/* ZeroGS KOSMOS * Copyright (C) 2005-2006 zerorog@gmail.com * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include "GS.h" #include "Mem.h" #include "Regs.h" #include "PS2Etypes.h" #include "zerogs.h" #include "targets.h" const u32 g_primmult[8] = { 1, 2, 2, 3, 3, 3, 2, 0xff }; const u32 g_primsub[8] = { 1, 2, 1, 3, 1, 1, 2, 0 }; #ifdef _MSC_VER #pragma warning(disable:4244) #endif GIFRegHandler g_GIFPackedRegHandlers[16] = { GIFRegHandlerPRIM, GIFPackedRegHandlerRGBA, GIFPackedRegHandlerSTQ, GIFPackedRegHandlerUV, GIFPackedRegHandlerXYZF2, GIFPackedRegHandlerXYZ2, GIFRegHandlerTEX0_1, GIFRegHandlerTEX0_2, GIFRegHandlerCLAMP_1, GIFRegHandlerCLAMP_2, GIFPackedRegHandlerFOG, GIFPackedRegHandlerNull, GIFRegHandlerXYZF3, GIFRegHandlerXYZ3, GIFPackedRegHandlerA_D, GIFPackedRegHandlerNOP }; GIFRegHandler g_GIFRegHandlers[] = { GIFRegHandlerPRIM, GIFRegHandlerRGBAQ, GIFRegHandlerST, GIFRegHandlerUV, GIFRegHandlerXYZF2, GIFRegHandlerXYZ2, GIFRegHandlerTEX0_1, GIFRegHandlerTEX0_2, GIFRegHandlerCLAMP_1, GIFRegHandlerCLAMP_2, GIFRegHandlerFOG, GIFRegHandlerNull, GIFRegHandlerXYZF3, GIFRegHandlerXYZ3, GIFRegHandlerNOP, GIFRegHandlerNOP, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerTEX1_1, GIFRegHandlerTEX1_2, GIFRegHandlerTEX2_1, GIFRegHandlerTEX2_2, GIFRegHandlerXYOFFSET_1,GIFRegHandlerXYOFFSET_2,GIFRegHandlerPRMODECONT,GIFRegHandlerPRMODE, GIFRegHandlerTEXCLUT, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerSCANMSK, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerMIPTBP1_1, GIFRegHandlerMIPTBP1_2, GIFRegHandlerMIPTBP2_1, GIFRegHandlerMIPTBP2_2, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerTEXA, GIFRegHandlerNull, GIFRegHandlerFOGCOL, GIFRegHandlerNull, GIFRegHandlerTEXFLUSH, GIFRegHandlerSCISSOR_1, GIFRegHandlerSCISSOR_2, GIFRegHandlerALPHA_1, GIFRegHandlerALPHA_2, GIFRegHandlerDIMX, GIFRegHandlerDTHE, GIFRegHandlerCOLCLAMP, GIFRegHandlerTEST_1, GIFRegHandlerTEST_2, GIFRegHandlerPABE, GIFRegHandlerFBA_1, GIFRegHandlerFBA_2, GIFRegHandlerFRAME_1, GIFRegHandlerFRAME_2, GIFRegHandlerZBUF_1, GIFRegHandlerZBUF_2, GIFRegHandlerBITBLTBUF, GIFRegHandlerTRXPOS, GIFRegHandlerTRXREG, GIFRegHandlerTRXDIR, GIFRegHandlerHWREG, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerNull, GIFRegHandlerSIGNAL, GIFRegHandlerFINISH, GIFRegHandlerLABEL, GIFRegHandlerNull }; C_ASSERT(sizeof(g_GIFRegHandlers)/sizeof(g_GIFRegHandlers[0]) == 100 ); // values for keeping track of changes u32 s_uTex1Data[2][2] = {{0,}}; u32 s_uClampData[2] = {0,}; u32 results[65535] = {0,}; // return true if triangle SHOULD be painted. inline bool NoHighlights(int i) { // This is hack-code, I still in search of correct reason, why some triangles should not be drawn. // I'd have thought we could just test prim->_val and ZeroGS::vb[i].zbuf.psm directly... int resultA = prim->iip + ((prim->tme) << 1) + ((prim->fge) << 2) + ((prim->abe) << 3) + ((prim->aa1) << 4) + ((prim->fst) << 5) + ((prim->ctxt) << 6) + ((prim->fix)<< 7) + ((ZeroGS::vb[i].zbuf.psm ) << 8); // if ( results[resultA] == 0 ) { // results[resultA] = 1; // ERROR_LOG("%x = %d %d %d %d %d %d %d %d psm: %x\n", resultA, prim->iip, (prim->tme), (prim->fge), (prim->abe) , (prim->aa1) ,(prim->fst), (prim->ctxt), (prim->fix), ZeroGS::vb[i].zbuf.psm) ; // } // if (resultA == 0xb && ZeroGS::vb[i].zbuf.zmsk ) return false; //ATF const pixTest curtest = ZeroGS::vb[i].test; // Again, couldn't we just test curtest._val? int result = curtest.ate + ((curtest.atst) << 1) +((curtest.afail) << 4) + ((curtest.date) << 6) + ((curtest.datm) << 7) + ((curtest.zte) << 8) + ((curtest.ztst)<< 9); // if (resultA == 0xb) // if ( results[result] == 0) { // results[result] = 1; // ERROR_LOG("0x%x = %d %d %d %d %d %d %d %d \n", result, curtest.ate, curtest.atst, curtest.aref, curtest.afail, curtest.date, curtest.datm, curtest.zte, curtest.ztst); // } // 0, -50b, -500, !-300, -30a, -50a, -5cb, +100 (zte==1), -50d // if (result == 0x50b && ZeroGS::vb[i].zbuf.zmsk ) return false; //ATF // if psm is 16S or 24, tme, abe, & fst are true, the rest are false, result is 0x302 or 0x700, and there is a mask. if ((resultA == 0x3a2a || resultA == 0x312a) && (result == 0x302 || result == 0x700) && (ZeroGS::vb[i].zbuf.zmsk)) return false; // Silent Hill:SM and Front Mission 5, result != 0x300 // if psm is 24, abe is true, tme doesn't matter, the rest are false, result is 0x54c or 0x50c and there is a mask. if (((resultA == 0x3100) || (resultA == 0x3108)) && ((result == 0x54c) || (result == 0x50c)) && (ZeroGS::vb[i].zbuf.zmsk)) return false; // Okage // if psm is 24, abe & tme are true, the rest are false, and no result. if ((resultA == 0x310a) && (result == 0x0)) return false; // Radiata Stories // if psm is 16S, tme, abe, fst, and ctxt are true, the rest are false, result is 0x330 or 0x500, and there is a mask. if (resultA == 0x3a6a && (result == 0x300 || result == 0x500)&& ZeroGS::vb[i].zbuf.zmsk) return false; // Okami, result != 0x30d // if ((resultA == 0x300b) && (result == 0x300) && ZeroGS::vb[i].zbuf.zmsk) return false; // ATF, but no Melty Blood // Old code return (!(g_GameSettings&GAME_XENOSPECHACK) || !ZeroGS::vb[i].zbuf.zmsk || prim->iip ) ; } void __fastcall GIFPackedRegHandlerNull(u32* data) { FUNCLOG DEBUG_LOG("Unexpected packed reg handler %8.8lx_%8.8lx %x\n", data[0], data[1], data[2]); } void __fastcall GIFPackedRegHandlerRGBA(u32* data) { FUNCLOG gs.rgba = (data[0] & 0xff) | ((data[1] & 0xff) << 8) | ((data[2] & 0xff) << 16) | ((data[3] & 0xff) << 24); gs.vertexregs.rgba = gs.rgba; gs.vertexregs.q = gs.q; } void __fastcall GIFPackedRegHandlerSTQ(u32* data) { FUNCLOG *(u32*)&gs.vertexregs.s = data[0]&0xffffff00; *(u32*)&gs.vertexregs.t = data[1]&0xffffff00; *(u32*)&gs.q = data[2]; } void __fastcall GIFPackedRegHandlerUV(u32* data) { FUNCLOG gs.vertexregs.u = data[0] & 0x3fff; gs.vertexregs.v = data[1] & 0x3fff; } void __forceinline KICK_VERTEX2() { FUNCLOG if (++gs.primC >= (int)g_primmult[prim->prim]) { if ( NoHighlights(prim->ctxt) ) (*ZeroGS::drawfn[prim->prim])(); gs.primC -= g_primsub[prim->prim]; } } void __forceinline KICK_VERTEX3() { FUNCLOG if (++gs.primC >= (int)g_primmult[prim->prim]) { gs.primC -= g_primsub[prim->prim]; if (prim->prim == 5) { /* tri fans need special processing */ if (gs.nTriFanVert == gs.primIndex) gs.primIndex = (gs.primIndex+1)%ArraySize(gs.gsvertex); } } } void __fastcall GIFPackedRegHandlerXYZF2(u32* data) { FUNCLOG gs.vertexregs.x = (data[0] >> 0) & 0xffff; gs.vertexregs.y = (data[1] >> 0) & 0xffff; gs.vertexregs.z = (data[2] >> 4) & 0xffffff; gs.vertexregs.f = (data[3] >> 4) & 0xff; gs.gsvertex[gs.primIndex] = gs.vertexregs; gs.primIndex = (gs.primIndex+1)%ArraySize(gs.gsvertex); if( data[3] & 0x8000 ) { KICK_VERTEX3(); } else { KICK_VERTEX2(); } } void __fastcall GIFPackedRegHandlerXYZ2(u32* data) { FUNCLOG gs.vertexregs.x = (data[0] >> 0) & 0xffff; gs.vertexregs.y = (data[1] >> 0) & 0xffff; gs.vertexregs.z = data[2]; gs.gsvertex[gs.primIndex] = gs.vertexregs; gs.primIndex = (gs.primIndex+1)%ArraySize(gs.gsvertex); if( data[3] & 0x8000 ) { KICK_VERTEX3(); } else { KICK_VERTEX2(); } } void __fastcall GIFPackedRegHandlerFOG(u32* data) { FUNCLOG gs.vertexregs.f = (data[3]&0xff0)>>4; } void __fastcall GIFPackedRegHandlerA_D(u32* data) { FUNCLOG if((data[2] & 0xff) < 100) g_GIFRegHandlers[data[2] & 0xff](data); else GIFRegHandlerNull(data); } void __fastcall GIFPackedRegHandlerNOP(u32* data) {FUNCLOG } extern int g_PrevBitwiseTexX, g_PrevBitwiseTexY; void tex0Write(int i, u32 *data) { FUNCLOG u32 psm = ZZOglGet_psm_TexBitsFix(data[0]); if ( m_Blocks[psm].bpp == 0 ) { // kh and others return; } ZeroGS::vb[i].uNextTex0Data[0] = data[0]; ZeroGS::vb[i].uNextTex0Data[1] = data[1]; ZeroGS::vb[i].bNeedTexCheck = 1; // don't update unless necessary if (PSMT_ISCLUT(psm)) { if (ZeroGS::CheckChangeInClut(data[1], psm)) { // loading clut, so flush whole texture ZeroGS::vb[i].FlushTexData(); } // check if csa is the same!! (ffx bisaid island, grass) else if ((data[1] & 0x1f780000) != (ZeroGS::vb[i].uCurTex0Data[1] & 0x1f780000)) { ZeroGS::Flush(i); // flush any previous entries } } } void tex2Write(int i, u32 *data) { FUNCLOG tex0Info& tex0 = ZeroGS::vb[i].tex0; if( ZeroGS::vb[i].bNeedTexCheck ) ZeroGS::vb[i].FlushTexData(); u32 psm = ZZOglGet_psm_TexBitsFix(data[0]); u32* s_uTex0Data = ZeroGS::vb[i].uCurTex0Data; // don't update unless necessary // if( ZZOglGet_psm_TexBitsFix(*s_uTex0Data) == ZZOglGet_psm_TexBitsFix(data[0]) ) { // psm is the same if (ZZOglAllExceptClutIsSame(s_uTex0Data, data)) { if (!PSMT_ISCLUT(psm)) return; // have to write the CLUT again if changed if (ZZOglClutMinusCLDunchanged(s_uTex0Data, data)) { tex0.cld = ZZOglGet_cld_TexBits(data[1]); if (tex0.cld != 0) { ZeroGS::texClutWrite(i); // invalidate to make sure target didn't change! ZeroGS::vb[i].bVarsTexSync = FALSE; } return; } } ZeroGS::Flush(i); ZeroGS::vb[i].bVarsTexSync = FALSE; ZeroGS::vb[i].bTexConstsSync = FALSE; s_uTex0Data[0] = (s_uTex0Data[0]&~0x03f00000)|(psm<<20); s_uTex0Data[1] = (s_uTex0Data[1]&0x1f)|(data[1]&~0x1f); tex0.psm = ZZOglGet_psm_TexBitsFix(data[0]); if( PSMT_ISCLUT(tex0.psm) ) ZeroGS::CluttingForFlushedTex(&tex0, data[1], i); } __forceinline void frameWrite(int i, u32 *data) { FUNCLOG frameInfo& gsfb = ZeroGS::vb[i].gsfb; if ((gsfb.fbp == ZZOglGet_fbp_FrameBitsMult(data[0])) && (gsfb.fbw == ZZOglGet_fbw_FrameBitsMult(data[0])) && (gsfb.psm == ZZOglGet_psm_FrameBits(data[0])) && (gsfb.fbm == ZZOglGet_fbm_FrameBits(data[0])) ) { return; } ZeroGS::Flush(0); ZeroGS::Flush(1); gsfb.fbp = ZZOglGet_fbp_FrameBitsMult(data[0]); gsfb.fbw = ZZOglGet_fbw_FrameBitsMult(data[0]); gsfb.psm = ZZOglGet_psm_FrameBits(data[0]); gsfb.fbm = ZZOglGet_fbm_FrameBitsFix(data[0],data[1]); gsfb.fbh = ZZOglGet_fbh_FrameBitsCalc(data[0]); // gsfb.fbhCalc = gsfb.fbh; ZeroGS::vb[i].bNeedFrameCheck = 1; } __forceinline void testWrite(int i, u32 *data) { FUNCLOG pixTest* test = &ZeroGS::vb[i].test; if( (*(u32*)test & 0x0007ffff) == (data[0] & 0x0007ffff) ) return; ZeroGS::Flush(i); *(u32*)test = data[0]; // test.ate = (data[0] ) & 0x1; // test.atst = (data[0] >> 1) & 0x7; // test.aref = (data[0] >> 4) & 0xff; // test.afail = (data[0] >> 12) & 0x3; // test.date = (data[0] >> 14) & 0x1; // test.datm = (data[0] >> 15) & 0x1; // test.zte = (data[0] >> 16) & 0x1; // test.ztst = (data[0] >> 17) & 0x3; } __forceinline void clampWrite(int i, u32 *data) { FUNCLOG clampInfo& clamp = ZeroGS::vb[i].clamp; if ((s_uClampData[i] != data[0]) || (((clamp.minv>>8) | (clamp.maxv<<2)) != (data[1]&0x0fff))) { ZeroGS::Flush(i); s_uClampData[i] = data[0]; clamp.wms = (data[0] ) & 0x3; clamp.wmt = (data[0] >> 2) & 0x3; clamp.minu = (data[0] >> 4) & 0x3ff; clamp.maxu = (data[0] >> 14) & 0x3ff; clamp.minv =((data[0] >> 24) & 0xff) | ((data[1] & 0x3) << 8); clamp.maxv = (data[1] >> 2) & 0x3ff; ZeroGS::vb[i].bTexConstsSync = FALSE; } } void __fastcall GIFRegHandlerNull(u32* data) { FUNCLOG #ifdef _DEBUG if( (((uptr)&data[2])&0xffff) == 0 ) return; // 0x7f happens on a lot of games if( data[2] != 0x7f && (data[0] || data[1]) ) { DEBUG_LOG("Unexpected reg handler %x %x %x\n", data[0], data[1], data[2]); } #endif } void __fastcall GIFRegHandlerPRIM(u32 *data) { FUNCLOG if (data[0] & ~0x3ff) { //WARN_LOG("warning: unknown bits in prim %8.8lx_%8.8lx\n", data[1], data[0]); } gs.nTriFanVert = gs.primIndex; gs.primC = 0; prim->prim = (data[0]) & 0x7; gs._prim[0].prim = (data[0]) & 0x7; gs._prim[1].prim = (data[0]) & 0x7; gs._prim[1]._val = (data[0]>>3)&0xff; ZeroGS::Prim(); } void __fastcall GIFRegHandlerRGBAQ(u32* data) { FUNCLOG gs.rgba = data[0]; gs.vertexregs.rgba = data[0]; *(u32*)&gs.vertexregs.q = data[1]; } void __fastcall GIFRegHandlerST(u32* data) { FUNCLOG *(u32*)&gs.vertexregs.s = data[0]&0xffffff00; *(u32*)&gs.vertexregs.t = data[1]&0xffffff00; //*(u32*)&gs.q = data[2]; } void __fastcall GIFRegHandlerUV(u32* data) { FUNCLOG gs.vertexregs.u = (data[0]) & 0x3fff; gs.vertexregs.v = (data[0] >> 16) & 0x3fff; } void __fastcall GIFRegHandlerXYZF2(u32* data) { FUNCLOG gs.vertexregs.x = (data[0]) & 0xffff; gs.vertexregs.y = (data[0] >> (16)) & 0xffff; gs.vertexregs.z = data[1] & 0xffffff; gs.vertexregs.f = data[1] >> 24; gs.gsvertex[gs.primIndex] = gs.vertexregs; gs.primIndex = (gs.primIndex+1)%ARRAY_SIZE(gs.gsvertex); KICK_VERTEX2(); } void __fastcall GIFRegHandlerXYZ2(u32* data) { FUNCLOG gs.vertexregs.x = (data[0]) & 0xffff; gs.vertexregs.y = (data[0] >> (16)) & 0xffff; gs.vertexregs.z = data[1]; gs.gsvertex[gs.primIndex] = gs.vertexregs; gs.primIndex = (gs.primIndex+1)%ARRAY_SIZE(gs.gsvertex); KICK_VERTEX2(); } void __fastcall GIFRegHandlerTEX0_1(u32* data) { FUNCLOG if( !NoHighlights(0)) { return; } tex0Write(0, data); } void __fastcall GIFRegHandlerTEX0_2(u32* data) { FUNCLOG if( !NoHighlights(1) ) { return; } tex0Write(1, data); } void __fastcall GIFRegHandlerCLAMP_1(u32* data) { FUNCLOG if( !NoHighlights(0) ) { return; } clampWrite(0, data); } void __fastcall GIFRegHandlerCLAMP_2(u32* data) { FUNCLOG if( !NoHighlights(1) ) { return; } clampWrite(1, data); } void __fastcall GIFRegHandlerFOG(u32* data) { FUNCLOG //gs.gsvertex[gs.primIndex].f = (data[1] >> 24); // shift to upper bits gs.vertexregs.f = data[1]>>24; } void __fastcall GIFRegHandlerXYZF3(u32* data) { FUNCLOG gs.vertexregs.x = (data[0]) & 0xffff; gs.vertexregs.y = (data[0] >> (16)) & 0xffff; gs.vertexregs.z = data[1] & 0xffffff; gs.vertexregs.f = data[1] >> 24; gs.gsvertex[gs.primIndex] = gs.vertexregs; gs.primIndex = (gs.primIndex+1)%ARRAY_SIZE(gs.gsvertex); KICK_VERTEX3(); } void __fastcall GIFRegHandlerXYZ3(u32* data) { FUNCLOG gs.vertexregs.x = (data[0]) & 0xffff; gs.vertexregs.y = (data[0] >> (16)) & 0xffff; gs.vertexregs.z = data[1]; gs.gsvertex[gs.primIndex] = gs.vertexregs; gs.primIndex = (gs.primIndex+1)%ARRAY_SIZE(gs.gsvertex); KICK_VERTEX3(); } void __fastcall GIFRegHandlerNOP(u32* data) { FUNCLOG } void tex1Write(int i, u32* data) { FUNCLOG tex1Info& tex1 = ZeroGS::vb[i].tex1; if( conf.bilinear == 1 && (tex1.mmag != ((data[0] >> 5) & 0x1) || tex1.mmin != ((data[0] >> 6) & 0x7)) ) { ZeroGS::Flush(i); ZeroGS::vb[i].bVarsTexSync = FALSE; } tex1.lcm = (data[0] ) & 0x1; tex1.mxl = (data[0] >> 2) & 0x7; tex1.mmag = (data[0] >> 5) & 0x1; tex1.mmin = (data[0] >> 6) & 0x7; tex1.mtba = (data[0] >> 9) & 0x1; tex1.l = (data[0] >> 19) & 0x3; tex1.k = (data[1] >> 4) & 0xff; } void __fastcall GIFRegHandlerTEX1_1(u32* data) { FUNCLOG if( !NoHighlights(0)) { return; } tex1Write(0, data); } void __fastcall GIFRegHandlerTEX1_2(u32* data) { FUNCLOG if( !NoHighlights(1) ) return; tex1Write(1, data); } void __fastcall GIFRegHandlerTEX2_1(u32* data) { FUNCLOG tex2Write(0, data); } void __fastcall GIFRegHandlerTEX2_2(u32* data) { FUNCLOG tex2Write(1, data); } void __fastcall GIFRegHandlerXYOFFSET_1(u32* data) { FUNCLOG // eliminator low 4 bits for now ZeroGS::vb[0].offset.x = (data[0]) & 0xffff; ZeroGS::vb[0].offset.y = (data[1]) & 0xffff; // if( !conf.interlace ) { // ZeroGS::vb[0].offset.x &= ~15; // ZeroGS::vb[0].offset.y &= ~15; // } } void __fastcall GIFRegHandlerXYOFFSET_2(u32* data) { FUNCLOG ZeroGS::vb[1].offset.x = (data[0]) & 0xffff; ZeroGS::vb[1].offset.y = (data[1]) & 0xffff; // if( !conf.interlace ) { // ZeroGS::vb[1].offset.x &= ~15; // ZeroGS::vb[1].offset.y &= ~15; // } } void __fastcall GIFRegHandlerPRMODECONT(u32* data) { FUNCLOG gs.prac = data[0] & 0x1; prim = &gs._prim[gs.prac]; ZeroGS::Prim(); } void __fastcall GIFRegHandlerPRMODE(u32* data) { FUNCLOG gs._prim[0]._val = (data[0]>>3)&0xff; if (gs.prac == 0) ZeroGS::Prim(); } void __fastcall GIFRegHandlerTEXCLUT(u32* data) { FUNCLOG if( ZeroGS::vb[0].bNeedTexCheck ) ZeroGS::vb[0].FlushTexData(); if( ZeroGS::vb[1].bNeedTexCheck ) ZeroGS::vb[1].FlushTexData(); gs.clut.cbw = ((data[0] ) & 0x3f) * 64; gs.clut.cou = ((data[0] >> 6) & 0x3f) * 16; gs.clut.cov = (data[0] >> 12) & 0x3ff; } void __fastcall GIFRegHandlerSCANMSK(u32* data) { FUNCLOG // ZeroGS::Flush(0); // ZeroGS::Flush(1); // ZeroGS::ResolveC(&ZeroGS::vb[0]); // ZeroGS::ResolveZ(&ZeroGS::vb[0]); gs.smask = data[0] & 0x3; } void __fastcall GIFRegHandlerMIPTBP1_1(u32* data) { FUNCLOG miptbpInfo& miptbp0 = ZeroGS::vb[0].miptbp0; miptbp0.tbp[0] = (data[0] ) & 0x3fff; miptbp0.tbw[0] = (data[0] >> 14) & 0x3f; miptbp0.tbp[1] = ((data[0] >> 20) & 0xfff) | ((data[1] & 0x3) << 12); miptbp0.tbw[1] = (data[1] >> 2) & 0x3f; miptbp0.tbp[2] = (data[1] >> 8) & 0x3fff; miptbp0.tbw[2] = (data[1] >> 22) & 0x3f; } void __fastcall GIFRegHandlerMIPTBP1_2(u32* data) { FUNCLOG miptbpInfo& miptbp0 = ZeroGS::vb[1].miptbp0; miptbp0.tbp[0] = (data[0] ) & 0x3fff; miptbp0.tbw[0] = (data[0] >> 14) & 0x3f; miptbp0.tbp[1] = ((data[0] >> 20) & 0xfff) | ((data[1] & 0x3) << 12); miptbp0.tbw[1] = (data[1] >> 2) & 0x3f; miptbp0.tbp[2] = (data[1] >> 8) & 0x3fff; miptbp0.tbw[2] = (data[1] >> 22) & 0x3f; } void __fastcall GIFRegHandlerMIPTBP2_1(u32* data) { FUNCLOG miptbpInfo& miptbp1 = ZeroGS::vb[0].miptbp1; miptbp1.tbp[0] = (data[0] ) & 0x3fff; miptbp1.tbw[0] = (data[0] >> 14) & 0x3f; miptbp1.tbp[1] = ((data[0] >> 20) & 0xfff) | ((data[1] & 0x3) << 12); miptbp1.tbw[1] = (data[1] >> 2) & 0x3f; miptbp1.tbp[2] = (data[1] >> 8) & 0x3fff; miptbp1.tbw[2] = (data[1] >> 22) & 0x3f; } void __fastcall GIFRegHandlerMIPTBP2_2(u32* data) { FUNCLOG miptbpInfo& miptbp1 = ZeroGS::vb[1].miptbp1; miptbp1.tbp[0] = (data[0] ) & 0x3fff; miptbp1.tbw[0] = (data[0] >> 14) & 0x3f; miptbp1.tbp[1] = ((data[0] >> 20) & 0xfff) | ((data[1] & 0x3) << 12); miptbp1.tbw[1] = (data[1] >> 2) & 0x3f; miptbp1.tbp[2] = (data[1] >> 8) & 0x3fff; miptbp1.tbw[2] = (data[1] >> 22) & 0x3f; } void __fastcall GIFRegHandlerTEXA(u32* data) { FUNCLOG texaInfo newinfo; newinfo.aem = (data[0] >> 15) & 0x1; newinfo.ta[0] = data[0] & 0xff; newinfo.ta[1] = data[1] & 0xff; if( *(u32*)&newinfo != *(u32*)&gs.texa ) { ZeroGS::Flush(0); ZeroGS::Flush(1); *(u32*)&gs.texa = *(u32*)&newinfo; gs.texa.fta[0] = newinfo.ta[0]/255.0f; gs.texa.fta[1] = newinfo.ta[1]/255.0f; ZeroGS::vb[0].bTexConstsSync = FALSE; ZeroGS::vb[1].bTexConstsSync = FALSE; } } void __fastcall GIFRegHandlerFOGCOL(u32* data) { FUNCLOG ZeroGS::SetFogColor(data[0]&0xffffff); } void __fastcall GIFRegHandlerTEXFLUSH(u32* data) { FUNCLOG ZeroGS::SetTexFlush(); } void __fastcall GIFRegHandlerSCISSOR_1(u32* data) { FUNCLOG Rect2& scissor = ZeroGS::vb[0].scissor; Rect2 newscissor; newscissor.x0 = ((data[0] ) & 0x7ff) << 3; newscissor.x1 = ((data[0] >> 16) & 0x7ff) << 3; newscissor.y0 = ((data[1] ) & 0x7ff) << 3; newscissor.y1 = ((data[1] >> 16) & 0x7ff) << 3; if( newscissor.x1 != scissor.x1 || newscissor.y1 != scissor.y1 || newscissor.x0 != scissor.x0 || newscissor.y0 != scissor.y0 ) { ZeroGS::Flush(0); scissor = newscissor; ZeroGS::vb[0].bNeedFrameCheck = 1; } } void __fastcall GIFRegHandlerSCISSOR_2(u32* data) { FUNCLOG Rect2& scissor = ZeroGS::vb[1].scissor; Rect2 newscissor; newscissor.x0 = ((data[0] ) & 0x7ff) << 3; newscissor.x1 = ((data[0] >> 16) & 0x7ff) << 3; newscissor.y0 = ((data[1] ) & 0x7ff) << 3; newscissor.y1 = ((data[1] >> 16) & 0x7ff) << 3; if( newscissor.x1 != scissor.x1 || newscissor.y1 != scissor.y1 || newscissor.x0 != scissor.x0 || newscissor.y0 != scissor.y0 ) { ZeroGS::Flush(1); scissor = newscissor; // flush everything ZeroGS::vb[1].bNeedFrameCheck = 1; } } void __fastcall GIFRegHandlerALPHA_1(u32* data) { FUNCLOG alphaInfo newalpha; newalpha.abcd = *(u8*)data; newalpha.fix = *(u8*)(data+1); if( *(u16*)&newalpha != *(u16*)&ZeroGS::vb[0].alpha ) { ZeroGS::Flush(0); if( newalpha.a == 3 ) newalpha.a = 0; if( newalpha.b == 3 ) newalpha.b = 0; if( newalpha.c == 3 ) newalpha.c = 0; if( newalpha.d == 3 ) newalpha.d = 0; *(u16*)&ZeroGS::vb[0].alpha = *(u16*)&newalpha; } } void __fastcall GIFRegHandlerALPHA_2(u32* data) { FUNCLOG alphaInfo newalpha; newalpha.abcd = *(u8*)data; newalpha.fix = *(u8*)(data+1); if( *(u16*)&newalpha != *(u16*)&ZeroGS::vb[1].alpha ) { ZeroGS::Flush(1); if( newalpha.a == 3 ) newalpha.a = 0; if( newalpha.b == 3 ) newalpha.b = 0; if( newalpha.c == 3 ) newalpha.c = 0; if( newalpha.d == 3 ) newalpha.d = 0; *(u16*)&ZeroGS::vb[1].alpha = *(u16*)&newalpha; } } void __fastcall GIFRegHandlerDIMX(u32* data) { FUNCLOG } void __fastcall GIFRegHandlerDTHE(u32* data) { FUNCLOG gs.dthe = data[0] & 0x1; } void __fastcall GIFRegHandlerCOLCLAMP(u32* data) { FUNCLOG gs.colclamp = data[0] & 0x1; } void __fastcall GIFRegHandlerTEST_1(u32* data) { FUNCLOG testWrite(0, data); } void __fastcall GIFRegHandlerTEST_2(u32* data) { FUNCLOG testWrite(1, data); } void __fastcall GIFRegHandlerPABE(u32* data) { FUNCLOG //ZeroGS::SetAlphaChanged(0, GPUREG_PABE); //ZeroGS::SetAlphaChanged(1, GPUREG_PABE); ZeroGS::Flush(0); ZeroGS::Flush(1); gs.pabe = *data & 0x1; } void __fastcall GIFRegHandlerFBA_1(u32* data) { FUNCLOG ZeroGS::Flush(0); ZeroGS::Flush(1); ZeroGS::vb[0].fba.fba = *data & 0x1; } void __fastcall GIFRegHandlerFBA_2(u32* data) { FUNCLOG ZeroGS::Flush(0); ZeroGS::Flush(1); ZeroGS::vb[1].fba.fba = *data & 0x1; } void __fastcall GIFRegHandlerFRAME_1(u32* data) { FUNCLOG frameWrite(0, data); } void __fastcall GIFRegHandlerFRAME_2(u32* data) { FUNCLOG frameWrite(1, data); } void __fastcall GIFRegHandlerZBUF_1(u32* data) { FUNCLOG zbufInfo& zbuf = ZeroGS::vb[0].zbuf; int psm = (0x30|((data[0] >> 24) & 0xf)); if( zbuf.zbp == (data[0] & 0x1ff) * 32 && zbuf.psm == psm && zbuf.zmsk == (data[1] & 0x1) ) { return; } // error detection if( m_Blocks[psm].bpp == 0 ) return; ZeroGS::Flush(0); ZeroGS::Flush(1); zbuf.zbp = (data[0] & 0x1ff) * 32; zbuf.psm = 0x30|((data[0] >> 24) & 0xf); zbuf.zmsk = data[1] & 0x1; ZeroGS::vb[0].zprimmask = 0xffffffff; if( zbuf.psm > 0x31 ) ZeroGS::vb[0].zprimmask = 0xffff; ZeroGS::vb[0].bNeedZCheck = 1; } void __fastcall GIFRegHandlerZBUF_2(u32* data) { FUNCLOG zbufInfo& zbuf = ZeroGS::vb[1].zbuf; int psm = (0x30|((data[0] >> 24) & 0xf)); if( zbuf.zbp == (data[0] & 0x1ff) * 32 && zbuf.psm == psm && zbuf.zmsk == (data[1] & 0x1) ) { return; } // error detection if( m_Blocks[psm].bpp == 0 ) return; ZeroGS::Flush(0); ZeroGS::Flush(1); zbuf.zbp = (data[0] & 0x1ff) * 32; zbuf.psm = 0x30|((data[0] >> 24) & 0xf); zbuf.zmsk = data[1] & 0x1; ZeroGS::vb[1].bNeedZCheck = 1; ZeroGS::vb[1].zprimmask = 0xffffffff; if( zbuf.psm > 0x31 ) ZeroGS::vb[1].zprimmask = 0xffff; } void __fastcall GIFRegHandlerBITBLTBUF(u32* data) { FUNCLOG gs.srcbufnew.bp = ((data[0] ) & 0x3fff);// * 64; gs.srcbufnew.bw = ((data[0] >> 16) & 0x3f) * 64; gs.srcbufnew.psm = (data[0] >> 24) & 0x3f; gs.dstbufnew.bp = ((data[1] ) & 0x3fff);// * 64; gs.dstbufnew.bw = ((data[1] >> 16) & 0x3f) * 64; gs.dstbufnew.psm = (data[1] >> 24) & 0x3f; if (gs.dstbufnew.bw == 0) gs.dstbufnew.bw = 64; } void __fastcall GIFRegHandlerTRXPOS(u32* data) { FUNCLOG gs.trxposnew.sx = (data[0] ) & 0x7ff; gs.trxposnew.sy = (data[0] >> 16) & 0x7ff; gs.trxposnew.dx = (data[1] ) & 0x7ff; gs.trxposnew.dy = (data[1] >> 16) & 0x7ff; gs.trxposnew.dir = (data[1] >> 27) & 0x3; } void __fastcall GIFRegHandlerTRXREG(u32* data) { FUNCLOG gs.imageWtemp = data[0]&0xfff; gs.imageHtemp = data[1]&0xfff; } void __fastcall GIFRegHandlerTRXDIR(u32* data) { FUNCLOG // terminate any previous transfers switch( gs.imageTransfer ) { case 0: // host->loc gs.imageTransfer = -1; break; case 1: // loc->host ZeroGS::TerminateLocalHost(); break; } gs.srcbuf = gs.srcbufnew; gs.dstbuf = gs.dstbufnew; gs.trxpos = gs.trxposnew; gs.imageTransfer = data[0] & 0x3; gs.imageWnew = gs.imageWtemp; gs.imageHnew = gs.imageHtemp; if( gs.imageWnew > 0 && gs.imageHnew > 0 ) { switch(gs.imageTransfer) { case 0: // host->loc ZeroGS::InitTransferHostLocal(); break; case 1: // loc->host ZeroGS::InitTransferLocalHost(); break; case 2: ZeroGS::TransferLocalLocal(); break; case 3: gs.imageTransfer = -1; break; default: assert(0); } } else { #ifndef RELEASE_TO_PUBLIC WARN_LOG("ZeroGS: dummy transfer\n"); #endif gs.imageTransfer = -1; } } void __fastcall GIFRegHandlerHWREG(u32* data) { FUNCLOG if( gs.imageTransfer == 0 ) { ZeroGS::TransferHostLocal(data, 2); } else { #ifndef RELEASE_TO_PUBLIC ERROR_LOG("ZeroGS: HWREG!? %8.8x_%8.8x\n", data[0], data[1]); //assert(0); #endif } } extern int g_GSMultiThreaded; void __fastcall GIFRegHandlerSIGNAL(u32* data) { FUNCLOG if(!g_GSMultiThreaded) { SIGLBLID->SIGID = (SIGLBLID->SIGID&~data[1])|(data[0]&data[1]); // if (gs.CSRw & 0x1) CSR->SIGNAL = 1; // if (!IMR->SIGMSK && GSirq) // GSirq(); if (gs.CSRw & 0x1) { CSR->SIGNAL = 1; //gs.CSRw &= ~1; } if (!IMR->SIGMSK && GSirq) GSirq(); } } void __fastcall GIFRegHandlerFINISH(u32* data) { FUNCLOG if(!g_GSMultiThreaded) { if (gs.CSRw & 0x2) CSR->FINISH = 1; if (!IMR->FINISHMSK && GSirq) GSirq(); // if( gs.CSRw & 2 ) { // //gs.CSRw &= ~2; // //CSR->FINISH = 0; // // // } // CSR->FINISH = 1; // // if( !IMR->FINISHMSK && GSirq ) // GSirq(); } } void __fastcall GIFRegHandlerLABEL(u32* data) { FUNCLOG if(!g_GSMultiThreaded) { SIGLBLID->LBLID = (SIGLBLID->LBLID&~data[1])|(data[0]&data[1]); } }