////////////////////////////////////////////////////////////////////// // Vertex Shader ////////////////////////////////////////////////////////////////////// #if defined(VERTEX_SHADER) || defined(GEOMETRY_SHADER) layout(std140, set = 0, binding = 0) uniform cb0 { vec2 VertexScale; vec2 VertexOffset; vec2 TextureScale; vec2 TextureOffset; vec2 PointSize; uint MaxDepth; uint pad_cb0; }; #endif #ifdef VERTEX_SHADER layout(location = 0) in vec2 a_st; layout(location = 1) in uvec4 a_c; layout(location = 2) in float a_q; layout(location = 3) in uvec2 a_p; layout(location = 4) in uint a_z; layout(location = 5) in uvec2 a_uv; layout(location = 6) in vec4 a_f; layout(location = 0) out VSOutput { vec4 t; vec4 ti; #if VS_IIP != 0 vec4 c; #else flat vec4 c; #endif } vsOut; void main() { // Clamp to max depth, gs doesn't wrap float z = min(a_z, MaxDepth); // pos -= 0.05 (1/320 pixel) helps avoiding rounding problems (integral part of pos is usually 5 digits, 0.05 is about as low as we can go) // example: ceil(afterseveralvertextransformations(y = 133)) => 134 => line 133 stays empty // input granularity is 1/16 pixel, anything smaller than that won't step drawing up/left by one pixel // example: 133.0625 (133 + 1/16) should start from line 134, ceil(133.0625 - 0.05) still above 133 gl_Position = vec4(a_p, z, 1.0f) - vec4(0.05f, 0.05f, 0, 0); gl_Position.xy = gl_Position.xy * vec2(VertexScale.x, -VertexScale.y) - vec2(VertexOffset.x, -VertexOffset.y); gl_Position.z *= exp2(-32.0f); // integer->float depth gl_Position.y = -gl_Position.y; #if VS_TME vec2 uv = a_uv - TextureOffset; vec2 st = a_st - TextureOffset; // Integer nomalized vsOut.ti.xy = uv * TextureScale; #if VS_FST // Integer integral vsOut.ti.zw = uv; #else // float for post-processing in some games vsOut.ti.zw = st / TextureScale; #endif // Float coords vsOut.t.xy = st; vsOut.t.w = a_q; #else vsOut.t = vec4(0.0f, 0.0f, 0.0f, 1.0f); vsOut.ti = vec4(0.0f); #endif #if VS_POINT_SIZE gl_PointSize = float(VS_POINT_SIZE_VALUE); #endif vsOut.c = a_c; vsOut.t.z = a_f.r; } #endif #ifdef GEOMETRY_SHADER layout(location = 0) in VSOutput { vec4 t; vec4 ti; #if GS_IIP != 0 vec4 c; #else flat vec4 c; #endif } gsIn[]; layout(location = 0) out GSOutput { vec4 t; vec4 ti; #if GS_IIP != 0 vec4 c; #else flat vec4 c; #endif } gsOut; void WriteVertex(vec4 pos, vec4 t, vec4 ti, vec4 c) { gl_Position = pos; gsOut.t = t; gsOut.ti = ti; gsOut.c = c; EmitVertex(); } ////////////////////////////////////////////////////////////////////// // Geometry Shader ////////////////////////////////////////////////////////////////////// #if GS_PRIM == 0 && GS_POINT == 0 layout(points) in; layout(points, max_vertices = 1) out; void main() { WriteVertex(gl_in[0].gl_Position, gsIn[0].t, gsIn[0].ti, gsIn[0].c); EndPrimitive(); } #elif GS_PRIM == 0 && GS_POINT == 1 layout(points) in; layout(triangle_strip, max_vertices = 4) out; void main() { // Transform a point to a NxN sprite // Get new position vec4 lt_p = gl_in[0].gl_Position; vec4 rb_p = gl_in[0].gl_Position + vec4(PointSize.x, PointSize.y, 0.0f, 0.0f); vec4 lb_p = rb_p; vec4 rt_p = rb_p; lb_p.x = lt_p.x; rt_p.y = lt_p.y; WriteVertex(lt_p, gsIn[0].t, gsIn[0].ti, gsIn[0].c); WriteVertex(lb_p, gsIn[0].t, gsIn[0].ti, gsIn[0].c); WriteVertex(rt_p, gsIn[0].t, gsIn[0].ti, gsIn[0].c); WriteVertex(rb_p, gsIn[0].t, gsIn[0].ti, gsIn[0].c); EndPrimitive(); } #elif GS_PRIM == 1 && GS_LINE == 0 layout(lines) in; layout(line_strip, max_vertices = 2) out; void main() { #if GS_IIP == 0 WriteVertex(gl_in[0].gl_Position, gsIn[0].t, gsIn[0].ti, gsIn[1].c); WriteVertex(gl_in[1].gl_Position, gsIn[1].t, gsIn[1].ti, gsIn[1].c); #else WriteVertex(gl_in[0].gl_Position, gsIn[0].t, gsIn[0].ti, gsIn[0].c); WriteVertex(gl_in[1].gl_Position, gsIn[1].t, gsIn[1].ti, gsIn[1].c); #endif EndPrimitive(); } #elif GS_PRIM == 1 && GS_LINE == 1 layout(lines) in; layout(triangle_strip, max_vertices = 4) out; void main() { // Transform a line to a thick line-sprite vec4 left_t = gsIn[0].t; vec4 left_ti = gsIn[0].ti; vec4 left_c = gsIn[0].c; vec4 right_t = gsIn[1].t; vec4 right_ti = gsIn[1].ti; vec4 right_c = gsIn[1].c; vec4 lt_p = gl_in[0].gl_Position; vec4 rt_p = gl_in[1].gl_Position; // Potentially there is faster math vec2 line_vector = normalize(rt_p.xy - lt_p.xy); vec2 line_normal = vec2(line_vector.y, -line_vector.x); vec2 line_width = (line_normal * PointSize) / 2.0; lt_p.xy -= line_width; rt_p.xy -= line_width; vec4 lb_p = gl_in[0].gl_Position + vec4(line_width, 0.0, 0.0); vec4 rb_p = gl_in[1].gl_Position + vec4(line_width, 0.0, 0.0); #if GS_IIP == 0 left_c = right_c; #endif WriteVertex(lt_p, left_t, left_ti, left_c); WriteVertex(lb_p, left_t, left_ti, left_c); WriteVertex(rt_p, right_t, right_ti, right_c); WriteVertex(rb_p, right_t, right_ti, right_c); EndPrimitive(); } #elif GS_PRIM == 2 layout(triangles) in; layout(triangle_strip, max_vertices = 3) out; void main() { #if GS_IIP == 0 WriteVertex(gl_in[0].gl_Position, gsIn[0].t, gsIn[0].ti, gsIn[2].c); WriteVertex(gl_in[1].gl_Position, gsIn[1].t, gsIn[1].ti, gsIn[2].c); WriteVertex(gl_in[2].gl_Position, gsIn[2].t, gsIn[2].ti, gsIn[2].c); #else WriteVertex(gl_in[0].gl_Position, gsIn[0].t, gsIn[0].ti, gsIn[0].c); WriteVertex(gl_in[1].gl_Position, gsIn[1].t, gsIn[1].ti, gsIn[0].c); WriteVertex(gl_in[2].gl_Position, gsIn[2].t, gsIn[2].ti, gsIn[0].c); #endif EndPrimitive(); } #elif GS_PRIM == 3 layout(lines) in; layout(triangle_strip, max_vertices = 4) out; void main() { vec4 lt_p = gl_in[0].gl_Position; vec4 lt_t = gsIn[0].t; vec4 lt_ti = gsIn[0].ti; vec4 lt_c = gsIn[0].c; vec4 rb_p = gl_in[1].gl_Position; vec4 rb_t = gsIn[1].t; vec4 rb_ti = gsIn[1].ti; vec4 rb_c = gsIn[1].c; // flat depth lt_p.z = rb_p.z; // flat fog and texture perspective lt_t.zw = rb_t.zw; // flat color lt_c = rb_c; // Swap texture and position coordinate vec4 lb_p = rb_p; vec4 lb_t = rb_t; vec4 lb_ti = rb_ti; vec4 lb_c = rb_c; lb_p.x = lt_p.x; lb_t.x = lt_t.x; lb_ti.x = lt_ti.x; lb_ti.z = lt_ti.z; vec4 rt_p = rb_p; vec4 rt_t = rb_t; vec4 rt_ti = rb_ti; vec4 rt_c = rb_c; rt_p.y = lt_p.y; rt_t.y = lt_t.y; rt_ti.y = lt_ti.y; rt_ti.w = lt_ti.w; WriteVertex(lt_p, lt_t, lt_ti, lt_c); WriteVertex(lb_p, lb_t, lb_ti, lb_c); WriteVertex(rt_p, rt_t, rt_ti, rt_c); WriteVertex(rb_p, rb_t, rb_ti, rb_c); EndPrimitive(); } #endif #endif #ifdef FRAGMENT_SHADER #define FMT_32 0 #define FMT_24 1 #define FMT_16 2 #ifndef VS_TME #define VS_TME 1 #define VS_FST 1 #endif #ifndef GS_IIP #define GS_IIP 0 #define GS_PRIM 3 #define GS_POINT 0 #define GS_LINE 0 #endif #ifndef PS_FST #define PS_FST 0 #define PS_WMS 0 #define PS_WMT 0 #define PS_FMT FMT_32 #define PS_AEM 0 #define PS_TFX 0 #define PS_TCC 1 #define PS_ATST 1 #define PS_FOG 0 #define PS_CLR1 0 #define PS_FBA 0 #define PS_FBMASK 0 #define PS_LTF 1 #define PS_TCOFFSETHACK 0 #define PS_POINT_SAMPLER 0 #define PS_SHUFFLE 0 #define PS_READ_BA 0 #define PS_DFMT 0 #define PS_DEPTH_FMT 0 #define PS_PAL_FMT 0 #define PS_CHANNEL_FETCH 0 #define PS_TALES_OF_ABYSS_HLE 0 #define PS_URBAN_CHAOS_HLE 0 #define PS_INVALID_TEX0 0 #define PS_SCALE_FACTOR 1 #define PS_HDR 0 #define PS_COLCLIP 0 #define PS_BLEND_A 0 #define PS_BLEND_B 0 #define PS_BLEND_C 0 #define PS_BLEND_D 0 #define PS_PABE 0 #define PS_DITHER 0 #define PS_ZCLAMP 0 #define PS_FEEDBACK_LOOP 0 #define PS_TEX_IS_FB 0 #endif #define SW_BLEND (PS_BLEND_A || PS_BLEND_B || PS_BLEND_D) #define SW_BLEND_NEEDS_RT (PS_BLEND_A == 1 || PS_BLEND_B == 1 || PS_BLEND_C == 1 || PS_BLEND_D == 1) #define PS_FEEDBACK_LOOP_IS_NEEDED (PS_TEX_IS_FB == 1 || PS_FBMASK || SW_BLEND_NEEDS_RT || (PS_DATE < 10 && (((PS_DATE & 3) == 1 || (PS_DATE & 3) == 2)))) layout(std140, set = 0, binding = 1) uniform cb1 { vec3 FogColor; float AREF; vec4 WH; vec2 TA; float MaxDepthPS; float Af; uvec4 MskFix; uvec4 FbMask; vec4 HalfTexel; vec4 MinMax; ivec4 ChannelShuffle; vec2 TC_OffsetHack; vec2 pad_cb1; mat4 DitherMatrix; }; layout(location = 0) in VSOutput { vec4 t; vec4 ti; #if PS_IIP != 0 vec4 c; #else flat vec4 c; #endif } vsIn; #ifndef DISABLE_DUAL_SOURCE layout(location = 0, index = 0) out vec4 o_col0; layout(location = 0, index = 1) out vec4 o_col1; #else layout(location = 0) out vec4 o_col0; #endif layout(set = 1, binding = 0) uniform sampler2D Texture; layout(set = 1, binding = 1) uniform sampler2D Palette; layout(set = 2, binding = 0) uniform texture2D RawTexture; #if PS_FEEDBACK_LOOP_IS_NEEDED layout(input_attachment_index = 0, set = 2, binding = 1) uniform subpassInput RtSampler; #endif #if PS_DATE > 0 layout(set = 2, binding = 2) uniform texture2D PrimMinTexture; #endif vec4 sample_c(vec2 uv) { #if PS_TEX_IS_FB return subpassLoad(RtSampler); #else #if PS_POINT_SAMPLER // Weird issue with ATI/AMD cards, // it looks like they add 127/128 of a texel to sampling coordinates // occasionally causing point sampling to erroneously round up. // I'm manually adjusting coordinates to the centre of texels here, // though the centre is just paranoia, the top left corner works fine. // As of 2018 this issue is still present. uv = (trunc(uv * WH.zw) + vec2(0.5, 0.5)) / WH.zw; #endif #if PS_AUTOMATIC_LOD == 1 return texture(Texture, uv); #elif PS_MANUAL_LOD == 1 // FIXME add LOD: K - ( LOG2(Q) * (1 << L)) float K = MinMax.x; float L = MinMax.y; float bias = MinMax.z; float max_lod = MinMax.w; float gs_lod = K - log2(abs(vsIn.t.w)) * L; // FIXME max useful ? //float lod = max(min(gs_lod, max_lod) - bias, 0.0f); float lod = min(gs_lod, max_lod) - bias; return textureLod(Texture, uv, lod); #else return textureLod(Texture, uv, 0); // No lod #endif #endif } vec4 sample_p(float u) { return texture(Palette, vec2(u, 0.0f)); } vec4 clamp_wrap_uv(vec4 uv) { vec4 tex_size; #if PS_INVALID_TEX0 tex_size = WH.zwzw; #else tex_size = WH.xyxy; #endif #if PS_WMS == PS_WMT { #if PS_WMS == 2 { uv = clamp(uv, MinMax.xyxy, MinMax.zwzw); } #elif PS_WMS == 3 { #if PS_FST == 0 // wrap negative uv coords to avoid an off by one error that shifted // textures. Fixes Xenosaga's hair issue. uv = fract(uv); #endif uv = vec4((uvec4(uv * tex_size) & MskFix.xyxy) | MskFix.zwzw) / tex_size; } #endif } #else { #if PS_WMS == 2 { uv.xz = clamp(uv.xz, MinMax.xx, MinMax.zz); } #elif PS_WMS == 3 { #if PS_FST == 0 uv.xz = fract(uv.xz); #endif uv.xz = vec2((uvec2(uv.xz * tex_size.xx) & MskFix.xx) | MskFix.zz) / tex_size.xx; } #endif #if PS_WMT == 2 { uv.yw = clamp(uv.yw, MinMax.yy, MinMax.ww); } #elif PS_WMT == 3 { #if PS_FST == 0 uv.yw = fract(uv.yw); #endif uv.yw = vec2((uvec2(uv.yw * tex_size.yy) & MskFix.yy) | MskFix.ww) / tex_size.yy; } #endif } #endif return uv; } mat4 sample_4c(vec4 uv) { mat4 c; c[0] = sample_c(uv.xy); c[1] = sample_c(uv.zy); c[2] = sample_c(uv.xw); c[3] = sample_c(uv.zw); return c; } vec4 sample_4_index(vec4 uv) { vec4 c; c.x = sample_c(uv.xy).a; c.y = sample_c(uv.zy).a; c.z = sample_c(uv.xw).a; c.w = sample_c(uv.zw).a; // Denormalize value uvec4 i = uvec4(c * 255.0f + 0.5f); #if PS_PAL_FMT == 1 // 4HL c = vec4(i & 0xFu) / 255.0f; #elif PS_PAL_FMT == 2 // 4HH c = vec4(i >> 4u) / 255.0f; #endif // Most of texture will hit this code so keep normalized float value // 8 bits return c * 255./256 + 0.5/256; } mat4 sample_4p(vec4 u) { mat4 c; c[0] = sample_p(u.x); c[1] = sample_p(u.y); c[2] = sample_p(u.z); c[3] = sample_p(u.w); return c; } int fetch_raw_depth(ivec2 xy) { vec4 col = texelFetch(RawTexture, xy, 0); return int(col.r * exp2(32.0f)); } vec4 fetch_raw_color(ivec2 xy) { return texelFetch(RawTexture, xy, 0); } vec4 fetch_c(ivec2 uv) { return texelFetch(Texture, uv, 0); } ////////////////////////////////////////////////////////////////////// // Depth sampling ////////////////////////////////////////////////////////////////////// ivec2 clamp_wrap_uv_depth(ivec2 uv) { ivec4 mask = ivec4(MskFix << 4); #if (PS_WMS == PS_WMT) { #if (PS_WMS == 2) { uv = clamp(uv, mask.xy, mask.zw); } #elif (PS_WMS == 3) { uv = (uv & mask.xy) | mask.zw; } #endif } #else { #if (PS_WMS == 2) { uv.x = clamp(uv.x, mask.x, mask.z); } #elif (PS_WMS == 3) { uv.x = (uv.x & mask.x) | mask.z; } #endif #if (PS_WMT == 2) { uv.y = clamp(uv.y, mask.y, mask.w); } #elif (PS_WMT == 3) { uv.y = (uv.y & mask.y) | mask.w; } #endif } #endif return uv; } vec4 sample_depth(vec2 st, ivec2 pos) { vec2 uv_f = vec2(clamp_wrap_uv_depth(ivec2(st))) * vec2(PS_SCALE_FACTOR) * vec2(1.0f / 16.0f); ivec2 uv = ivec2(uv_f); vec4 t = vec4(0.0f); #if (PS_TALES_OF_ABYSS_HLE == 1) { // Warning: UV can't be used in channel effect int depth = fetch_raw_depth(pos); // Convert msb based on the palette t = texelFetch(Palette, ivec2((depth >> 8) & 0xFF, 0), 0) * 255.0f; } #elif (PS_URBAN_CHAOS_HLE == 1) { // Depth buffer is read as a RGB5A1 texture. The game try to extract the green channel. // So it will do a first channel trick to extract lsb, value is right-shifted. // Then a new channel trick to extract msb which will shifted to the left. // OpenGL uses a vec32 format for the depth so it requires a couple of conversion. // To be faster both steps (msb&lsb) are done in a single pass. // Warning: UV can't be used in channel effect int depth = fetch_raw_depth(pos); // Convert lsb based on the palette t = Palette.Load(ivec3(depth & 0xFF, 0, 0)) * 255.0f; // Msb is easier float green = float(((depth >> 8) & 0xFF) * 36.0f); green = min(green, 255.0f); t.g += green; } #elif (PS_DEPTH_FMT == 1) { // Based on ps_main11 of convert // Convert a vec32 depth texture into a RGBA color texture const vec4 bitSh = vec4(exp2(24.0f), exp2(16.0f), exp2(8.0f), exp2(0.0f)); const vec4 bitMsk = vec4(0.0, 1.0f / 256.0f, 1.0f / 256.0f, 1.0f / 256.0f); vec4 res = fract(vec4(fetch_c(uv).r) * bitSh); t = (res - res.xxyz * bitMsk) * 256.0f; } #elif (PS_DEPTH_FMT == 2) { // Based on ps_main12 of convert // Convert a vec32 (only 16 lsb) depth into a RGB5A1 color texture const vec4 bitSh = vec4(exp2(32.0f), exp2(27.0f), exp2(22.0f), exp2(17.0f)); const uvec4 bitMsk = uvec4(0x1F, 0x1F, 0x1F, 0x1); uvec4 color = uvec4(vec4(fetch_c(uv).r) * bitSh) & bitMsk; t = vec4(color) * vec4(8.0f, 8.0f, 8.0f, 128.0f); } #elif (PS_DEPTH_FMT == 3) { // Convert a RGBA/RGB5A1 color texture into a RGBA/RGB5A1 color texture t = fetch_c(uv) * 255.0f; } #endif #if (PS_AEM_FMT == FMT_24) { t.a = ((PS_AEM == 0) || any(bvec3(t.rgb))) ? 255.0f * TA.x : 0.0f; } #elif (PS_AEM_FMT == FMT_16) { t.a = t.a >= 128.0f ? 255.0f * TA.y : ((PS_AEM == 0) || any(bvec3(t.rgb))) ? 255.0f * TA.x : 0.0f; } #endif return t; } ////////////////////////////////////////////////////////////////////// // Fetch a Single Channel ////////////////////////////////////////////////////////////////////// vec4 fetch_red(ivec2 xy) { vec4 rt; #if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2) int depth = (fetch_raw_depth(xy)) & 0xFF; rt = vec4(float(depth) / 255.0f); #else rt = fetch_raw_color(xy); #endif return sample_p(rt.r) * 255.0f; } vec4 fetch_green(ivec2 xy) { vec4 rt; #if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2) int depth = (fetch_raw_depth(xy) >> 8) & 0xFF; rt = vec4(float(depth) / 255.0f); #else rt = fetch_raw_color(xy); #endif return sample_p(rt.g) * 255.0f; } vec4 fetch_blue(ivec2 xy) { vec4 rt; #if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2) int depth = (fetch_raw_depth(xy) >> 16) & 0xFF; rt = vec4(float(depth) / 255.0f); #else rt = fetch_raw_color(xy); #endif return sample_p(rt.b) * 255.0f; } vec4 fetch_alpha(ivec2 xy) { vec4 rt = fetch_raw_color(xy); return sample_p(rt.a) * 255.0f; } vec4 fetch_rgb(ivec2 xy) { vec4 rt = fetch_raw_color(xy); vec4 c = vec4(sample_p(rt.r).r, sample_p(rt.g).g, sample_p(rt.b).b, 1.0); return c * 255.0f; } vec4 fetch_gXbY(ivec2 xy) { #if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2) int depth = fetch_raw_depth(xy); int bg = (depth >> (8 + ChannelShuffle.w)) & 0xFF; return vec4(bg); #else ivec4 rt = ivec4(fetch_raw_color(xy) * 255.0); int green = (rt.g >> ChannelShuffle.w) & ChannelShuffle.z; int blue = (rt.b << ChannelShuffle.y) & ChannelShuffle.x; return vec4(float(green | blue)); #endif } vec4 sample_color(vec2 st) { #if PS_TCOFFSETHACK st += TC_OffsetHack.xy; #endif vec4 t; mat4 c; vec2 dd; #if PS_LTF == 0 && PS_AEM_FMT == FMT_32 && PS_PAL_FMT == 0 && PS_WMS < 2 && PS_WMT < 2 { c[0] = sample_c(st); } #else { vec4 uv; #if PS_LTF { uv = st.xyxy + HalfTexel; dd = fract(uv.xy * WH.zw); #if PS_FST == 0 { dd = clamp(dd, vec2(0.0f), vec2(0.9999999f)); } #endif } #else { uv = st.xyxy; } #endif uv = clamp_wrap_uv(uv); #if PS_PAL_FMT != 0 c = sample_4p(sample_4_index(uv)); #else c = sample_4c(uv); #endif } #endif for (uint i = 0; i < 4; i++) { #if (PS_AEM_FMT == FMT_24) c[i].a = (PS_AEM == 0 || any(bvec3(c[i].rgb))) ? TA.x : 0.0f; #elif (PS_AEM_FMT == FMT_16) c[i].a = (c[i].a >= 0.5) ? TA.y : ((PS_AEM == 0 || any(bvec3(c[i].rgb))) ? TA.x : 0.0f); #endif } #if PS_LTF { t = mix(mix(c[0], c[1], dd.x), mix(c[2], c[3], dd.x), dd.y); } #else { t = c[0]; } #endif return trunc(t * 255.0f + 0.05f); } vec4 tfx(vec4 T, vec4 C) { vec4 C_out; vec4 FxT = trunc(trunc(C) * T / 128.0f); #if (PS_TFX == 0) C_out = FxT; #elif (PS_TFX == 1) C_out = T; #elif (PS_TFX == 2) C_out.rgb = FxT.rgb + C.a; C_out.a = T.a + C.a; #elif (PS_TFX == 3) C_out.rgb = FxT.rgb + C.a; C_out.a = T.a; #else C_out = C; #endif #if (PS_TCC == 0) C_out.a = C.a; #endif #if (PS_TFX == 0) || (PS_TFX == 2) || (PS_TFX == 3) // Clamp only when it is useful C_out = min(C_out, 255.0f); #endif return C_out; } void atst(vec4 C) { float a = C.a; #if (PS_ATST == 0) { // nothing to do } #elif (PS_ATST == 1) { if (a > AREF) discard; } #elif (PS_ATST == 2) { if (a < AREF) discard; } #elif (PS_ATST == 3) { if (abs(a - AREF) > 0.5f) discard; } #elif (PS_ATST == 4) { if (abs(a - AREF) < 0.5f) discard; } #endif } vec4 fog(vec4 c, float f) { #if PS_FOG c.rgb = trunc(mix(FogColor, c.rgb, f)); #endif return c; } vec4 ps_color() { #if PS_FST == 0 && PS_INVALID_TEX0 == 1 // Re-normalize coordinate from invalid GS to corrected texture size vec2 st = (vsIn.t.xy * WH.xy) / (vsIn.t.w * WH.zw); // no st_int yet #elif PS_FST == 0 vec2 st = vsIn.t.xy / vsIn.t.w; vec2 st_int = vsIn.ti.zw / vsIn.t.w; #else vec2 st = vsIn.ti.xy; vec2 st_int = vsIn.ti.zw; #endif #if PS_CHANNEL_FETCH == 1 vec4 T = fetch_red(ivec2(gl_FragCoord.xy)); #elif PS_CHANNEL_FETCH == 2 vec4 T = fetch_green(ivec2(gl_FragCoord.xy)); #elif PS_CHANNEL_FETCH == 3 vec4 T = fetch_blue(ivec2(gl_FragCoord.xy)); #elif PS_CHANNEL_FETCH == 4 vec4 T = fetch_alpha(ivec2(gl_FragCoord.xy)); #elif PS_CHANNEL_FETCH == 5 vec4 T = fetch_rgb(ivec2(gl_FragCoord.xy)); #elif PS_CHANNEL_FETCH == 6 vec4 T = fetch_gXbY(ivec2(gl_FragCoord.xy)); #elif PS_DEPTH_FMT > 0 vec4 T = sample_depth(st_int, ivec2(gl_FragCoord.xy)); #else vec4 T = sample_color(st); #endif vec4 C = tfx(T, vsIn.c); atst(C); C = fog(C, vsIn.t.z); #if PS_CLR1 // needed for Cd * (As/Ad/F + 1) blending modes C.rgb = vec3(255.0f); #endif return C; } void ps_fbmask(inout vec4 C) { #if PS_FBMASK vec4 RT = trunc(subpassLoad(RtSampler) * 255.0f + 0.1f); C = vec4((uvec4(C) & ~FbMask) | (uvec4(RT) & FbMask)); #endif } void ps_dither(inout vec3 C) { #if PS_DITHER ivec2 fpos; #if PS_DITHER == 2 fpos = ivec2(gl_FragCoord.xy); #else fpos = ivec2(gl_FragCoord.xy / float(PS_SCALE_FACTOR)); #endif C += DitherMatrix[fpos.y & 3][fpos.x & 3]; #endif } void ps_color_clamp_wrap(inout vec3 C) { // When dithering the bottom 3 bits become meaningless and cause lines in the picture // so we need to limit the color depth on dithered items #if SW_BLEND || PS_DITHER // Correct the Color value based on the output format #if PS_COLCLIP == 0 && PS_HDR == 0 // Standard Clamp C = clamp(C, vec3(0.0f), vec3(255.0f)); #endif // FIXME rouding of negative float? // compiler uses trunc but it might need floor // Warning: normally blending equation is mult(A, B) = A * B >> 7. GPU have the full accuracy // GS: Color = 1, Alpha = 255 => output 1 // GPU: Color = 1/255, Alpha = 255/255 * 255/128 => output 1.9921875 #if PS_DFMT == FMT_16 // In 16 bits format, only 5 bits of colors are used. It impacts shadows computation of Castlevania C = vec3(ivec3(C) & ivec3(0xF8)); #elif PS_COLCLIP == 1 && PS_HDR == 0 C = vec3(ivec3(C) & ivec3(0xFF)); #endif #endif } void ps_blend(inout vec4 Color, float As) { #if SW_BLEND // PABE #if PS_PABE // No blending so early exit if (As < 1.0f) return; #endif #if PS_FEEDBACK_LOOP_IS_NEEDED vec4 RT = trunc(subpassLoad(RtSampler) * 255.0f + 0.1f); #else // Not used, but we define it to make the selection below simpler. vec4 RT = vec4(0.0f); #endif #if PS_DFMT == FMT_24 float Ad = 1.0f; #else // FIXME FMT_16 case // FIXME Ad or Ad * 2? float Ad = RT.a / 128.0f; #endif // Let the compiler do its jobs ! vec3 Cd = RT.rgb; vec3 Cs = Color.rgb; #if PS_BLEND_A == 0 vec3 A = Cs; #elif PS_BLEND_A == 1 vec3 A = Cd; #else vec3 A = vec3(0.0f); #endif #if PS_BLEND_B == 0 vec3 B = Cs; #elif PS_BLEND_B == 1 vec3 B = Cd; #else vec3 B = vec3(0.0f); #endif #if PS_BLEND_C == 0 float C = As; #elif PS_BLEND_C == 1 float C = Ad; #else float C = Af; #endif #if PS_BLEND_D == 0 vec3 D = Cs; #elif PS_BLEND_D == 1 vec3 D = Cd; #else vec3 D = vec3(0.0f); #endif // As/Af clamp alpha for Blend mix #if PS_ALPHA_CLAMP C = min(C, 1.0f); #endif #if PS_BLEND_A == PS_BLEND_B Color.rgb = D; #else Color.rgb = trunc((A - B) * C + D); #endif #endif } #if PS_DATE == 1 || PS_DATE == 2 || PS_DATE == 11 || PS_DATE == 12 layout(early_fragment_tests) in; #endif void main() { #if PS_SCANMSK & 2 // fail depth test on prohibited lines if ((int(gl_FragCoord.y) & 1) == (PS_SCANMSK & 1)) discard; #endif #if PS_DATE < 10 && (((PS_DATE & 3) == 1 || (PS_DATE & 3) == 2)) #if PS_WRITE_RG == 1 // Pseudo 16 bits access. float rt_a = subpassLoad(RtSampler).g; #else float rt_a = subpassLoad(RtSampler).a; #endif #if (PS_DATE & 3) == 1 // DATM == 0: Pixel with alpha equal to 1 will failed bool bad = (127.5f / 255.0f) < rt_a; #elif (PS_DATE & 3) == 2 // DATM == 1: Pixel with alpha equal to 0 will failed bool bad = rt_a < (127.5f / 255.0f); #endif if (bad) { #if PS_DATE >= 5 discard; #else // imageStore(img_prim_min, ivec2(gl_FragCoord.xy), ivec4(-1)); return; #endif } #endif // PS_DATE < 10 && (((PS_DATE & 3) == 1 || (PS_DATE & 3) == 2)) #if PS_DATE == 3 int stencil_ceil = int(texelFetch(PrimMinTexture, ivec2(gl_FragCoord.xy), 0).r); // Note gl_PrimitiveID == stencil_ceil will be the primitive that will update // the bad alpha value so we must keep it. if (gl_PrimitiveID > stencil_ceil) { discard; } #endif vec4 C = ps_color(); #if PS_SHUFFLE uvec4 denorm_c = uvec4(C); uvec2 denorm_TA = uvec2(vec2(TA.xy) * 255.0f + 0.5f); // Mask will take care of the correct destination #if PS_READ_BA C.rb = C.bb; #else C.rb = C.rr; #endif #if PS_READ_BA if ((denorm_c.a & 0x80u) != 0u) C.ga = vec2(float((denorm_c.a & 0x7Fu) | (denorm_TA.y & 0x80u))); else C.ga = vec2(float((denorm_c.a & 0x7Fu) | (denorm_TA.x & 0x80u))); #else if ((denorm_c.g & 0x80u) != 0u) C.ga = vec2(float((denorm_c.g & 0x7Fu) | (denorm_TA.y & 0x80u))); else C.ga = vec2(float((denorm_c.g & 0x7Fu) | (denorm_TA.x & 0x80u))); #endif #endif // Must be done before alpha correction float alpha_blend = C.a / 128.0f; // Correct the ALPHA value based on the output format #if (PS_DFMT == FMT_16) float A_one = 128.0f; // alpha output will be 0x80 C.a = (PS_FBA != 0) ? A_one : step(128.0f, C.a) * A_one; #elif (PS_DFMT == FMT_32) && (PS_FBA != 0) if(C.a < 128.0f) C.a += 128.0f; #endif // Get first primitive that will write a failling alpha value #if PS_DATE == 1 || PS_DATE == 11 // DATM == 0 // Pixel with alpha equal to 1 will failed (128-255) o_col0 = (C.a > 127.5f) ? vec4(gl_PrimitiveID) : vec4(0x7FFFFFFF); #elif PS_DATE == 2 || PS_DATE == 12 // DATM == 1 // Pixel with alpha equal to 0 will failed (0-127) o_col0 = (C.a < 127.5f) ? vec4(gl_PrimitiveID) : vec4(0x7FFFFFFF); #else ps_blend(C, alpha_blend); ps_dither(C.rgb); // Color clamp/wrap needs to be done after sw blending and dithering ps_color_clamp_wrap(C.rgb); ps_fbmask(C); o_col0 = C / 255.0f; #ifndef DISABLE_DUAL_SOURCE o_col1 = vec4(alpha_blend); #endif #if PS_ZCLAMP gl_FragDepth = min(gl_FragCoord.z, MaxDepthPS); #endif #endif // PS_DATE } #endif