( pmngrs[cur] == NULL ) { WARN_LOG("Out of memory!\n"); delete ptarg; return NULL; } } if( pmngrs[cur]->mapTargets.size() == 0 ) { pmngrs[cur] = NULL; cur = !cur; continue; } it = GetOldestTarg(pmngrs[cur]->mapTargets); DestroyTarg(it->second); pmngrs[cur]->mapTargets.erase(it); cur = !cur; } } if( (opts & CRenderTargetMngr::TO_Virtual) ) { ptarg->status = CRenderTarget::TS_Virtual; key |= TARGET_VIRTUAL_KEY; if( (it = mapTargets.find(key)) != mapTargets.end() ) { DestroyTarg(it->second); it->second = ptarg; ptarg->nUpdateTarg = besttarg; return ptarg; } } else assert( mapTargets.find(key) == mapTargets.end()); ptarg->nUpdateTarg = besttarg; mapTargets[key] = ptarg; return ptarg; } ZeroGS::CRenderTargetMngr::MAPTARGETS::iterator ZeroGS::CRenderTargetMngr::GetOldestTarg(MAPTARGETS& m) { if( m.size() == 0 ) { return m.end(); } // release some resources u32 curtime = timeGetTime(); MAPTARGETS::iterator itmaxtarg = m.begin(); for(MAPTARGETS::iterator it = ++m.begin(); it != m.end(); ++it) { if( itmaxtarg->second->lastused-curtime < it->second->lastused-curtime ) itmaxtarg = it; } return itmaxtarg; } void ZeroGS::CRenderTargetMngr::GetTargs(int start, int end, list& listTargets) const { for(MAPTARGETS::const_iterator it = mapTargets.begin(); it != mapTargets.end(); ++it) { if( it->second->start < end && start < it->second->end ) listTargets.push_back(it->second); } } void ZeroGS::CRenderTargetMngr::Resolve(int start, int end) { for(MAPTARGETS::const_iterator it = mapTargets.begin(); it != mapTargets.end(); ++it) { if( it->second->start < end && start < it->second->end ) it->second->Resolve(); } } void ZeroGS::CMemoryTargetMngr::Destroy() { listTargets.clear(); listClearedTargets.clear(); } int memcmp_clut16(u16* pSavedBuffer, u16* pClutBuffer, int clutsize) { assert( (clutsize&31) == 0 ); // left > 0 only when csa < 16 int left = ((u32)(uptr)pClutBuffer & 2) ? 0 : (((u32)(uptr)pClutBuffer & 0x3ff)/2) + clutsize - 512; if( left > 0 ) clutsize -= left; while(clutsize > 0) { for(int i = 0; i < 16; ++i) { if( pSavedBuffer[i] != pClutBuffer[2*i] ) return 1; } clutsize -= 32; pSavedBuffer += 16; pClutBuffer += 32; } if( left > 0 ) { pClutBuffer = (u16*)(g_pbyGSClut + 2); while(left > 0) { for(int i = 0; i < 16; ++i) { if( pSavedBuffer[i] != pClutBuffer[2*i] ) return 1; } left -= 32; pSavedBuffer += 16; pClutBuffer += 32; } } return 0; } bool ZeroGS::CMemoryTarget::ValidateClut(const tex0Info& tex0) { assert( tex0.psm == psm && PSMT_ISCLUT(psm) && cpsm == tex0.cpsm ); int nClutOffset = 0; int clutsize = 0; int entries = (tex0.psm&3)==3 ? 256 : 16; if( tex0.cpsm <= 1 ) { // 32 bit nClutOffset = 64 * tex0.csa; clutsize = min(entries, 256-tex0.csa*16)*4; } else { nClutOffset = 32 * (tex0.csa&15) + (tex0.csa>=16?2:0); clutsize = min(entries, 512-tex0.csa*16)*2; } assert( clutsize == clut.size() ); if( cpsm <= 1 ) { if( memcmp_mmx(&clut[0], g_pbyGSClut+nClutOffset, clutsize) ) return false; } else { if( memcmp_clut16((u16*)&clut[0], (u16*)(g_pbyGSClut+nClutOffset), clutsize) ) return false; } return true; } int VALIDATE_THRESH = 8; u32 TEXDESTROY_THRESH = 16; bool ZeroGS::CMemoryTarget::ValidateTex(const tex0Info& tex0, int starttex, int endtex, bool bDeleteBadTex) { if( clearmaxy == 0 ) return true; int checkstarty = max(starttex, clearminy); int checkendy = min(endtex, clearmaxy); if( checkstarty >= checkendy ) return true; if( validatecount++ > VALIDATE_THRESH ) { height = 0; return false; } // lock and compare assert( ptex != NULL && ptex->memptr != NULL); int result = memcmp_mmx(ptex->memptr + (checkstarty-realy)*4*GPU_TEXWIDTH, g_pbyGSMemory+checkstarty*4*GPU_TEXWIDTH, (checkendy-checkstarty)*4*GPU_TEXWIDTH); if( result == 0 || !bDeleteBadTex ) { if( result == 0 ) clearmaxy = 0; return result == 0; } // delete clearminy, clearmaxy range (not the checkstarty, checkendy range) int newstarty = 0; if( clearminy <= starty ) { if( clearmaxy < starty + height) { // preserve end height = starty+height-clearmaxy; starty = clearmaxy; assert(height > 0); } else { // destroy height = 0; } } else { // beginning can be preserved height = clearminy-starty; } clearmaxy = 0; assert( starty >= realy && starty+height<=realy+realheight ); return false; } // used to build clut textures (note that this is for both 16 and 32 bit cluts) #define BUILDCLUT() { \ switch(tex0.psm) { \ case PSMT8: \ for(int i = 0; i < targ->height; ++i) { \ for(int j = 0; j < GPU_TEXWIDTH/2; ++j) { \ pdst[0] = pclut[psrc[0]]; \ pdst[1] = pclut[psrc[1]]; \ pdst[2] = pclut[psrc[2]]; \ pdst[3] = pclut[psrc[3]]; \ pdst[4] = pclut[psrc[4]]; \ pdst[5] = pclut[psrc[5]]; \ pdst[6] = pclut[psrc[6]]; \ pdst[7] = pclut[psrc[7]]; \ pdst += 8; \ psrc += 8; \ } \ } \ break; \ case PSMT4: \ for(int i = 0; i < targ->height; ++i) { \ for(int j = 0; j < GPU_TEXWIDTH; ++j) { \ pdst[0] = pclut[psrc[0]&15]; \ pdst[1] = pclut[psrc[0]>>4]; \ pdst[2] = pclut[psrc[1]&15]; \ pdst[3] = pclut[psrc[1]>>4]; \ pdst[4] = pclut[psrc[2]&15]; \ pdst[5] = pclut[psrc[2]>>4]; \ pdst[6] = pclut[psrc[3]&15]; \ pdst[7] = pclut[psrc[3]>>4]; \ \ pdst += 8; \ psrc += 4; \ } \ } \ break; \ case PSMT8H: \ for(int i = 0; i < targ->height; ++i) { \ for(int j = 0; j < GPU_TEXWIDTH/8; ++j) { \ pdst[0] = pclut[psrc[3]]; \ pdst[1] = pclut[psrc[7]]; \ pdst[2] = pclut[psrc[11]]; \ pdst[3] = pclut[psrc[15]]; \ pdst[4] = pclut[psrc[19]]; \ pdst[5] = pclut[psrc[23]]; \ pdst[6] = pclut[psrc[27]]; \ pdst[7] = pclut[psrc[31]]; \ pdst += 8; \ psrc += 32; \ } \ } \ break; \ case PSMT4HH: \ for(int i = 0; i < targ->height; ++i) { \ for(int j = 0; j < GPU_TEXWIDTH/8; ++j) { \ pdst[0] = pclut[psrc[3]>>4]; \ pdst[1] = pclut[psrc[7]>>4]; \ pdst[2] = pclut[psrc[11]>>4]; \ pdst[3] = pclut[psrc[15]>>4]; \ pdst[4] = pclut[psrc[19]>>4]; \ pdst[5] = pclut[psrc[23]>>4]; \ pdst[6] = pclut[psrc[27]>>4]; \ pdst[7] = pclut[psrc[31]>>4]; \ pdst += 8; \ psrc += 32; \ } \ } \ break; \ case PSMT4HL: \ for(int i = 0; i < targ->height; ++i) { \ for(int j = 0; j < GPU_TEXWIDTH/8; ++j) { \ pdst[0] = pclut[psrc[3]&15]; \ pdst[1] = pclut[psrc[7]&15]; \ pdst[2] = pclut[psrc[11]&15]; \ pdst[3] = pclut[psrc[15]&15]; \ pdst[4] = pclut[psrc[19]&15]; \ pdst[5] = pclut[psrc[23]&15]; \ pdst[6] = pclut[psrc[27]&15]; \ pdst[7] = pclut[psrc[31]&15]; \ pdst += 8; \ psrc += 32; \ } \ } \ break; \ default: \ assert(0); \ } \ } \ #define TARGET_THRESH 0x500 extern int g_MaxTexWidth, g_MaxTexHeight; //#define SORT_TARGETS inline list::iterator ZeroGS::CMemoryTargetMngr::DestroyTargetIter(list::iterator& it) { // find the target and destroy list::iterator itprev = it; ++it; listClearedTargets.splice(listClearedTargets.end(), listTargets, itprev); if( listClearedTargets.size() > TEXDESTROY_THRESH ) { listClearedTargets.pop_front(); } return it; } ZeroGS::CMemoryTarget* ZeroGS::CMemoryTargetMngr::GetMemoryTarget(const tex0Info& tex0, int forcevalidate) { int nbStart, nbEnd; GetRectMemAddress(nbStart, nbEnd, tex0.psm, 0, 0, tex0.tw, tex0.th, tex0.tbp0, tex0.tbw); assert( nbStart < nbEnd ); nbEnd = min(nbEnd, 0x00400000); int nClutOffset = 0; int clutsize = 0; if( PSMT_ISCLUT(tex0.psm) ) { int entries = (tex0.psm&3)==3 ? 256 : 16; if( tex0.cpsm <= 1 ) { // 32 bit nClutOffset = 64 * tex0.csa; clutsize = min(entries, 256-tex0.csa*16)*4; } else { nClutOffset = 64 * (tex0.csa&15) + (tex0.csa>=16?2:0); clutsize = min(entries, 512-tex0.csa*16)*2; } } DVProfileFunc _pf("GetMemoryTarget"); int start = nbStart / (4*GPU_TEXWIDTH); int end = (nbEnd + GPU_TEXWIDTH*4 - 1) / (4*GPU_TEXWIDTH); assert( start < end ); for(list::iterator it = listTargets.begin(); it != listTargets.end(); ) { if( it->starty <= start && it->starty+it->height >= end ) { assert( it->psm != 0xd ); // using clut, validate that same data if( PSMT_ISCLUT(it->psm) != PSMT_ISCLUT(tex0.psm) ) { if( it->validatecount++ > VALIDATE_THRESH ) { it = DestroyTargetIter(it); if( listTargets.size() == 0 ) break; } else ++it; continue; } if( PSMT_ISCLUT(tex0.psm) ) { assert( it->clut.size() > 0 ); if( it->psm != tex0.psm || it->cpsm != tex0.cpsm || it->clut.size() != clutsize ) { // wrong clut if( it->validatecount++ > VALIDATE_THRESH ) { it = DestroyTargetIter(it); if( listTargets.size() == 0 ) break; } else ++it; continue; } if( tex0.cpsm <= 1 ) { if( memcmp_mmx(&it->clut[0], g_pbyGSClut+nClutOffset, clutsize) ) { ++it; continue; } } else { if( memcmp_clut16((u16*)&it->clut[0], (u16*)(g_pbyGSClut+nClutOffset), clutsize) ) { ++it; continue; } } } else if( PSMT_IS16BIT(tex0.psm) != PSMT_IS16BIT(it->psm) ) { if( it->validatecount++ > VALIDATE_THRESH ) { it = DestroyTargetIter(it); if( listTargets.size() == 0 ) break; } else ++it; continue; } if( forcevalidate ) {//&& listTargets.size() < TARGET_THRESH ) { // do more validation checking. delete if not been used for a while if( !it->ValidateTex(tex0, start, end, curstamp > it->usedstamp + 3) ) { if( it->height <= 0 ) { it = DestroyTargetIter(it); if( listTargets.size() == 0 ) break; } else ++it; continue; } } it->usedstamp = curstamp; it->validatecount = 0; return &(*it); } #ifdef SORT_TARGETS else if( it->starty >= end ) break; #endif ++it; } // couldn't find so create DVProfileFunc _pf1("GetMemoryTarget:Create"); CMemoryTarget* targ; u32 fmt = GL_UNSIGNED_BYTE; if( (PSMT_ISCLUT(tex0.psm) && tex0.cpsm > 1) || tex0.psm == PSMCT16 || tex0.psm == PSMCT16S) { fmt = GL_UNSIGNED_SHORT_1_5_5_5_REV; } int widthmult = 1; if( g_MaxTexHeight < 4096 ) { if( end-start > g_MaxTexHeight ) widthmult = 2; } int channels = 1; if( PSMT_ISCLUT(tex0.psm) ) { if( tex0.psm == PSMT8 ) channels = 4; else if( tex0.psm == PSMT4 ) channels = 8; } else { if( PSMT_IS16BIT(tex0.psm) ) { // 16z needs to be a8r8g8b8 channels = 2; } } if( listClearedTargets.size() > 0 ) { list::iterator itbest = listClearedTargets.begin(); while(itbest != listClearedTargets.end()) { if( end-start <= itbest->realheight && itbest->fmt == fmt && itbest->widthmult == widthmult && itbest->channels == channels ) { // check channels int targchannels = 1; if( PSMT_ISCLUT(itbest->psm) ) { if( itbest->psm == PSMT8 ) targchannels = 4; else if( itbest->psm == PSMT4 ) targchannels = 8; } else if( PSMT_IS16BIT(itbest->psm) ) { targchannels = 2; } if( targchannels == channels ) break; } ++itbest; } if( itbest != listClearedTargets.end()) { listTargets.splice(listTargets.end(), listClearedTargets, itbest); targ = &listTargets.back(); targ->validatecount = 0; } else { // create a new listTargets.push_back(CMemoryTarget()); targ = &listTargets.back(); } } else { listTargets.push_back(CMemoryTarget()); targ = &listTargets.back(); } // fill local clut if( PSMT_ISCLUT(tex0.psm) ) { assert( clutsize > 0 ); targ->cpsm = tex0.cpsm; targ->clut.reserve(256*4); // no matter what targ->clut.resize(clutsize); if( tex0.cpsm <= 1 ) { // 32 bit memcpy_amd(&targ->clut[0], g_pbyGSClut+nClutOffset, clutsize); } else { u16* pClutBuffer = (u16*)(g_pbyGSClut + nClutOffset); u16* pclut = (u16*)&targ->clut[0]; int left = ((u32)nClutOffset & 2) ? 0 : ((nClutOffset&0x3ff)/2)+clutsize-512; if( left > 0 ) clutsize -= left; while(clutsize > 0) { pclut[0] = pClutBuffer[0]; pclut++; pClutBuffer+=2; clutsize -= 2; } if( left > 0) { pClutBuffer = (u16*)(g_pbyGSClut + 2); while(left > 0) { pclut[0] = pClutBuffer[0]; left -= 2; pClutBuffer += 2; pclut++; } } } } if( targ->ptex != NULL ) { assert( end-start <= targ->realheight && targ->fmt == fmt && targ->widthmult == widthmult ); // good enough, so init targ->realy = targ->starty = start; targ->usedstamp = curstamp; targ->psm = tex0.psm; targ->cpsm = tex0.cpsm; targ->height = end-start; } if( targ->ptex == NULL ) { // not initialized yet targ->fmt = fmt; targ->realy = targ->starty = start; targ->realheight = targ->height = end-start; targ->usedstamp = curstamp; targ->psm = tex0.psm; targ->cpsm = tex0.cpsm; targ->widthmult = widthmult; targ->channels = channels; // alloc the mem targ->ptex = new CMemoryTarget::TEXTURE(); targ->ptex->ref = 1; } #ifdef ZEROGS_DEVBUILD g_TransferredToGPU += GPU_TEXWIDTH * channels * 4 * targ->height; #endif // fill with data if( targ->ptex->memptr == NULL ) { targ->ptex->memptr = (u8*)_aligned_malloc(4 * GPU_TEXWIDTH * targ->realheight, 16); assert(targ->ptex->ref > 0 ); } memcpy_amd(targ->ptex->memptr, g_pbyGSMemory + 4 * GPU_TEXWIDTH * targ->realy, 4 * GPU_TEXWIDTH * targ->height); vector texdata; u8* ptexdata = NULL; if( PSMT_ISCLUT(tex0.psm) ) { texdata.resize( (tex0.cpsm <= 1?4:2) *GPU_TEXWIDTH*channels*widthmult*(targ->realheight+widthmult-1)/widthmult); ptexdata = &texdata[0]; u8* psrc = (u8*)(g_pbyGSMemory + 4 * GPU_TEXWIDTH * targ->realy); if( tex0.cpsm <= 1 ) { // 32bit u32* pclut = (u32*)&targ->clut[0]; u32* pdst = (u32*)ptexdata; BUILDCLUT(); } else { u16* pclut = (u16*)&targ->clut[0]; u16* pdst = (u16*)ptexdata; BUILDCLUT(); } } else { if( tex0.psm == PSMT16Z || tex0.psm == PSMT16SZ ) { #if defined(ZEROGS_SSE2) // reserve additional elements for alignment if SSE2 used. texdata.resize(4 * GPU_TEXWIDTH * channels * widthmult * (targ->realheight + widthmult - 1) / widthmult + 15); #else texdata.resize(4 * GPU_TEXWIDTH * channels * widthmult * (targ->realheight + widthmult - 1) / widthmult); #endif ptexdata = &texdata[0]; // needs to be 8 bit, use xmm for unpacking u16* dst = (u16*)ptexdata; u16* src = (u16*)(g_pbyGSMemory + 4 * GPU_TEXWIDTH * targ->realy); #if defined(ZEROGS_SSE2) if (((u32)(uptr)dst) % 16 != 0) { // This is not an unusual situation, when vector does not align 16bit, it is destructive for SSE2 // instruction movdqa [%eax], xmm0 // The idea would be resize vector to 15 elements, and set ptxedata to an aligned position. // Later we would move eax by 16, so we should only verify that the first element is aligned // FIXME. As I see, texdata used only once here, it does not have any impact on other code. // Probably, usage of _aligned_maloc() would be preferable. // -- Zeydlitz int disalignment = 16 - ((u32)(uptr)dst)%16 ; // This is value of shift. It could be 0 < disalignment <= 15 ptexdata = &texdata[disalignment]; // Set pointer to aligned element dst = (u16*)ptexdata; GS_LOG("Made alignment for texdata, 0x%x\n", dst ); assert( ((u32)(uptr)dst)%16 == 0 ); // Assert, because at future could be vectors with uncontigious spaces } int iters = targ->height*GPU_TEXWIDTH/16; #if defined(_MSC_VER) __asm { mov edx, iters pxor xmm7, xmm7 mov eax, dst mov ecx, src Z16Loop: // unpack 64 bytes at a time movdqa xmm0, [ecx] movdqa xmm2, [ecx+16] movdqa xmm4, [ecx+32] movdqa xmm6, [ecx+48] movdqa xmm1, xmm0 movdqa xmm3, xmm2 movdqa xmm5, xmm4 punpcklwd xmm0, xmm7 punpckhwd xmm1, xmm7 punpcklwd xmm2, xmm7 punpckhwd xmm3, xmm7 // start saving movdqa [eax], xmm0 movdqa [eax+16], xmm1 punpcklwd xmm4, xmm7 punpckhwd xmm5, xmm7 movdqa [eax+32], xmm2 movdqa [eax+48], xmm3 movdqa xmm0, xmm6 punpcklwd xmm6, xmm7 movdqa [eax+64], xmm4 movdqa [eax+80], xmm5 punpckhwd xmm0, xmm7 movdqa [eax+96], xmm6 movdqa [eax+112], xmm0 add ecx, 64 add eax, 128 sub edx, 1 jne Z16Loop } #else // _MSC_VER __asm__(".intel_syntax\n" "pxor %%xmm7, %%xmm7\n" "Z16Loop:\n" // unpack 64 bytes at a time "movdqa %%xmm0, [%0]\n" "movdqa %%xmm2, [%0+16]\n" "movdqa %%xmm4, [%0+32]\n" "movdqa %%xmm6, [%0+48]\n" "movdqa %%xmm1, %%xmm0\n" "movdqa %%xmm3, %%xmm2\n" "movdqa %%xmm5, %%xmm4\n" "punpcklwd %%xmm0, %%xmm7\n" "punpckhwd %%xmm1, %%xmm7\n" "punpcklwd %%xmm2, %%xmm7\n" "punpckhwd %%xmm3, %%xmm7\n" // start saving "movdqa [%1], %%xmm0\n" "movdqa [%1+16], %%xmm1\n" "punpcklwd %%xmm4, %%xmm7\n" "punpckhwd %%xmm5, %%xmm7\n" "movdqa [%1+32], %%xmm2\n" "movdqa [%1+48], %%xmm3\n" "movdqa %%xmm0, %%xmm6\n" "punpcklwd %%xmm6, %%xmm7\n" "movdqa [%1+64], %%xmm4\n" "movdqa [%1+80], %%xmm5\n" "punpckhwd %%xmm0, %%xmm7\n" "movdqa [%1+96], %%xmm6\n" "movdqa [%1+112], %%xmm0\n" "add %0, 64\n" "add %1, 128\n" "sub %2, 1\n" "jne Z16Loop\n" ".att_syntax\n" : "=r"(src), "=r"(dst), "=r"(iters) : "0"(src), "1"(dst), "2"(iters)); #endif // _MSC_VER #else // ZEROGS_SSE2 for(int i = 0; i < targ->height; ++i) { for(int j = 0; j < GPU_TEXWIDTH; ++j) { dst[0] = src[0]; dst[1] = 0; dst[2] = src[1]; dst[3] = 0; dst += 4; src += 2; } } #endif // ZEROGS_SSE2 } else { ptexdata = targ->ptex->memptr; } } // create the texture GL_REPORT_ERRORD(); assert(ptexdata != NULL); if( targ->ptex->tex == 0 ) glGenTextures(1, &targ->ptex->tex); glBindTexture(GL_TEXTURE_RECTANGLE_NV, targ->ptex->tex); glTexImage2D(GL_TEXTURE_RECTANGLE_NV, 0, fmt==GL_UNSIGNED_BYTE?4:GL_RGB5_A1, GPU_TEXWIDTH*channels*widthmult, (targ->realheight+widthmult-1)/widthmult, 0, GL_RGBA, fmt, ptexdata); int realheight = targ->realheight; while( glGetError() != GL_NO_ERROR ) { // release resources until can create if( listClearedTargets.size() > 0 ) listClearedTargets.pop_front(); else { if( listTargets.size() == 0 ) { ERROR_LOG("Failed to create %dx%x texture\n", GPU_TEXWIDTH*channels*widthmult, (realheight+widthmult-1)/widthmult); channels = 1; return NULL; } DestroyOldest(); } glTexImage2D(GL_TEXTURE_RECTANGLE_NV, 0, 4, GPU_TEXWIDTH*channels*widthmult, (targ->realheight+widthmult-1)/widthmult, 0, GL_RGBA, fmt, ptexdata); } glTexParameteri(GL_TEXTURE_RECTANGLE_NV, GL_TEXTURE_WRAP_S, GL_CLAMP); glTexParameteri(GL_TEXTURE_RECTANGLE_NV, GL_TEXTURE_WRAP_T, GL_CLAMP); assert( tex0.psm != 0xd ); if( PSMT_ISCLUT(tex0.psm) ) assert( targ->clut.size() > 0 ); return targ; } void ZeroGS::CMemoryTargetMngr::ClearRange(int nbStartY, int nbEndY) { int starty = nbStartY / (4*GPU_TEXWIDTH); int endy = (nbEndY+4*GPU_TEXWIDTH-1) / (4*GPU_TEXWIDTH); //int endy = (nbEndY+4096-1) / 4096; //if( listTargets.size() < TARGET_THRESH ) { for(list::iterator it = listTargets.begin(); it != listTargets.end(); ) { if( it->starty < endy && (it->starty+it->height) > starty ) { // intersects, reduce valid texture mem (or totally delete texture) // there are 4 cases int miny = max(it->starty, starty); int maxy = min(it->starty+it->height, endy); assert(miny < maxy); if( it->clearmaxy == 0 ) { it->clearminy = miny; it->clearmaxy = maxy; } else { if( it->clearminy > miny ) it->clearminy = miny; if( it->clearmaxy < maxy ) it->clearmaxy = maxy; } } ++it; } // } // else { // for(list::iterator it = listTargets.begin(); it != listTargets.end(); ) { // // if( it->starty < endy && (it->starty+it->height) > starty ) { // int newstarty = 0; // if( starty <= it->starty ) { // if( endy < it->starty + it->height) { // // preserve end // it->height = it->starty+it->height-endy; // it->starty = endy; // assert(it->height > 0); // } // else { // // destroy // it->height = 0; // } // } // else { // // beginning can be preserved // it->height = starty-it->starty; // } // // assert( it->starty >= it->realy && it->starty+it->height<=it->realy+it->realheight ); // if( it->height <= 0 ) { // list::iterator itprev = it; ++it; // listClearedTargets.splice(listClearedTargets.end(), listTargets, itprev); // continue; // } // } // // ++it; // } // } } void ZeroGS::CMemoryTargetMngr::DestroyCleared() { for(list::iterator it = listClearedTargets.begin(); it != listClearedTargets.end(); ) { if( it->usedstamp < curstamp - 2 ) { it = listClearedTargets.erase(it); continue; } ++it; } if( (curstamp % 3) == 0 ) { // purge old targets every 3 frames for(list::iterator it = listTargets.begin(); it != listTargets.end(); ) { if( it->usedstamp < curstamp - 3 ) { it = listTargets.erase(it); continue; } ++it; } } ++curstamp; } void ZeroGS::CMemoryTargetMngr::DestroyOldest() { if( listTargets.size() == 0 ) return; list::iterator it, itbest; it = itbest = listTargets.begin(); while(it != listTargets.end()) { if( it->usedstamp < itbest->usedstamp ) itbest = it; ++it; } listTargets.erase(itbest); } ////////////////////////////////////// // Texture Mngr For Bitwise AND Ops // ////////////////////////////////////// void ZeroGS::CBitwiseTextureMngr::Destroy() { for(map::iterator it = mapTextures.begin(); it != mapTextures.end(); ++it) glDeleteTextures(1, &it->second); mapTextures.clear(); } u32 ZeroGS::CBitwiseTextureMngr::GetTexInt(u32 bitvalue, u32 ptexDoNotDelete) { if( mapTextures.size() > 32 ) { // randomly delete 8 for(map::iterator it = mapTextures.begin(); it != mapTextures.end();) { if( !(rand()&3) && it->second != ptexDoNotDelete) { glDeleteTextures(1, &it->second); mapTextures.erase(it++); } else ++it; } } // create a new tex u32 ptex; glGenTextures(1, &ptex); vector data(GPU_TEXMASKWIDTH); for(u32 i = 0; i < GPU_TEXMASKWIDTH; ++i) data[i] = ((i&bitvalue)<<6)|0x1f; // add the 1/2 offset so that glBindTexture(GL_TEXTURE_2D, ptex); glTexImage2D(GL_TEXTURE_2D, 0, GL_LUMINANCE16, GPU_TEXMASKWIDTH, 1, 0, GL_LUMINANCE, GL_UNSIGNED_SHORT, &data[0]); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT); if( glGetError() != GL_NO_ERROR ) { ERROR_LOG("Failed to create bitmask texture\n"); return 0; } mapTextures[bitvalue] = ptex; return ptex; } void ZeroGS::CRangeManager::Insert(int start, int end) { int imin = 0, imax = (int)ranges.size(), imid; #ifdef _DEBUG // sanity check for(int i = 0; i < (int)ranges.size()-1; ++i) assert( ranges[i].end < ranges[i+1].start ); #endif switch( ranges.size() ) { case 0: ranges.push_back(RANGE(start, end)); return; case 1: if( end < ranges.front().start ) { ranges.insert(ranges.begin(), RANGE(start, end)); } else if( start > ranges.front().end ) { ranges.push_back(RANGE(start, end)); } else { if( start < ranges.front().start ) ranges.front().start = start; if( end > ranges.front().end ) ranges.front().end = end; } return; } // find where start is while(imin < imax) { imid = (imin+imax)>>1; assert( imid < (int)ranges.size() ); if( ranges[imid].end >= start && (imid == 0 || ranges[imid-1].end < start) ) { imin = imid; break; } else if( ranges[imid].start > start ) imax = imid; else imin = imid+1; } int startindex = imin; if( startindex >= (int)ranges.size() ) { // non intersecting assert( start > ranges.back().end ); ranges.push_back(RANGE(start, end)); return; } if( startindex == 0 && end < ranges.front().start ) { ranges.insert(ranges.begin(), RANGE(start, end)); #ifdef _DEBUG // sanity check for(int i = 0; i < (int)ranges.size()-1; ++i) assert( ranges[i].end < ranges[i+1].start ); #endif return; } imin = 0; imax = (int)ranges.size(); // find where end is while(imin < imax) { imid = (imin+imax)>>1; assert( imid < (int)ranges.size() ); if( ranges[imid].end <= end && (imid == ranges.size()-1 || ranges[imid+1].start > end ) ) { imin = imid; break; } else if( ranges[imid].start >= end ) imax = imid; else imin = imid+1; } int endindex = imin; if( startindex > endindex ) { // create a new range ranges.insert(ranges.begin()+startindex, RANGE(start, end)); #ifdef _DEBUG // sanity check for(int i = 0; i < (int)ranges.size()-1; ++i) assert( ranges[i].end < ranges[i+1].start ); #endif return; } if( endindex >= (int)ranges.size()-1 ) { // pop until startindex is reached int lastend = ranges.back().end; int numpop = (int)ranges.size() - startindex - 1; while(numpop-- > 0 ) ranges.pop_back(); assert( start <= ranges.back().end ); if( start < ranges.back().start ) ranges.back().start = start; if( lastend > ranges.back().end ) ranges.back().end = lastend; if( end > ranges.back().end ) ranges.back().end = end; #ifdef _DEBUG // sanity check for(int i = 0; i < (int)ranges.size()-1; ++i) assert( ranges[i].end < ranges[i+1].start ); #endif return; } if( endindex == 0 ) { assert( end >= ranges.front().start ); if( start < ranges.front().start ) ranges.front().start = start; if( end > ranges.front().end ) ranges.front().end = end; #ifdef _DEBUG // sanity check for(int i = 0; i < (int)ranges.size()-1; ++i) assert( ranges[i].end < ranges[i+1].start ); #endif } // somewhere in the middle if( ranges[startindex].start < start ) start = ranges[startindex].start; if( startindex < endindex ) { ranges.erase(ranges.begin() + startindex, ranges.begin() + endindex ); } if( start < ranges[startindex].start ) ranges[startindex].start = start; if( end > ranges[startindex].end ) ranges[startindex].end = end; #ifdef _DEBUG // sanity check for(int i = 0; i < (int)ranges.size()-1; ++i) assert( ranges[i].end < ranges[i+1].start ); #endif } namespace ZeroGS { CRangeManager s_RangeMngr; // manages overwritten memory static int gs_imageEnd = 0; void ResolveInRange(int start, int end) { list listTargs; s_DepthRTs.GetTargs(start, end, listTargs); s_RTs.GetTargs(start, end, listTargs); if( listTargs.size() > 0 ) { Flush(0); Flush(1); for(list::iterator it = listTargs.begin(); it != listTargs.end(); ++it) { // only resolve if not completely covered (*it)->Resolve(); } } } ////////////////// // Transferring // ////////////////// void FlushTransferRanges(const tex0Info* ptex) { assert( s_RangeMngr.ranges.size() > 0 ); bool bHasFlushed = false; list listTransmissionUpdateTargs; int texstart = -1, texend = -1; if( ptex != NULL ) { GetRectMemAddress(texstart, texend, ptex->psm, 0, 0, ptex->tw, ptex->th, ptex->tbp0, ptex->tbw); } for(vector::iterator itrange = s_RangeMngr.ranges.begin(); itrange != s_RangeMngr.ranges.end(); ++itrange ) { int start = itrange->start; int end = itrange->end; listTransmissionUpdateTargs.clear(); s_DepthRTs.GetTargs(start, end, listTransmissionUpdateTargs); s_RTs.GetTargs(start, end, listTransmissionUpdateTargs); // if( !bHasFlushed && listTransmissionUpdateTargs.size() > 0 ) { // Flush(0); // Flush(1); // //#ifdef _DEBUG // // make sure targets are still the same // list::iterator it; // FORIT(it, listTransmissionUpdateTargs) { // CRenderTargetMngr::MAPTARGETS::iterator itmap; // for(itmap = s_RTs.mapTargets.begin(); itmap != s_RTs.mapTargets.end(); ++itmap) { // if( itmap->second == *it ) // break; // } // // if( itmap == s_RTs.mapTargets.end() ) { // // for(itmap = s_DepthRTs.mapTargets.begin(); itmap != s_DepthRTs.mapTargets.end(); ++itmap) { // if( itmap->second == *it ) // break; // } // // assert( itmap != s_DepthRTs.mapTargets.end() ); // } // } //#endif // } for(list::iterator it = listTransmissionUpdateTargs.begin(); it != listTransmissionUpdateTargs.end(); ++it) { CRenderTarget* ptarg = *it; if( (ptarg->status & CRenderTarget::TS_Virtual) ) continue; if( !(ptarg->start < texend && ptarg->end > texstart) ) { // chekc if target is currently being used if( !(g_GameSettings & GAME_NOQUICKRESOLVE) ) { if( ptarg->fbp != vb[0].gsfb.fbp ) {//&& (vb[0].prndr == NULL || ptarg->fbp != vb[0].prndr->fbp) ) { if( ptarg->fbp != vb[1].gsfb.fbp ) { //&& (vb[1].prndr == NULL || ptarg->fbp != vb[1].prndr->fbp) ) { // this render target currently isn't used and is not in the texture's way, so can safely ignore // resolving it. Also the range has to be big enough compared to the target to really call it resolved // (ffx changing screens, shadowhearts) // start == ptarg->start, used for kh to transfer text if( ptarg->IsDepth() || end-start > 0x50000 || ((g_GameSettings&GAME_QUICKRESOLVE1)&&start == ptarg->start) ) ptarg->status |= CRenderTarget::TS_NeedUpdate|CRenderTarget::TS_Resolved; continue; } } } } else { // if( start <= texstart && end >= texend ) { // // texture taken care of so can skip!? // continue; // } } // the first range check was very rough; some games (dragonball z) have the zbuf in the same page as textures (but not overlapping) // so detect that condition if( ptarg->fbh % m_Blocks[ptarg->psm].height ) { // get start of left-most boundry page int targstart, targend; ZeroGS::GetRectMemAddress(targstart, targend, ptarg->psm, 0, 0, ptarg->fbw, ptarg->fbh & ~(m_Blocks[ptarg->psm].height-1), ptarg->fbp, ptarg->fbw); if( start >= targend ) { // don't bother if( (ptarg->fbh % m_Blocks[ptarg->psm].height) <= 2 ) continue; // calc how many bytes of the block that the page spans } } if( !(ptarg->status & CRenderTarget::TS_Virtual) ) { if( start < ptarg->end && end > ptarg->start ) { // suikoden5 is faster with check, but too big of a value and kh screens mess up if( end - start > 0x8000 ) { // intersects, do only one sided resolves if( end-start > 4*ptarg->fbw ) { // at least it be greater than one scanline (spiro is faster) if( start > ptarg->start ) { ptarg->Resolve(ptarg->start, start); } else if( end < ptarg->end ) { ptarg->Resolve(end, ptarg->end); } } } ptarg->status |= CRenderTarget::TS_Resolved; if( !ptarg->IsDepth() || (!(g_GameSettings & GAME_NODEPTHUPDATE) || end-start > 0x1000) ) ptarg->status |= CRenderTarget::TS_NeedUpdate; } } } ZeroGS::g_MemTargs.ClearRange(start, end); } s_RangeMngr.Clear(); } static vector s_vTempBuffer, s_vTransferCache; void InitTransferHostLocal() { if( g_bIsLost ) return; #ifdef ZEROGS_DEVBUILD if( gs.trxpos.dx+gs.imageWnew > gs.dstbuf.bw ) WARN_LOG("Transfer error, width exceeds\n"); #endif bool bHasFlushed = false; gs.imageX = gs.trxpos.dx; gs.imageY = gs.trxpos.dy; gs.imageEndX = gs.imageX + gs.imageWnew; gs.imageEndY = gs.imageY + gs.imageHnew; assert( gs.imageEndX < 2048 && gs.imageEndY < 2048 ); // hack! viewful joe if( gs.dstbuf.psm == 63 ) gs.dstbuf.psm = 0; int start, end; GetRectMemAddress(start, end, gs.dstbuf.psm, gs.trxpos.dx, gs.trxpos.dy, gs.imageWnew, gs.imageHnew, gs.dstbuf.bp, gs.dstbuf.bw); if( end > 0x00400000 ) { WARN_LOG("host local out of bounds!\n"); //gs.imageTransfer = -1; end = 0x00400000; } gs_imageEnd = end; if( vb[0].nCount > 0 ) Flush(0); if( vb[1].nCount > 0 ) Flush(1); //PRIM_LOG("trans: bp:%x x:%x y:%x w:%x h:%x\n", gs.dstbuf.bp, gs.trxpos.dx, gs.trxpos.dy, gs.imageWnew, gs.imageHnew); // if( !bHasFlushed && (vb[0].bNeedFrameCheck || vb[0].bNeedZCheck || vb[1].bNeedFrameCheck || vb[1].bNeedZCheck)) { // Flush(0); // Flush(1); // bHasFlushed = 1; // } // // // for all ranges, flush the targets // // check if new rect intersects with current rendering texture, if so, flush // if( vb[0].nCount > 0 && vb[0].curprim.tme ) { // int tstart, tend; // GetRectMemAddress(tstart, tend, vb[0].tex0.psm, 0, 0, vb[0].tex0.tw, vb[0].tex0.th, vb[0].tex0.tbp0, vb[0].tex0.tbw); // // if( start < tend && end > tstart ) { // Flush(0); // Flush(1); // bHasFlushed = 1; // } // } // // if( !bHasFlushed && vb[1].nCount > 0 && vb[1].curprim.tme ) { // int tstart, tend; // GetRectMemAddress(tstart, tend, vb[1].tex0.psm, 0, 0, vb[1].tex0.tw, vb[1].tex0.th, vb[1].tex0.tbp0, vb[1].tex0.tbw); // // if( start < tend && end > tstart ) { // Flush(0); // Flush(1); // bHasFlushed = 1; // } // } //ZeroGS::g_MemTargs.ClearRange(start, end); //s_RangeMngr.Insert(start, end); } void TransferHostLocal(const void* pbyMem, u32 nQWordSize) { if( g_bIsLost ) return; DVProfileFunc _pf("TransferHostLocal"); int start, end; GetRectMemAddress(start, end, gs.dstbuf.psm, gs.imageX, gs.imageY, gs.imageWnew, gs.imageHnew, gs.dstbuf.bp, gs.dstbuf.bw); assert( start < gs_imageEnd ); end = gs_imageEnd; // sometimes games can decompress to alpha channel of render target only, in this case // do a resolve right away. wolverine x2 if( gs.dstbuf.psm == PSMT8H || gs.dstbuf.psm == PSMT4HL || gs.dstbuf.psm == PSMT4HH ) { list listTransmissionUpdateTargs; s_RTs.GetTargs(start, end, listTransmissionUpdateTargs); for(list::iterator it = listTransmissionUpdateTargs.begin(); it != listTransmissionUpdateTargs.end(); ++it) { CRenderTarget* ptarg = *it; if( (ptarg->status & CRenderTarget::TS_Virtual) ) continue; //ERROR_LOG("resolving to alpha channel\n"); ptarg->Resolve(); } } s_RangeMngr.Insert(start, min(end, start+(int)nQWordSize*16)); const u8* porgend = (const u8*)pbyMem + 4 * nQWordSize; if( s_vTransferCache.size() > 0 ) { int imagecache = s_vTransferCache.size(); s_vTempBuffer.resize(imagecache + nQWordSize*4); memcpy(&s_vTempBuffer[0], &s_vTransferCache[0], imagecache); memcpy(&s_vTempBuffer[imagecache], pbyMem, nQWordSize*4); pbyMem = (const void*)&s_vTempBuffer[0]; porgend = &s_vTempBuffer[0]+s_vTempBuffer.size(); int wordinc = imagecache / 4; if( (nQWordSize * 4 + imagecache)/3 == ((nQWordSize+wordinc) * 4) / 3 ) { // can use the data nQWordSize += wordinc; } } int leftover = m_Blocks[gs.dstbuf.psm].TransferHostLocal(pbyMem, nQWordSize); if( leftover > 0 ) { // copy the last gs.image24bitOffset to the cache s_vTransferCache.resize(leftover); memcpy(&s_vTransferCache[0], porgend - leftover, leftover); } else s_vTransferCache.resize(0); #if defined(ZEROGS_DEVBUILD) && defined(_DEBUG) if( g_bSaveTrans ) { tex0Info t; t.tbp0 = gs.dstbuf.bp; t.tw = gs.imageWnew; t.th = gs.imageHnew; t.tbw = gs.dstbuf.bw; t.psm = gs.dstbuf.psm; SaveTex(&t, 0); } #endif } // left/right, top/down //void TransferHostLocal(const void* pbyMem, u32 nQWordSize) //{ // assert( gs.imageTransfer == 0 ); // u8* pstart = g_pbyGSMemory + gs.dstbuf.bp*256; // // const u8* pendbuf = (const u8*)pbyMem + nQWordSize*4; // int i = gs.imageY, j = gs.imageX; // //#define DSTPSM gs.dstbuf.psm // //#define TRANSFERHOSTLOCAL(psm, T, widthlimit) { \ // const T* pbuf = (const T*)pbyMem; \ // u32 nSize = nQWordSize*(4/sizeof(T)); \ // assert( (nSize%widthlimit) == 0 && widthlimit <= 4 ); \ // if( ((gs.imageEndX-gs.trxpos.dx)%widthlimit) ) ERROR_LOG("Bad Transmission! %d %d, psm: %d\n", gs.trxpos.dx, gs.imageEndX, DSTPSM); \ // for(; i < gs.imageEndY; ++i) { \ // for(; j < gs.imageEndX && nSize > 0; j += widthlimit, nSize -= widthlimit, pbuf += widthlimit) { \ // /* write as many pixel at one time as possible */ \ // writePixel##psm##_0(pstart, j%2048, i%2048, pbuf[0], gs.dstbuf.bw); \ // \ // if( widthlimit > 1 ) { \ // writePixel##psm##_0(pstart, (j+1)%2048, i%2048, pbuf[1], gs.dstbuf.bw); \ // \ // if( widthlimit > 2 ) { \ // writePixel##psm##_0(pstart, (j+2)%2048, i%2048, pbuf[2], gs.dstbuf.bw); \ // \ // if( widthlimit > 3 ) { \ // writePixel##psm##_0(pstart, (j+3)%2048, i%2048, pbuf[3], gs.dstbuf.bw); \ // } \ // } \ // } \ // } \ // \ // if( j >= gs.imageEndX ) { assert(j == gs.imageEndX); j = gs.trxpos.dx; } \ // else { assert( nSize == 0 ); goto End; } \ // } \ //} \ // //#define TRANSFERHOSTLOCAL_4(psm) { \ // const u8* pbuf = (const u8*)pbyMem; \ // u32 nSize = nQWordSize*8; \ // for(; i < gs.imageEndY; ++i) { \ // for(; j < gs.imageEndX && nSize > 0; j += 8, nSize -= 8) { \ // /* write as many pixel at one time as possible */ \ // writePixel##psm##_0(pstart, j%2048, i%2048, *pbuf&0x0f, gs.dstbuf.bw); \ // writePixel##psm##_0(pstart, (j+1)%2048, i%2048, *pbuf>>4, gs.dstbuf.bw); \ // pbuf++; \ // writePixel##psm##_0(pstart, (j+2)%2048, i%2048, *pbuf&0x0f, gs.dstbuf.bw); \ // writePixel##psm##_0(pstart, (j+3)%2048, i%2048, *pbuf>>4, gs.dstbuf.bw); \ // pbuf++; \ // writePixel##psm##_0(pstart, (j+4)%2048, i%2048, *pbuf&0x0f, gs.dstbuf.bw); \ // writePixel##psm##_0(pstart, (j+5)%2048, i%2048, *pbuf>>4, gs.dstbuf.bw); \ // pbuf++; \ // writePixel##psm##_0(pstart, (j+6)%2048, i%2048, *pbuf&0x0f, gs.dstbuf.bw); \ // writePixel##psm##_0(pstart, (j+7)%2048, i%2048, *pbuf>>4, gs.dstbuf.bw); \ // pbuf++; \ // } \ // \ // if( j >= gs.imageEndX ) { /*assert(j == gs.imageEndX);*/ j = gs.trxpos.dx; } \ // else { assert( nSize == 0 ); goto End; } \ // } \ //} \ // // switch (gs.dstbuf.psm) { // case 0x0: TRANSFERHOSTLOCAL(32, u32, 2); break; // case 0x1: TRANSFERHOSTLOCAL(24, u32, 4); break; // case 0x2: TRANSFERHOSTLOCAL(16, u16, 4); break; // case 0xA: TRANSFERHOSTLOCAL(16S, u16, 4); break; // case 0x13: // if( ((gs.imageEndX-gs.trxpos.dx)%4) ) { // TRANSFERHOSTLOCAL(8, u8, 1); // } // else { // TRANSFERHOSTLOCAL(8, u8, 4); // } // break; // // case 0x14: //// if( (gs.imageEndX-gs.trxpos.dx)%8 ) { //// // hack //// if( abs((int)nQWordSize*8 - (gs.imageEndY-i)*(gs.imageEndX-gs.trxpos.dx)+(j-gs.trxpos.dx)) <= 8 ) { //// // don't transfer //// ERROR_LOG("bad texture 4: %d %d %d\n", gs.trxpos.dx, gs.imageEndX, nQWordSize); //// gs.imageEndX = gs.trxpos.dx + (gs.imageEndX-gs.trxpos.dx)&~7; //// //i = gs.imageEndY; //// //goto End; //// gs.imageTransfer = -1; //// } //// } // TRANSFERHOSTLOCAL_4(4); // break; // case 0x1B: TRANSFERHOSTLOCAL(8H, u8, 4); break; // case 0x24: TRANSFERHOSTLOCAL_4(4HL); break; // case 0x2C: TRANSFERHOSTLOCAL_4(4HH); break; // case 0x30: TRANSFERHOSTLOCAL(32Z, u32, 2); break; // case 0x31: TRANSFERHOSTLOCAL(24Z, u32, 4); break; // case 0x32: TRANSFERHOSTLOCAL(16Z, u16, 4); break; // case 0x3A: TRANSFERHOSTLOCAL(16SZ, u16, 4); break; // } // //End: // if( i >= gs.imageEndY ) { // assert( i == gs.imageEndY ); // gs.imageTransfer = -1; // // if( g_bSaveTrans ) { // tex0Info t; // t.tbp0 = gs.dstbuf.bp; // t.tw = gs.imageWnew; // t.th = gs.imageHnew; // t.tbw = gs.dstbuf.bw; // t.psm = gs.dstbuf.psm; // SaveTex(&t, 0); // } // } // else { // /* update new params */ // gs.imageY = i; // gs.imageX = j; // } //} void InitTransferLocalHost() { assert( gs.trxpos.sx+gs.imageWnew <= 2048 && gs.trxpos.sy+gs.imageHnew <= 2048 ); #ifdef ZEROGS_DEVBUILD if( gs.trxpos.sx+gs.imageWnew > gs.srcbuf.bw ) WARN_LOG("Transfer error, width exceeds\n"); #endif gs.imageX = gs.trxpos.sx; gs.imageY = gs.trxpos.sy; gs.imageEndX = gs.imageX + gs.imageWnew; gs.imageEndY = gs.imageY + gs.imageHnew; s_vTransferCache.resize(0); int start, end; GetRectMemAddress(start, end, gs.srcbuf.psm, gs.trxpos.sx, gs.trxpos.sy, gs.imageWnew, gs.imageHnew, gs.srcbuf.bp, gs.srcbuf.bw); ResolveInRange(start, end); } // left/right, top/down void TransferLocalHost(void* pbyMem, u32 nQWordSize) { assert( gs.imageTransfer == 1 ); u8* pstart = g_pbyGSMemory + 256*gs.srcbuf.bp; int i = gs.imageY, j = gs.imageX; #define TRANSFERLOCALHOST(psm, T) { \ T* pbuf = (T*)pbyMem; \ u32 nSize = nQWordSize*16/sizeof(T); \ for(; i < gs.imageEndY; ++i) { \ for(; j < gs.imageEndX && nSize > 0; ++j, --nSize) { \ *pbuf++ = readPixel##psm##_0(pstart, j%2048, i%2048, gs.srcbuf.bw); \ } \ \ if( j >= gs.imageEndX ) { assert( j == gs.imageEndX); j = gs.trxpos.sx; } \ else { assert( nSize == 0 ); break; } \ } \ } \ #define TRANSFERLOCALHOST_24(psm) { \ u8* pbuf = (u8*)pbyMem; \ u32 nSize = nQWordSize*16/3; \ for(; i < gs.imageEndY; ++i) { \ for(; j < gs.imageEndX && nSize > 0; ++j, --nSize) { \ u32 p = readPixel##psm##_0(pstart, j%2048, i%2048, gs.srcbuf.bw); \ pbuf[0] = (u8)p; \ pbuf[1] = (u8)(p>>8); \ pbuf[2] = (u8)(p>>16); \ pbuf += 3; \ } \ \ if( j >= gs.imageEndX ) { assert( j == gs.imageEndX); j = gs.trxpos.sx; } \ else { assert( nSize == 0 ); break; } \ } \ } \ switch (gs.srcbuf.psm) { case 0x0: TRANSFERLOCALHOST(32, u32); break; case 0x1: TRANSFERLOCALHOST_24(24); break; case 0x2: TRANSFERLOCALHOST(16, u16); break; case 0xA: TRANSFERLOCALHOST(16S, u16); break; case 0x13: TRANSFERLOCALHOST(8, u8); break; case 0x1B: TRANSFERLOCALHOST(8H, u8); break; case 0x30: TRANSFERLOCALHOST(32Z, u32); break; case 0x31: TRANSFERLOCALHOST_24(24Z); break; case 0x32: TRANSFERLOCALHOST(16Z, u16); break; case 0x3A: TRANSFERLOCALHOST(16SZ, u16); break; default: assert(0); } gs.imageY = i; gs.imageX = j; if( gs.imageY >= gs.imageEndY ) { assert( gs.imageY == gs.imageEndY ); gs.imageTransfer = -1; } } // dir depends on trxpos.dir void TransferLocalLocal() { assert( gs.imageTransfer == 2 ); assert( gs.trxpos.sx+gs.imageWnew < 2048 && gs.trxpos.sy+gs.imageHnew < 2048 ); assert( gs.trxpos.dx+gs.imageWnew < 2048 && gs.trxpos.dy+gs.imageHnew < 2048 ); assert( (gs.srcbuf.psm&0x7) == (gs.dstbuf.psm&0x7) ); if( gs.trxpos.sx+gs.imageWnew > gs.srcbuf.bw ) WARN_LOG("Transfer error, src width exceeds\n"); if( gs.trxpos.dx+gs.imageWnew > gs.dstbuf.bw ) WARN_LOG("Transfer error, dst width exceeds\n"); int srcstart, srcend, dststart, dstend; GetRectMemAddress(srcstart, srcend, gs.srcbuf.psm, gs.trxpos.sx, gs.trxpos.sy, gs.imageWnew, gs.imageHnew, gs.srcbuf.bp, gs.srcbuf.bw); GetRectMemAddress(dststart, dstend, gs.dstbuf.psm, gs.trxpos.dx, gs.trxpos.dy, gs.imageWnew, gs.imageHnew, gs.dstbuf.bp, gs.dstbuf.bw); // resolve the targs ResolveInRange(srcstart, srcend); list listTargs; s_RTs.GetTargs(dststart, dstend, listTargs); for(list::iterator it = listTargs.begin(); it != listTargs.end(); ++it) { if( !((*it)->status & CRenderTarget::TS_Virtual) ) { (*it)->Resolve(); (*it)->status |= CRenderTarget::TS_NeedUpdate; } } u8* pSrcBuf = g_pbyGSMemory + gs.srcbuf.bp*256; u8* pDstBuf = g_pbyGSMemory + gs.dstbuf.bp*256; #define TRANSFERLOCALLOCAL(srcpsm, dstpsm, widthlimit) { \ assert( (gs.imageWnew&widthlimit)==0 && widthlimit <= 4); \ for(int i = gs.trxpos.sy, i2 = gs.trxpos.dy; i < gs.trxpos.sy+gs.imageHnew; i++, i2++) { \ for(int j = gs.trxpos.sx, j2 = gs.trxpos.dx; j < gs.trxpos.sx+gs.imageWnew; j+=widthlimit, j2+=widthlimit) { \ \ writePixel##dstpsm##_0(pDstBuf, j2%2048, i2%2048, \ readPixel##srcpsm##_0(pSrcBuf, j%2048, i%2048, gs.srcbuf.bw), gs.dstbuf.bw); \ \ if( widthlimit > 1 ) { \ writePixel##dstpsm##_0(pDstBuf, (j2+1)%2048, i2%2048, \ readPixel##srcpsm##_0(pSrcBuf, (j+1)%2048, i%2048, gs.srcbuf.bw), gs.dstbuf.bw); \ \ if( widthlimit > 2 ) { \ writePixel##dstpsm##_0(pDstBuf, (j2+2)%2048, i2%2048, \ readPixel##srcpsm##_0(pSrcBuf, (j+2)%2048, i%2048, gs.srcbuf.bw), gs.dstbuf.bw); \ \ if( widthlimit > 3 ) { \ writePixel##dstpsm##_0(pDstBuf, (j2+3)%2048, i2%2048, \ readPixel##srcpsm##_0(pSrcBuf, (j+3)%2048, i%2048, gs.srcbuf.bw), gs.dstbuf.bw); \ } \ } \ } \ } \ } \ } \ #define TRANSFERLOCALLOCAL_4(srcpsm, dstpsm) { \ assert( (gs.imageWnew%8) == 0 ); \ for(int i = gs.trxpos.sy, i2 = gs.trxpos.dy; i < gs.trxpos.sy+gs.imageHnew; ++i, ++i2) { \ for(int j = gs.trxpos.sx, j2 = gs.trxpos.dx; j < gs.trxpos.sx+gs.imageWnew; j+=8, j2+=8) { \ /* NOTE: the 2 conseq 4bit values are in NOT in the same byte */ \ u32 read = getPixelAddress##srcpsm##_0(j%2048, i%2048, gs.srcbuf.bw); \ u32 write = getPixelAddress##dstpsm##_0(j2%2048, i2%2048, gs.dstbuf.bw); \ pDstBuf[write] = (pDstBuf[write]&0xf0)|(pSrcBuf[read]&0x0f); \ \ read = getPixelAddress##srcpsm##_0((j+1)%2048, i%2048, gs.srcbuf.bw); \ write = getPixelAddress##dstpsm##_0((j2+1)%2048, i2%2048, gs.dstbuf.bw); \ pDstBuf[write] = (pDstBuf[write]&0x0f)|(pSrcBuf[read]&0xf0); \ \ read = getPixelAddress##srcpsm##_0((j+2)%2048, i%2048, gs.srcbuf.bw); \ write = getPixelAddress##dstpsm##_0((j2+2)%2048, i2%2048, gs.dstbuf.bw); \ pDstBuf[write] = (pDstBuf[write]&0xf0)|(pSrcBuf[read]&0x0f); \ \ read = getPixelAddress##srcpsm##_0((j+3)%2048, i%2048, gs.srcbuf.bw); \ write = getPixelAddress##dstpsm##_0((j2+3)%2048, i2%2048, gs.dstbuf.bw); \ pDstBuf[write] = (pDstBuf[write]&0x0f)|(pSrcBuf[read]&0xf0); \ \ read = getPixelAddress##srcpsm##_0((j+2)%2048, i%2048, gs.srcbuf.bw); \ write = getPixelAddress##dstpsm##_0((j2+2)%2048, i2%2048, gs.dstbuf.bw); \ pDstBuf[write] = (pDstBuf[write]&0xf0)|(pSrcBuf[read]&0x0f); \ \ read = getPixelAddress##srcpsm##_0((j+3)%2048, i%2048, gs.srcbuf.bw); \ write = getPixelAddress##dstpsm##_0((j2+3)%2048, i2%2048, gs.dstbuf.bw); \ pDstBuf[write] = (pDstBuf[write]&0x0f)|(pSrcBuf[read]&0xf0); \ \ read = getPixelAddress##srcpsm##_0((j+2)%2048, i%2048, gs.srcbuf.bw); \ write = getPixelAddress##dstpsm##_0((j2+2)%2048, i2%2048, gs.dstbuf.bw); \ pDstBuf[write] = (pDstBuf[write]&0xf0)|(pSrcBuf[read]&0x0f); \ \ read = getPixelAddress##srcpsm##_0((j+3)%2048, i%2048, gs.srcbuf.bw); \ write = getPixelAddress##dstpsm##_0((j2+3)%2048, i2%2048, gs.dstbuf.bw); \ pDstBuf[write] = (pDstBuf[write]&0x0f)|(pSrcBuf[read]&0xf0); \ } \ } \ } \ switch (gs.srcbuf.psm) { case PSMCT32: if( gs.dstbuf.psm == PSMCT32 ) { TRANSFERLOCALLOCAL(32, 32, 2); } else { TRANSFERLOCALLOCAL(32, 32Z, 2); } break; case PSMCT24: if( gs.dstbuf.psm == PSMCT24 ) { TRANSFERLOCALLOCAL(24, 24, 4); } else { TRANSFERLOCALLOCAL(24, 24Z, 4); } break; case PSMCT16: switch(gs.dstbuf.psm) { case PSMCT16: TRANSFERLOCALLOCAL(16, 16, 4); break; case PSMCT16S: TRANSFERLOCALLOCAL(16, 16S, 4); break; case PSMT16Z: TRANSFERLOCALLOCAL(16, 16Z, 4); break; case PSMT16SZ: TRANSFERLOCALLOCAL(16, 16SZ, 4); break; } break; case PSMCT16S: switch(gs.dstbuf.psm) { case PSMCT16: TRANSFERLOCALLOCAL(16S, 16, 4); break; case PSMCT16S: TRANSFERLOCALLOCAL(16S, 16S, 4); break; case PSMT16Z: TRANSFERLOCALLOCAL(16S, 16Z, 4); break; case PSMT16SZ: TRANSFERLOCALLOCAL(16S, 16SZ, 4); break; } break; case PSMT8: if( gs.dstbuf.psm == PSMT8 ) { TRANSFERLOCALLOCAL(8, 8, 4); } else { TRANSFERLOCALLOCAL(8, 8H, 4); } break; case PSMT4: switch(gs.dstbuf.psm ) { case PSMT4: TRANSFERLOCALLOCAL_4(4, 4); break; case PSMT4HL: TRANSFERLOCALLOCAL_4(4, 4HL); break; case PSMT4HH: TRANSFERLOCALLOCAL_4(4, 4HH); break; } break; case PSMT8H: if( gs.dstbuf.psm == PSMT8 ) { TRANSFERLOCALLOCAL(8H, 8, 4); } else { TRANSFERLOCALLOCAL(8H, 8H, 4); } break; case PSMT4HL: switch(gs.dstbuf.psm ) { case PSMT4: TRANSFERLOCALLOCAL_4(4HL, 4); break; case PSMT4HL: TRANSFERLOCALLOCAL_4(4HL, 4HL); break; case PSMT4HH: TRANSFERLOCALLOCAL_4(4HL, 4HH); break; } break; case PSMT4HH: switch(gs.dstbuf.psm ) { case PSMT4: TRANSFERLOCALLOCAL_4(4HH, 4); break; case PSMT4HL: TRANSFERLOCALLOCAL_4(4HH, 4HL); break; case PSMT4HH: TRANSFERLOCALLOCAL_4(4HH, 4HH); break; } break; case PSMT32Z: if( gs.dstbuf.psm == PSMCT32 ) { TRANSFERLOCALLOCAL(32Z, 32, 2); } else { TRANSFERLOCALLOCAL(32Z, 32Z, 2); } break; case PSMT24Z: if( gs.dstbuf.psm == PSMCT24 ) { TRANSFERLOCALLOCAL(24Z, 24, 4); } else { TRANSFERLOCALLOCAL(24Z, 24Z, 4); } break; case PSMT16Z: switch(gs.dstbuf.psm) { case PSMCT16: TRANSFERLOCALLOCAL(16Z, 16, 4); break; case PSMCT16S: TRANSFERLOCALLOCAL(16Z, 16S, 4); break; case PSMT16Z: TRANSFERLOCALLOCAL(16Z, 16Z, 4); break; case PSMT16SZ: TRANSFERLOCALLOCAL(16Z, 16SZ, 4); break; } break; case PSMT16SZ: switch(gs.dstbuf.psm) { case PSMCT16: TRANSFERLOCALLOCAL(16SZ, 16, 4); break; case PSMCT16S: TRANSFERLOCALLOCAL(16SZ, 16S, 4); break; case PSMT16Z: TRANSFERLOCALLOCAL(16SZ, 16Z, 4); break; case PSMT16SZ: TRANSFERLOCALLOCAL(16SZ, 16SZ, 4); break; } break; } g_MemTargs.ClearRange(dststart, dstend); #if defined(ZEROGS_DEVBUILD) && defined(_DEBUG) if( g_bSaveTrans ) { tex0Info t; t.tbp0 = gs.dstbuf.bp; t.tw = gs.imageWnew; t.th = gs.imageHnew; t.tbw = gs.dstbuf.bw; t.psm = gs.dstbuf.psm; SaveTex(&t, 0); t.tbp0 = gs.srcbuf.bp; t.tw = gs.imageWnew; t.th = gs.imageHnew; t.tbw = gs.srcbuf.bw; t.psm = gs.srcbuf.psm; SaveTex(&t, 0); } #endif } void GetRectMemAddress(int& start, int& end, int psm, int x, int y, int w, int h, int bp, int bw) { if( m_Blocks[psm].bpp == 0 ) { ERROR_LOG("ZeroGS: Bad psm 0x%x\n", psm); start = 0; end = 0x00400000; return; } if( (psm&0x30) == 0x30 || psm == 0xa ) { const BLOCK& b = m_Blocks[psm]; bw = (bw + b.width -1)/b.width; start = bp*256 + ((y/b.height) * bw + (x/b.width) )*0x2000; end = bp*256 + (((y+h-1)/b.height) * bw + (x + w + b.width - 1)/b.width)*0x2000; } else { // just take the addresses switch(psm) { case 0x00: case 0x01: case 0x1b: case 0x24: case 0x2c: start = 4*getPixelAddress32(x, y, bp, bw); end = 4*getPixelAddress32(x+w-1, y+h-1, bp, bw) + 4; break; case 0x02: start = 2*getPixelAddress16(x, y, bp, bw); end = 2*getPixelAddress16(x+w-1, y+h-1, bp, bw)+2; break; case 0x13: start = getPixelAddress8(x, y, bp, bw); end = getPixelAddress8(x+w-1, y+h-1, bp, bw)+1; break; case 0x14: { start = getPixelAddress4(x, y, bp, bw)/2; int newx = ((x+w-1+31)&~31)-1; int newy = ((y+h-1+15)&~15)-1; end = (getPixelAddress4(max(newx,x), max(newy,y), bp, bw)+2)/2; break; } } } } void _Resolve(const void* psrc, int fbp, int fbw, int fbh, int psm, u32 fbm) { //assert( glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT) == GL_FRAMEBUFFER_COMPLETE_EXT ); s_nResolved += 2; // align the rect to the nearest page // note that fbp is always aligned on page boundaries int start, end; GetRectMemAddress(start, end, psm, 0, 0, fbw, fbh, fbp, fbw); PRIM_LOG("resolve: %x %x %x (%x-%x)\n", fbp, fbw, fbh, start, end); int i, j; short smask1 = gs.smask&1; short smask2 = gs.smask&2; u32 mask, imask; if( psm&2 ) { // 16 bit // mask is shifted imask = RGBA32to16(fbm); mask = (~imask)&0xffff; } else { mask = ~fbm; imask = fbm; if( (psm&0xf)>0 ) { // preserve the alpha? mask &= 0x00ffffff; imask |= 0xff000000; } } int Pitch; #define RESOLVE_32BIT(psm, T, Tsrc, blockbits, blockwidth, blockheight, convfn, frame, aax, aay) \ { \ Tsrc* src = (Tsrc*)psrc; \ T* pPageOffset = (T*)g_pbyGSMemory + fbp*(256/sizeof(T)), *dst; \ int srcpitch = Pitch * blockheight/sizeof(Tsrc); \ int maxfbh = (0x00400000-fbp*256) / (sizeof(T) * fbw); \ if( maxfbh > fbh ) maxfbh = fbh; \ for(i = 0; i < (maxfbh&~(blockheight-1)); i += blockheight) { \ /*if( smask2 && (i&1) == smask1 ) continue; */ \ for(j = 0; j < fbw; j += blockwidth) { \ /* have to write in the tiled format*/ \ frame##SwizzleBlock##blockbits(pPageOffset + getPixelAddress##psm##_0(j, i, fbw), \ src+(j< psm switch(psm) { case PSMCT32: case PSMCT24: if( s_AAy ) { RESOLVE_32BIT(32, u32, u32, 32A4, 8, 8, (u32), Frame, 1, 1); } else if( s_AAx ) { RESOLVE_32BIT(32, u32, u32, 32A2, 8, 8, (u32), Frame, 1, 0); } else { RESOLVE_32BIT(32, u32, u32, 32, 8, 8, (u32), Frame, 0, 0); } break; case PSMCT16: if( s_AAy ) { RESOLVE_32BIT(16, u16, u32, 16A4, 16, 8, RGBA32to16, Frame, 1, 1); } else if( s_AAx ) { RESOLVE_32BIT(16, u16, u32, 16A2, 16, 8, RGBA32to16, Frame, 1, 0); } else { RESOLVE_32BIT(16, u16, u32, 16, 16, 8, RGBA32to16, Frame, 0, 0); } break; case PSMCT16S: if( s_AAy ) { RESOLVE_32BIT(16S, u16, u32, 16A4, 16, 8, RGBA32to16, Frame, 1, 1); } else if( s_AAx ) { RESOLVE_32BIT(16S, u16, u32, 16A2, 16, 8, RGBA32to16, Frame, 1, 0); } else { RESOLVE_32BIT(16S, u16, u32, 16, 16, 8, RGBA32to16, Frame, 0, 0); } break; case PSMT32Z: case PSMT24Z: if( s_AAy ) { RESOLVE_32BIT(32Z, u32, u32, 32A4, 8, 8, (u32), Frame, 1, 1); } else if( s_AAx ) { RESOLVE_32BIT(32Z, u32, u32, 32A2, 8, 8, (u32), Frame, 1, 0); } else { RESOLVE_32BIT(32Z, u32, u32, 32, 8, 8, (u32), Frame, 0, 0); } break; case PSMT16Z: if( s_AAy ) { RESOLVE_32BIT(16Z, u16, u32, 16A4, 16, 8, (u16), Frame, 1, 1); } else if( s_AAx ) { RESOLVE_32BIT(16Z, u16, u32, 16A2, 16, 8, (u16), Frame, 1, 0); } else { RESOLVE_32BIT(16Z, u16, u32, 16, 16, 8, (u16), Frame, 0, 0); } break; case PSMT16SZ: if( s_AAy ) { RESOLVE_32BIT(16SZ, u16, u32, 16A4, 16, 8, (u16), Frame, 1, 1); } else if( s_AAx ) { RESOLVE_32BIT(16SZ, u16, u32, 16A2, 16, 8, (u16), Frame, 1, 0); } else { RESOLVE_32BIT(16SZ, u16, u32, 16, 16, 8, (u16), Frame, 0, 0); } break; } } else { // float16 Pitch = fbw * 8; switch(psm) { case PSMCT32: case PSMCT24: if( s_AAy ) { RESOLVE_32BIT(32, u32, Vector_16F, 32A4, 8, 8, Float16ToARGB, Frame16, 1, 1); } else if( s_AAx ) { RESOLVE_32BIT(32, u32, Vector_16F, 32A2, 8, 8, Float16ToARGB, Frame16, 1, 0); } else { RESOLVE_32BIT(32, u32, Vector_16F, 32, 8, 8, Float16ToARGB, Frame16, 0, 0); } break; case PSMCT16: if( s_AAy ) { RESOLVE_32BIT(16, u16, Vector_16F, 16A4, 16, 8, Float16ToARGB16, Frame16, 1, 1); } else if( s_AAx ) { RESOLVE_32BIT(16, u16, Vector_16F, 16A2, 16, 8, Float16ToARGB16, Frame16, 1, 0); } else { RESOLVE_32BIT(16, u16, Vector_16F, 16, 16, 8, Float16ToARGB16, Frame16, 0, 0); } break; case PSMCT16S: if( s_AAy ) { RESOLVE_32BIT(16S, u16, Vector_16F, 16A4, 16, 8, Float16ToARGB16, Frame16, 1, 1); } else if( s_AAx ) { RESOLVE_32BIT(16S, u16, Vector_16F, 16A2, 16, 8, Float16ToARGB16, Frame16, 1, 0); } else { RESOLVE_32BIT(16S, u16, Vector_16F, 16, 16, 8, Float16ToARGB16, Frame16, 0, 0); } break; case PSMT32Z: case PSMT24Z: if( s_AAy ) { RESOLVE_32BIT(32Z, u32, Vector_16F, 32ZA4, 8, 8, Float16ToARGB_Z, Frame16, 1, 1); } else if( s_AAx ) { RESOLVE_32BIT(32Z, u32, Vector_16F, 32ZA2, 8, 8, Float16ToARGB_Z, Frame16, 1, 0); } else { RESOLVE_32BIT(32Z, u32, Vector_16F, 32Z, 8, 8, Float16ToARGB_Z, Frame16, 0, 0); } break; case PSMT16Z: if( s_AAy ) { RESOLVE_32BIT(16Z, u16, Vector_16F, 16ZA4, 16, 8, Float16ToARGB16_Z, Frame16, 1, 1); } else if( s_AAx ) { RESOLVE_32BIT(16Z, u16, Vector_16F, 16ZA2, 16, 8, Float16ToARGB16_Z, Frame16, 1, 0); } else { RESOLVE_32BIT(16Z, u16, Vector_16F, 16Z, 16, 8, Float16ToARGB16_Z, Frame16, 0, 0); } break; case PSMT16SZ: if( s_AAy ) { RESOLVE_32BIT(16SZ, u16, Vector_16F, 16ZA4, 16, 8, Float16ToARGB16_Z, Frame16, 1, 1); } else if( s_AAx ) { RESOLVE_32BIT(16SZ, u16, Vector_16F, 16ZA2, 16, 8, Float16ToARGB16_Z, Frame16, 1, 0); } else { RESOLVE_32BIT(16SZ, u16, Vector_16F, 16Z, 16, 8, Float16ToARGB16_Z, Frame16, 0, 0); } break; } } g_MemTargs.ClearRange(start, end); INC_RESOLVE(); } //////////// // Saving // //////////// void SaveTex(tex0Info* ptex, int usevid) { vector data(ptex->tw*ptex->th); vector srcdata; u32* dst = &data[0]; u8* psrc = g_pbyGSMemory; CMemoryTarget* pmemtarg = NULL; if( usevid ) { pmemtarg = g_MemTargs.GetMemoryTarget(*ptex, 0); assert( pmemtarg != NULL ); glBindTexture(GL_TEXTURE_RECTANGLE_NV, pmemtarg->ptex->tex); srcdata.resize(pmemtarg->realheight*GPU_TEXWIDTH*pmemtarg->widthmult*4*8); // max of 8 cannels glGetTexImage(GL_TEXTURE_RECTANGLE_NV, 0, GL_RGBA, pmemtarg->fmt, &srcdata[0]); u32 offset = pmemtarg->realy * 4 * GPU_TEXWIDTH; if( ptex->psm == PSMT8 ) offset *= ptex->cpsm <= 1 ? 4 : 2; else if( ptex->psm == PSMT4 ) offset *= ptex->cpsm <= 1 ? 8 : 4; psrc = &srcdata[0] - offset; } for(int i = 0; i < ptex->th; ++i) { for(int j = 0; j < ptex->tw; ++j) { u32 u, addr; switch(ptex->psm) { case PSMCT32: addr = getPixelAddress32(j, i, ptex->tbp0, ptex->tbw); if( addr*4 < 0x00400000 ) u = readPixel32(psrc, j, i, ptex->tbp0, ptex->tbw); else u = 0; break; case PSMCT24: addr = getPixelAddress24(j, i, ptex->tbp0, ptex->tbw); if( addr*4 < 0x00400000 ) u = readPixel24(psrc, j, i, ptex->tbp0, ptex->tbw); else u = 0; break; case PSMCT16: addr = getPixelAddress16(j, i, ptex->tbp0, ptex->tbw); if( addr*2 < 0x00400000 ) { u = readPixel16(psrc, j, i, ptex->tbp0, ptex->tbw); u = RGBA16to32(u); } else u = 0; break; case PSMCT16S: addr = getPixelAddress16(j, i, ptex->tbp0, ptex->tbw); if( addr*2 < 0x00400000 ) { u = readPixel16S(psrc, j, i, ptex->tbp0, ptex->tbw); u = RGBA16to32(u); } else u = 0; break; case PSMT8: addr = getPixelAddress8(j, i, ptex->tbp0, ptex->tbw); if( addr < 0x00400000 ) { if( usevid ) { if( ptex->cpsm <= 1 ) u = *(u32*)(psrc+4*addr); else u = RGBA16to32(*(u16*)(psrc+2*addr)); } else u = readPixel8(psrc, j, i, ptex->tbp0, ptex->tbw); } else u = 0; break; case PSMT4: addr = getPixelAddress4(j, i, ptex->tbp0, ptex->tbw); if( addr < 2*0x00400000 ) { if( usevid ) { if( ptex->cpsm <= 1 ) u = *(u32*)(psrc+4*addr); else u = RGBA16to32(*(u16*)(psrc+2*addr)); } else u = readPixel4(psrc, j, i, ptex->tbp0, ptex->tbw); } else u = 0; break; case PSMT8H: addr = getPixelAddress8H(j, i, ptex->tbp0, ptex->tbw); if( 4*addr < 0x00400000 ) { if( usevid ) { if( ptex->cpsm <= 1 ) u = *(u32*)(psrc+4*addr); else u = RGBA16to32(*(u16*)(psrc+2*addr)); } else u = readPixel8H(psrc, j, i, ptex->tbp0, ptex->tbw); } else u = 0; break; case PSMT4HL: addr = getPixelAddress4HL(j, i, ptex->tbp0, ptex->tbw); if( 4*addr < 0x00400000 ) { if( usevid ) { if( ptex->cpsm <= 1 ) u = *(u32*)(psrc+4*addr); else u = RGBA16to32(*(u16*)(psrc+2*addr)); } else u = readPixel4HL(psrc, j, i, ptex->tbp0, ptex->tbw); } else u = 0; break; case PSMT4HH: addr = getPixelAddress4HH(j, i, ptex->tbp0, ptex->tbw); if( 4*addr < 0x00400000 ) { if( usevid ) { if( ptex->cpsm <= 1 ) u = *(u32*)(psrc+4*addr); else u = RGBA16to32(*(u16*)(psrc+2*addr)); } else u = readPixel4HH(psrc, j, i, ptex->tbp0, ptex->tbw); } else u = 0; break; case PSMT32Z: addr = getPixelAddress32Z(j, i, ptex->tbp0, ptex->tbw); if( 4*addr < 0x00400000 ) u = readPixel32Z(psrc, j, i, ptex->tbp0, ptex->tbw); else u = 0; break; case PSMT24Z: addr = getPixelAddress24Z(j, i, ptex->tbp0, ptex->tbw); if( 4*addr < 0x00400000 ) u = readPixel24Z(psrc, j, i, ptex->tbp0, ptex->tbw); else u = 0; break; case PSMT16Z: addr = getPixelAddress16Z(j, i, ptex->tbp0, ptex->tbw); if( 2*addr < 0x00400000 ) u = readPixel16Z(psrc, j, i, ptex->tbp0, ptex->tbw); else u = 0; break; case PSMT16SZ: addr = getPixelAddress16SZ(j, i, ptex->tbp0, ptex->tbw); if( 2*addr < 0x00400000 ) u = readPixel16SZ(psrc, j, i, ptex->tbp0, ptex->tbw); else u = 0; break; default: assert(0); } *dst++ = u; } } SaveTGA("tex.tga", ptex->tw, ptex->th, &data[0]); } }