/* ZeroGS KOSMOS * Copyright (C) 2005-2006 zerofrog@gmail.com * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA */ #include "GS.h" #include #include #include #include "Mem.h" #include "x86.h" #include "zerogs.h" #include "targets.h" #define RHA //#define RW using namespace ZeroGS; extern int g_TransferredToGPU; //extern bool g_bIsLost; extern bool g_bUpdateStencil; #if !defined(ZEROGS_DEVBUILD) # define INC_RESOLVE() #else # define INC_RESOLVE() ++g_nResolve #endif #ifdef DEVBUILD //static int g_bSaveResolved = 0; #endif extern int s_nResolved; extern u32 g_nResolve; extern bool g_bSaveTrans; namespace ZeroGS { CRenderTargetMngr s_RTs, s_DepthRTs; CBitwiseTextureMngr s_BitwiseTextures; CMemoryTargetMngr g_MemTargs; } //extern u32 s_ptexCurSet[2]; bool g_bSaveZUpdate = 0; int VALIDATE_THRESH = 8; u32 TEXDESTROY_THRESH = 16; // ------------------------- Useful inlines ------------------------------------ // memory size for one row of texture. It depends on width of texture and number of bytes // per pixel inline u32 Pitch(int fbw) { return (RW(fbw) * (GetRenderFormat() == RFT_float16 ? 8 : 4)) ; } // memory size of whole texture. It is number of rows multiplied by memory size of row inline u32 Tex_Memory_Size(int fbw, int fbh) { return (RH(fbh) * Pitch(fbw)); } // Often called for several reasons // Call flush if renderer or depth target is equal to ptr inline void FlushIfNecesary(void* ptr) { if (vb[0].prndr == ptr || vb[0].pdepth == ptr) Flush(0); if (vb[1].prndr == ptr || vb[1].pdepth == ptr) Flush(1); } // This block was repeated several times, so I inlined it. inline void DestroyAllTargetsHelper(void* ptr) { for (int i = 0; i < 2; ++i) { if (ptr == vb[i].prndr) { vb[i].prndr = NULL; vb[i].bNeedFrameCheck = 1; } if (ptr == vb[i].pdepth) { vb[i].pdepth = NULL; vb[i].bNeedZCheck = 1; } } } // Made an empty texture and bind it to $ptr_p // returns false if creating texture was unsuccessful // fbh and fdb should be properly shifted before calling this! // We should ignore framebuffer trouble here, as we put textures of different sizes to it. inline bool ZeroGS::CRenderTarget::InitialiseDefaultTexture(u32 *ptr_p, int fbw, int fbh) { glGenTextures(1, ptr_p); glBindTexture(GL_TEXTURE_RECTANGLE_NV, *ptr_p); // initialize to default GLenum texType = (GetRenderFormat() == RFT_float16) ? GL_FLOAT : GL_UNSIGNED_BYTE; TextureRect(GetRenderTargetFormat(), fbw, fbh, GL_RGBA, texType, NULL); setRectWrap(GL_CLAMP); setRectFilters(GL_LINEAR); GLenum Error = glGetError(); return ((Error == GL_NO_ERROR) || (Error == GL_INVALID_FRAMEBUFFER_OPERATION_EXT)); } // Draw 4 triangles from binded array using only stencil buffer inline void FillOnlyStencilBuffer() { if (ZeroGS::IsWriteDestAlphaTest() && !(conf.settings().no_stencil)) { glColorMask(0, 0, 0, 0); glEnable(GL_ALPHA_TEST); glAlphaFunc(GL_GEQUAL, 1.0f); glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE); glStencilFunc(GL_ALWAYS, 1, 0xff); DrawTriangleArray(); glColorMask(1, 1, 1, 1); } } // used for transformation from vertex position in GS window.coords (I hope) // to view coordinates (in range 0, 1). inline Vector ZeroGS::CRenderTarget::DefaultBitBltPos() { Vector v = Vector(1, -1, 0.5f / (float)RW(fbw), 0.5f / (float)RH(fbh)); v *= 1.0f / 32767.0f; ZZcgSetParameter4fv(pvsBitBlt.sBitBltPos, v, "g_sBitBltPos"); return v; } // Used to transform texture coordinates from GS (when 0,0 is upper left) to // OpenGL (0,0 - lower left). inline Vector ZeroGS::CRenderTarget::DefaultBitBltTex() { // I really sure that -0.5 is correct, because OpenGL have no half-offset // issue, DirectX known for. Vector v = Vector(1, -1, 0.5f / (float)RW(fbw), -0.5f / (float)RH(fbh)); ZZcgSetParameter4fv(pvsBitBlt.sBitBltTex, v, "g_sBitBltTex"); return v; } inline void BindToSample(u32 *p_ptr) { glBindTexture(GL_TEXTURE_RECTANGLE_NV, *p_ptr); setRectFilters(GL_NEAREST); } //////////////////// // Render Targets // //////////////////// ZeroGS::CRenderTarget::CRenderTarget() : ptex(0), ptexFeedback(0), psys(NULL) { FUNCLOG nUpdateTarg = 0; } ZeroGS::CRenderTarget::~CRenderTarget() { FUNCLOG Destroy(); } bool ZeroGS::CRenderTarget::Create(const frameInfo& frame) { FUNCLOG Resolve(); Destroy(); created = 123; lastused = timeGetTime(); fbp = frame.fbp; fbw = frame.fbw; fbh = frame.fbh; psm = (u8)frame.psm; fbm = frame.fbm; vposxy.x = 2.0f * (1.0f / 8.0f) / (float)fbw; vposxy.y = 2.0f * (1.0f / 8.0f) / (float)fbh; vposxy.z = -1 - 0.5f / (float)fbw; vposxy.w = -1 + 0.5f / (float)fbh; status = 0; if (fbw > 0 && fbh > 0) { GetRectMemAddress(start, end, psm, 0, 0, fbw, fbh, fbp, fbw); psys = _aligned_malloc(Tex_Memory_Size(fbw, fbh), 16); GL_REPORT_ERRORD(); if (!InitialiseDefaultTexture(&ptex, RW(fbw), RH(fbh))) { Destroy(); return false; } status = TS_NeedUpdate; } else { start = end = 0; } return true; } void ZeroGS::CRenderTarget::Destroy() { FUNCLOG created = 1; _aligned_free(psys); psys = NULL; SAFE_RELEASE_TEX(ptex); SAFE_RELEASE_TEX(ptexFeedback); } void ZeroGS::CRenderTarget::SetTarget(int fbplocal, const Rect2& scissor, int context) { FUNCLOG int dy = 0; if (fbplocal != fbp) { Vector v; // will be rendering to a subregion u32 bpp = PSMT_ISHALF(psm) ? 2 : 4; assert(((256 / bpp)*(fbplocal - fbp)) % fbw == 0); assert(fbplocal >= fbp); dy = ((256 / bpp) * (fbplocal - fbp)) / fbw; v.x = vposxy.x; v.y = vposxy.y; v.z = vposxy.z; v.w = vposxy.w - dy * 2.0f / (float)fbh; ZZcgSetParameter4fv(g_vparamPosXY[context], v, "g_fPosXY"); } else { ZZcgSetParameter4fv(g_vparamPosXY[context], vposxy, "g_fPosXY"); } // set render states scissorrect.x = scissor.x0 >> 3; scissorrect.y = (scissor.y0 >> 3) + dy; scissorrect.w = (scissor.x1 >> 3) + 1; scissorrect.h = (scissor.y1 >> 3) + 1 + dy; scissorrect.w = min(scissorrect.w, fbw) - scissorrect.x; scissorrect.h = min(scissorrect.h, fbh) - scissorrect.y; scissorrect.x = RW(scissorrect.x); scissorrect.y = RH(scissorrect.y); scissorrect.w = RW(scissorrect.w); scissorrect.h = RH(scissorrect.h); } void ZeroGS::CRenderTarget::SetViewport() { FUNCLOG glViewport(0, 0, RW(fbw), RH(fbh)); } inline bool NotResolveHelper() { return ((s_nResolved > 8 && (2 * s_nResolved > fFPS - 10)) || (conf.settings().no_target_resolve)); } void ZeroGS::CRenderTarget::Resolve() { FUNCLOG if (ptex != 0 && !(status&TS_Resolved) && !(status&TS_NeedUpdate)) { // flush if necessary FlushIfNecesary(this) ; if ((IsDepth() && !ZeroGS::IsWriteDepth()) || NotResolveHelper()) { // don't resolve if depths aren't used status = TS_Resolved; return; } glBindTexture(GL_TEXTURE_RECTANGLE_NV, ptex); GL_REPORT_ERRORD(); // This code extremely slow on DC1. // _aligned_free(psys); // psys = _aligned_malloc( Tex_Memory_Size ( fbw, fbh ), 16 ); glGetTexImage(GL_TEXTURE_RECTANGLE_NV, 0, GL_RGBA, GL_UNSIGNED_BYTE, psys); GL_REPORT_ERRORD(); #if defined(DEVBUILD) if (g_bSaveResolved) { SaveTexture("resolved.tga", GL_TEXTURE_RECTANGLE_NV, ptex, RW(fbw), RH(fbh)); g_bSaveResolved = 0; } #endif _Resolve(psys, fbp, fbw, fbh, psm, fbm, true); status = TS_Resolved; } } void ZeroGS::CRenderTarget::Resolve(int startrange, int endrange) { FUNCLOG assert(startrange < end && endrange > start); // make sure it at least intersects if (ptex != 0 && !(status&TS_Resolved) && !(status&TS_NeedUpdate)) { // flush if necessary FlushIfNecesary(this) ; #if defined(DEVBUILD) if (g_bSaveResolved) { SaveTexture("resolved.tga", GL_TEXTURE_RECTANGLE_NV, ptex, RW(fbw), RH(fbh)); g_bSaveResolved = 0; } #endif if (conf.settings().no_target_resolve) { status = TS_Resolved; return; } int blockheight = PSMT_ISHALF(psm) ? 64 : 32; int resolvefbp = fbp, resolveheight = fbh; int scanlinewidth = 0x2000 * (fbw >> 6); // in no way should data be overwritten!, instead resolve less if (endrange < end) { // round down to nearest block and scanline resolveheight = ((endrange - start) / (0x2000 * (fbw >> 6))) * blockheight; if (resolveheight <= 32) { status = TS_Resolved; return; } } else if (startrange > start) { // round up to nearest block and scanline resolvefbp = startrange + scanlinewidth - 1; resolvefbp -= resolvefbp % scanlinewidth; resolveheight = fbh - ((resolvefbp - fbp) * blockheight / scanlinewidth); if (resolveheight <= 64) // this is a total hack, but kh doesn't resolve now { status = TS_Resolved; return; } resolvefbp >>= 8; } glBindTexture(GL_TEXTURE_RECTANGLE_NV, ptex); glGetTexImage(GL_TEXTURE_RECTANGLE_NV, 0, GL_RGBA, GL_UNSIGNED_BYTE, psys); GL_REPORT_ERRORD(); u8* pbits = (u8*)psys; if (fbp != resolvefbp) pbits += ((resolvefbp - fbp) * 256 / scanlinewidth) * blockheight * Pitch(fbw); _Resolve(pbits, resolvefbp, fbw, resolveheight, psm, fbm, true); status = TS_Resolved; } } void ZeroGS::CRenderTarget::Update(int context, ZeroGS::CRenderTarget* pdepth) { FUNCLOG DisableAllgl(); glBindBuffer(GL_ARRAY_BUFFER, vboRect); SET_STREAM(); // assume depth already set //pd3dDevice->SetDepthStencilSurface(psurfDepth); ResetRenderTarget(1); SetRenderTarget(0); assert(pdepth != NULL); ((CDepthTarget*)pdepth)->SetDepthStencilSurface(); SetShaderCaller("CRenderTarget::Update"); Vector v = DefaultBitBltPos(); CRenderTargetMngr::MAPTARGETS::iterator ittarg; if (nUpdateTarg) { ittarg = s_RTs.mapTargets.find(nUpdateTarg); if (ittarg == s_RTs.mapTargets.end()) { ittarg = s_DepthRTs.mapTargets.find(nUpdateTarg); if (ittarg == s_DepthRTs.mapTargets.end()) nUpdateTarg = 0; else if (ittarg->second == this) { ZZLog::Debug_Log("Updating self."); nUpdateTarg = 0; } } else if (ittarg->second == this) { ZZLog::Debug_Log("Updating self."); nUpdateTarg = 0; } } SetViewport(); if (nUpdateTarg) { cgGLSetTextureParameter(ppsBaseTexture.sFinal, ittarg->second->ptex); cgGLEnableTextureParameter(ppsBaseTexture.sFinal); //assert( ittarg->second->fbw == fbw ); int offset = (fbp - ittarg->second->fbp) * 64 / fbw; if (PSMT_ISHALF(psm)) // 16 bit offset *= 2; v.x = (float)RW(fbw); v.y = (float)RH(fbh); v.z = 0.25f; v.w = (float)RH(offset) + 0.25f; ZZcgSetParameter4fv(pvsBitBlt.sBitBltTex, v, "g_fBitBltTex"); // v = DefaultBitBltTex(); Maybe? v = DefaultOneColor(ppsBaseTexture) ; SETPIXELSHADER(ppsBaseTexture.prog); nUpdateTarg = 0; } else { // align the rect to the nearest page // note that fbp is always aligned on page boundaries tex0Info texframe; texframe.tbp0 = fbp; texframe.tbw = fbw; texframe.tw = fbw; texframe.th = fbh; texframe.psm = psm; CMemoryTarget* pmemtarg = g_MemTargs.GetMemoryTarget(texframe, 1); // write color and zero out stencil buf, always 0 context! // force bilinear if using AA // Fix in r133 -- FFX movies and Gust backgrounds! SetTexVariablesInt(0, 0*(s_AAx || s_AAy) ? 2 : 0, texframe, pmemtarg, &ppsBitBlt[!!s_AAx], 1); cgGLSetTextureParameter(ppsBitBlt[!!s_AAx].sMemory, pmemtarg->ptex->tex); cgGLEnableTextureParameter(ppsBitBlt[!!s_AAx].sMemory); v = Vector(1, 1, 0.0f, 0.0f); ZZcgSetParameter4fv(pvsBitBlt.sBitBltTex, v, "g_fBitBltTex"); v.x = 1; v.y = 2; ZZcgSetParameter4fv(ppsBitBlt[!!s_AAx].sOneColor, v, "g_fOneColor"); assert(ptex != 0); if (conf.wireframe()) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); if (ZeroGS::IsWriteDestAlphaTest()) { glEnable(GL_STENCIL_TEST); glStencilFunc(GL_ALWAYS, 0, 0xff); glStencilMask(0xff); glStencilOp(GL_KEEP, GL_KEEP, GL_ZERO); } // render with an AA shader if possible (bilinearly interpolates data) //cgGLLoadProgram(ppsBitBlt[!!s_AAx].prog); SETPIXELSHADER(ppsBitBlt[!!s_AAx].prog); } SETVERTEXSHADER(pvsBitBlt.prog); DrawTriangleArray(); // fill stencil buf only FillOnlyStencilBuffer(); glEnable(GL_SCISSOR_TEST); if (conf.wireframe()) glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); if (conf.mrtdepth && pdepth != NULL && ZeroGS::IsWriteDepth()) pdepth->SetRenderTarget(1); status = TS_Resolved; // reset since settings changed vb[0].bVarsTexSync = 0; ZeroGS::ResetAlphaVariables(); } void ZeroGS::CRenderTarget::ConvertTo32() { FUNCLOG u32 ptexConv; // ZZLog::Error_Log("Convert to 32, report if something missing."); // create new target if (! InitialiseDefaultTexture(&ptexConv, RW(fbw), RH(fbh) / 2)) { ZZLog::Error_Log("Failed to create target for ConvertTo32 %dx%d.", RW(fbw), RH(fbh) / 2); return; } DisableAllgl(); SetShaderCaller("CRenderTarget::ConvertTo32"); // tex coords, test ffx bikanel island when changing these Vector v = DefaultBitBltPos(); v = DefaultBitBltTex(); v.x = (float)RW(16); v.y = (float)RH(16); v.z = -(float)RW(fbw); v.w = (float)RH(8); ZZcgSetParameter4fv(ppsConvert16to32.fTexOffset, v, "g_fTexOffset"); v.x = (float)RW(8); v.y = 0; v.z = 0; v.w = 0.25f; ZZcgSetParameter4fv(ppsConvert16to32.fPageOffset, v, "g_fPageOffset"); v.x = (float)RW(2 * fbw); v.y = (float)RH(fbh); v.z = 0; v.w = 0.0001f * (float)RH(fbh); ZZcgSetParameter4fv(ppsConvert16to32.fTexDims, v, "g_fTexDims"); // v.x = 0; // ZZcgSetParameter4fv(ppsConvert16to32.fTexBlock, v, "g_fTexBlock"); glBindBuffer(GL_ARRAY_BUFFER, vboRect); SET_STREAM(); // assume depth already set !? FBTexture(0, ptexConv); ZeroGS::ResetRenderTarget(1); BindToSample(&ptex) ; cgGLSetTextureParameter(ppsConvert16to32.sFinal, ptex); cgGLEnableTextureParameter(ppsBitBlt[!!s_AAx].sMemory); fbh /= 2; // have 16 bit surfaces are usually 2x higher SetViewport(); if (conf.wireframe()) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); // render with an AA shader if possible (bilinearly interpolates data) SETVERTEXSHADER(pvsBitBlt.prog); SETPIXELSHADER(ppsConvert16to32.prog); DrawTriangleArray(); #ifdef _DEBUG if (g_bSaveZUpdate) { // buggy SaveTexture("tex1.tga", GL_TEXTURE_RECTANGLE_NV, ptex, RW(fbw), RH(fbh)*2); SaveTexture("tex3.tga", GL_TEXTURE_RECTANGLE_NV, ptexConv, RW(fbw), RH(fbh)); } #endif vposxy.y = -2.0f * (32767.0f / 8.0f) / (float)fbh; vposxy.w = 1 + 0.5f / fbh; // restore SAFE_RELEASE_TEX(ptex); SAFE_RELEASE_TEX(ptexFeedback); ptex = ptexConv; // no need to free psys since the render target is getting shrunk if (conf.wireframe()) glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); // reset textures BindToSample(&ptex) ; glEnable(GL_SCISSOR_TEST); status = TS_Resolved; // TODO, reset depth? if (ZeroGS::icurctx >= 0) { // reset since settings changed vb[icurctx].bVarsTexSync = 0; vb[icurctx].bVarsSetTarg = 0; } vb[0].bVarsTexSync = 0; } void ZeroGS::CRenderTarget::ConvertTo16() { FUNCLOG u32 ptexConv; // ZZLog::Error_Log("Convert to 16, report if something missing."); // create new target if (! InitialiseDefaultTexture(&ptexConv, RW(fbw), RH(fbh)*2)) { ZZLog::Error_Log("Failed to create target for ConvertTo16 %dx%d.", RW(fbw), RH(fbh)*2); return; } DisableAllgl(); SetShaderCaller("CRenderTarget::ConvertTo16"); // tex coords, test ffx bikanel island when changing these Vector v = DefaultBitBltPos(); v = DefaultBitBltTex(); v.x = 16.0f / (float)fbw; v.y = 8.0f / (float)fbh; v.z = 0.5f * v.x; v.w = 0.5f * v.y; ZZcgSetParameter4fv(ppsConvert32to16.fTexOffset, v, "g_fTexOffset"); v.x = 256.0f / 255.0f; v.y = 256.0f / 255.0f; v.z = 0.05f / 256.0f; v.w = -0.001f / 256.0f; ZZcgSetParameter4fv(ppsConvert32to16.fPageOffset, v, "g_fPageOffset"); v.x = (float)RW(fbw); v.y = (float)RH(2 * fbh); v.z = 0; v.w = -0.1f / RH(fbh); ZZcgSetParameter4fv(ppsConvert32to16.fTexDims, v, "g_fTexDims"); glBindBuffer(GL_ARRAY_BUFFER, vboRect); SET_STREAM(); // assume depth already set !? FBTexture(0, ptexConv); ZeroGS::ResetRenderTarget(1); GL_REPORT_ERRORD(); BindToSample(&ptex) ; cgGLSetTextureParameter(ppsConvert32to16.sFinal, ptex); cgGLEnableTextureParameter(ppsConvert32to16.sFinal); // fbh *= 2; // have 16 bit surfaces are usually 2x higher SetViewport(); if (conf.wireframe()) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); // render with an AA shader if possible (bilinearly interpolates data) SETVERTEXSHADER(pvsBitBlt.prog); SETPIXELSHADER(ppsConvert32to16.prog); DrawTriangleArray(); #ifdef _DEBUG //g_bSaveZUpdate = 1; if (g_bSaveZUpdate) { SaveTexture("tex1.tga", GL_TEXTURE_RECTANGLE_NV, ptexConv, RW(fbw), RH(fbh)); } #endif vposxy.y = -2.0f * (32767.0f / 8.0f) / (float)fbh; vposxy.w = 1 + 0.5f / fbh; // restore SAFE_RELEASE_TEX(ptex); SAFE_RELEASE_TEX(ptexFeedback); ptex = ptexConv; _aligned_free(psys); psys = _aligned_malloc(Tex_Memory_Size(fbw, fbh), 16); if (conf.wireframe()) glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); // reset textures BindToSample(&ptex) ; glEnable(GL_SCISSOR_TEST); status = TS_Resolved; // TODO, reset depth? if (ZeroGS::icurctx >= 0) { // reset since settings changed vb[icurctx].bVarsTexSync = 0; vb[icurctx].bVarsSetTarg = 0; } vb[0].bVarsTexSync = 0; } void ZeroGS::CRenderTarget::_CreateFeedback() { FUNCLOG if (ptexFeedback == 0) { // create if (! InitialiseDefaultTexture(&ptexFeedback, RW(fbw), RH(fbh))) { ZZLog::Error_Log("Failed to create feedback %dx%d.", RW(fbw), RH(fbh)); return; } } DisableAllgl(); SetShaderCaller("CRenderTarget::_CreateFeedback"); // assume depth already set ResetRenderTarget(1); // tex coords, test ffx bikanel island when changing these /* Vector v = DefaultBitBltPos(); v = Vector ((float)(RW(fbw+4)), (float)(RH(fbh+4)), +0.25f, -0.25f); ZZcgSetParameter4fv(pvsBitBlt.sBitBltTex, v, "BitBltTex");*/ // tex coords, test ffx bikanel island when changing these // Vector v = Vector(1, -1, 0.5f / (fbw<= 0) { // reset since settings changed vb[icurctx].bVarsTexSync = 0; } GL_REPORT_ERRORD(); } void ZeroGS::CRenderTarget::SetRenderTarget(int targ) { FUNCLOG FBTexture(targ, ptex); //GL_REPORT_ERRORD(); //if (glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT) != GL_FRAMEBUFFER_COMPLETE_EXT) //ERROR_LOG_SPAM("The Framebuffer is not complete. Glitches could appear onscreen.\n"); } ZeroGS::CDepthTarget::CDepthTarget() : CRenderTarget(), pdepth(0), pstencil(0), icount(0) {} ZeroGS::CDepthTarget::~CDepthTarget() { FUNCLOG Destroy(); } bool ZeroGS::CDepthTarget::Create(const frameInfo& frame) { FUNCLOG if (!CRenderTarget::Create(frame)) return false; GL_REPORT_ERROR(); glGenRenderbuffersEXT(1, &pdepth); glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, pdepth); glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, GL_DEPTH24_STENCIL8_EXT, RW(fbw), RH(fbh)); if (glGetError() != GL_NO_ERROR) { // try a separate depth and stencil buffer glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, pdepth); glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, GL_DEPTH_COMPONENT24, RW(fbw), RH(fbh)); if (g_bUpdateStencil) { glGenRenderbuffersEXT(1, &pstencil); glBindRenderbufferEXT(GL_RENDERBUFFER_EXT, pstencil); glRenderbufferStorageEXT(GL_RENDERBUFFER_EXT, GL_STENCIL_INDEX8_EXT, RW(fbw), RH(fbh)); if (glGetError() != GL_NO_ERROR) { ZZLog::Error_Log("Failed to create depth buffer %dx%d.", RW(fbw), RH(fbh)); return false; } } else { pstencil = 0; } } else { pstencil = pdepth; } status = TS_NeedUpdate; return true; } void ZeroGS::CDepthTarget::Destroy() { FUNCLOG if (status) // In this case Framebuffer extension is off-use and lead to segfault { ResetRenderTarget(1); TextureRect(GL_DEPTH_ATTACHMENT_EXT); TextureRect(GL_STENCIL_ATTACHMENT_EXT); GL_REPORT_ERRORD(); if (pstencil != 0) { if (pstencil != pdepth) glDeleteRenderbuffersEXT(1, &pstencil); pstencil = 0; } if (pdepth != 0) { glDeleteRenderbuffersEXT(1, &pdepth); pdepth = 0; } GL_REPORT_ERRORD(); } CRenderTarget::Destroy(); } extern int g_nDepthUsed; // > 0 if depth is used void ZeroGS::CDepthTarget::Resolve() { FUNCLOG if (g_nDepthUsed > 0 && conf.mrtdepth && !(status&TS_Virtual) && ZeroGS::IsWriteDepth() && !(conf.settings().no_depth_resolve)) CRenderTarget::Resolve(); else { // flush if necessary FlushIfNecesary(this) ; if (!(status & TS_Virtual)) status |= TS_Resolved; } if (!(status&TS_Virtual)) { ZeroGS::SetWriteDepth(); } } void ZeroGS::CDepthTarget::Resolve(int startrange, int endrange) { FUNCLOG if (g_nDepthUsed > 0 && conf.mrtdepth && !(status&TS_Virtual) && ZeroGS::IsWriteDepth()) { CRenderTarget::Resolve(startrange, endrange); } else { // flush if necessary FlushIfNecesary(this) ; if (!(status & TS_Virtual)) status |= TS_Resolved; } if (!(status&TS_Virtual)) { ZeroGS::SetWriteDepth(); } } void ZeroGS::CDepthTarget::Update(int context, ZeroGS::CRenderTarget* prndr) { FUNCLOG assert(!(status & TS_Virtual)); // align the rect to the nearest page // note that fbp is always aligned on page boundaries tex0Info texframe; texframe.tbp0 = fbp; texframe.tbw = fbw; texframe.tw = fbw; texframe.th = fbh; texframe.psm = psm; CMemoryTarget* pmemtarg = g_MemTargs.GetMemoryTarget(texframe, 1); DisableAllgl(); ZeroGS::VB& curvb = vb[context]; if (curvb.test.zte == 0) return; SetShaderCaller("CDepthTarget::Update"); glEnable(GL_DEPTH_TEST); glDepthMask(!curvb.zbuf.zmsk); static const u32 g_dwZCmp[] = { GL_NEVER, GL_ALWAYS, GL_GEQUAL, GL_GREATER }; glDepthFunc(g_dwZCmp[curvb.test.ztst]); // write color and zero out stencil buf, always 0 context! SetTexVariablesInt(0, 0, texframe, pmemtarg, &ppsBitBltDepth, 1); cgGLSetTextureParameter(ppsBitBltDepth.sMemory, pmemtarg->ptex->tex); cgGLEnableTextureParameter(ppsBaseTexture.sFinal); Vector v = DefaultBitBltPos(); v = DefaultBitBltTex(); v.x = 1; v.y = 2; v.z = PSMT_IS16Z(psm) ? 1.0f : 0.0f; v.w = g_filog32; ZZcgSetParameter4fv(ppsBitBltDepth.sOneColor, v, "g_fOneColor"); Vector vdepth = g_vdepth; if (psm == PSMT24Z) { vdepth.w = 0; } else if (psm != PSMT32Z) { vdepth.z = vdepth.w = 0; } assert(ppsBitBltDepth.sBitBltZ != 0); ZZcgSetParameter4fv(ppsBitBltDepth.sBitBltZ, ((255.0f / 256.0f)*vdepth), "g_fBitBltZ"); assert(pdepth != 0); //GLint w1 = 0; //GLint h1 = 0; glFramebufferTexture2DEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, GL_TEXTURE_RECTANGLE_NV, ptex, 0); //glGetRenderbufferParameterivEXT(GL_RENDERBUFFER_EXT, GL_RENDERBUFFER_WIDTH_EXT, &w1); //glGetRenderbufferParameterivEXT(GL_RENDERBUFFER_EXT, GL_RENDERBUFFER_HEIGHT_EXT, &h1); SetDepthStencilSurface(); FBTexture(1); GLenum buffer = GL_COLOR_ATTACHMENT0_EXT; //ZZLog::Error_Log("CDepthTarget::Update: w1 = 0x%x; h1 = 0x%x", w1, h1); DrawBuffers(&buffer); SetViewport(); if (conf.wireframe()) glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); glBindBuffer(GL_ARRAY_BUFFER, vboRect); SET_STREAM(); SETVERTEXSHADER(pvsBitBlt.prog); SETPIXELSHADER(ppsBitBltDepth.prog); DrawTriangleArray(); status = TS_Resolved; if (!ZeroGS::IsWriteDepth()) { ResetRenderTarget(1); } if (conf.wireframe()) glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); glEnable(GL_SCISSOR_TEST); #ifdef _DEBUG if (g_bSaveZUpdate) { SaveTex(&texframe, 1); SaveTexture("frame1.tga", GL_TEXTURE_RECTANGLE_NV, ptex, RW(fbw), RH(fbh)); } #endif } void ZeroGS::CDepthTarget::SetDepthStencilSurface() { FUNCLOG TextureRect(GL_DEPTH_ATTACHMENT_EXT, pdepth); if (pstencil) { // there's a bug with attaching stencil and depth buffers TextureRect(GL_STENCIL_ATTACHMENT_EXT, pstencil); if (icount++ < 8) // not going to fail if succeeded 4 times { GL_REPORT_ERRORD(); if (glCheckFramebufferStatusEXT(GL_FRAMEBUFFER_EXT) != GL_FRAMEBUFFER_COMPLETE_EXT) { TextureRect(GL_STENCIL_ATTACHMENT_EXT); if (pstencil != pdepth) glDeleteRenderbuffersEXT(1, &pstencil); pstencil = 0; g_bUpdateStencil = 0; } } } else { TextureRect(GL_STENCIL_ATTACHMENT_EXT); } } void ZeroGS::CRenderTargetMngr::Destroy() { FUNCLOG for (MAPTARGETS::iterator it = mapTargets.begin(); it != mapTargets.end(); ++it) { delete it->second; } mapTargets.clear(); for (MAPTARGETS::iterator it = mapDummyTargs.begin(); it != mapDummyTargs.end(); ++it) { delete it->second; } mapDummyTargs.clear(); } void ZeroGS::CRenderTargetMngr::DestroyAllTargs(int start, int end, int fbw) { FUNCLOG for (MAPTARGETS::iterator it = mapTargets.begin(); it != mapTargets.end();) { if (it->second->start < end && start < it->second->end) { // if is depth, only resolve if fbw is the same if (!it->second->IsDepth()) { // only resolve if the widths are the same or it->second has bit outside the range // shadow of colossus swaps between fbw=256,fbh=256 and fbw=512,fbh=448. This kills the game if doing || it->second->end > end // kh hack, sometimes kh movies do this to clear the target, so have a static count that periodically checks end static int count = 0; if (it->second->fbw == fbw || (it->second->fbw != fbw && (it->second->start < start || ((count++&0xf) ? 0 : it->second->end > end)))) { it->second->Resolve(); } else { FlushIfNecesary(it->second) ; it->second->status |= CRenderTarget::TS_Resolved; } } else { if (it->second->fbw == fbw) { it->second->Resolve(); } else { FlushIfNecesary(it->second) ; it->second->status |= CRenderTarget::TS_Resolved; } } DestroyAllTargetsHelper(it->second) ; u32 dummykey = GetFrameKeyDummy(it->second); if (mapDummyTargs.find(dummykey) == mapDummyTargs.end()) { mapDummyTargs[dummykey] = it->second; } else { delete it->second; } mapTargets.erase(it++); } else { ++it; } } } void ZeroGS::CRenderTargetMngr::DestroyTarg(CRenderTarget* ptarg) { FUNCLOG DestroyAllTargetsHelper(ptarg) ; delete ptarg; } void ZeroGS::CRenderTargetMngr::DestroyIntersecting(CRenderTarget* prndr) { FUNCLOG assert(prndr != NULL); int start, end; GetRectMemAddress(start, end, prndr->psm, 0, 0, prndr->fbw, prndr->fbh, prndr->fbp, prndr->fbw); for (MAPTARGETS::iterator it = mapTargets.begin(); it != mapTargets.end();) { if ((it->second != prndr) && (it->second->start < end) && (start < it->second->end)) { it->second->Resolve(); DestroyAllTargetsHelper(it->second) ; u32 dummykey = GetFrameKeyDummy(it->second); if (mapDummyTargs.find(dummykey) == mapDummyTargs.end()) { mapDummyTargs[dummykey] = it->second; } else { delete it->second; } mapTargets.erase(it++); } else { ++it; } } } //-------------------------------------------------- inline bool CheckWidthIsSame(const frameInfo& frame, CRenderTarget* ptarg) { if (PSMT_ISHALF(frame.psm) == PSMT_ISHALF(ptarg->psm)) return (frame.fbw == ptarg->fbw); if (PSMT_ISHALF(frame.psm)) return (frame.fbw == 2 * ptarg->fbw); else return (2 * frame.fbw == ptarg->fbw); } void ZeroGS::CRenderTargetMngr::PrintTargets() { #ifdef _DEBUG for (MAPTARGETS::iterator it1 = mapDummyTargs.begin(); it1 != mapDummyTargs.end(); ++it1) ZZLog::Debug_Log("\t Dummy Targets(0x%x) fbw:0x%x fbh:0x%x psm:0x%x fbp:0x%x", GetFrameKey(it1->second), it1->second->fbw, it1->second->fbh, it1->second->psm, it1->second->fbp); for (MAPTARGETS::iterator it1 = mapTargets.begin(); it1 != mapTargets.end(); ++it1) ZZLog::Debug_Log("\t Targets(0x%x) fbw:0x%x fbh:0x%x psm:0x%x fbp:0x%x", GetFrameKey(it1->second), it1->second->fbw, it1->second->fbh, it1->second->psm, it1->second->fbp); #endif } CRenderTarget* ZeroGS::CRenderTargetMngr::GetTarg(const frameInfo& frame, u32 opts, int maxposheight) { FUNCLOG if (frame.fbw <= 0 || frame.fbh <= 0) return NULL; GL_REPORT_ERRORD(); u32 key = GetFrameKey(frame); MAPTARGETS::iterator it = mapTargets.find(key); // only enforce height if frame.fbh <= 0x1c0 bool bfound = it != mapTargets.end(); if (bfound) { if (opts&TO_StrictHeight) { bfound = it->second->fbh == frame.fbh; if ((conf.settings().partial_depth) && !bfound) { MAPTARGETS::iterator itnew = mapTargets.find(key + 1); if (itnew != mapTargets.end() && itnew->second->fbh == frame.fbh) { // found! delete the previous and restore delete it->second; mapTargets.erase(it); it = mapTargets.insert(MAPTARGETS::value_type(key, itnew->second)).first; // readd mapTargets.erase(itnew); // delete old bfound = true; } } } else { if (PSMT_ISHALF(frame.psm) == PSMT_ISHALF(it->second->psm) && !(conf.settings().full_16_bit_res)) bfound = ((frame.fbh > 0x1c0) || (it->second->fbh >= frame.fbh)) && (it->second->fbh <= maxposheight); } } if (!bfound) { // might be a virtual target it = mapTargets.find(key | TARGET_VIRTUAL_KEY); bfound = it != mapTargets.end() && ((opts & TO_StrictHeight) ? it->second->fbh == frame.fbh : it->second->fbh >= frame.fbh) && it->second->fbh <= maxposheight; } if (bfound && PSMT_ISHALF(frame.psm) && PSMT_ISHALF(it->second->psm) && (conf.settings().full_16_bit_res)) { // mgs3 if (frame.fbh > it->second->fbh) { bfound = false; } } if (bfound) { // can be both 16bit and 32bit if (PSMT_ISHALF(frame.psm) != PSMT_ISHALF(it->second->psm)) { // a lot of games do this, actually... ZZLog::Debug_Log("Really bad formats! %d %d", frame.psm, it->second->psm); // This code SHOULD be commented, until I redo the _Resolve function if (!(opts & TO_StrictHeight)) { if ((conf.settings().vss_hack_off)) { if (PSMT_ISHALF(it->second->psm)) { it->second->status |= CRenderTarget::TS_NeedConvert32; it->second->fbh /= 2; } else { it->second->status |= CRenderTarget::TS_NeedConvert16; it->second->fbh *= 2; } } } // recalc extents GetRectMemAddress(it->second->start, it->second->end, frame.psm, 0, 0, frame.fbw, it->second->fbh, it->second->fbp, frame.fbw); } else { // certain variables have to be reset every time if ((it->second->psm & ~1) != (frame.psm & ~1)) { #if defined(ZEROGS_DEVBUILD) ZZLog::Warn_Log("Bad formats 2: %d %d", frame.psm, it->second->psm); #endif it->second->psm = frame.psm; // recalc extents GetRectMemAddress(it->second->start, it->second->end, frame.psm, 0, 0, frame.fbw, it->second->fbh, it->second->fbp, frame.fbw); } } if (it->second->fbm != frame.fbm) { //ZZLog::Warn_Log("Bad fbm: 0x%8.8x 0x%8.8x, psm: %d", frame.fbm, it->second->fbm, frame.psm); } it->second->fbm &= frame.fbm; it->second->psm = frame.psm; // have to convert (ffx2) if ((it->first & TARGET_VIRTUAL_KEY) && !(opts&TO_Virtual)) { // switch it->second->lastused = timeGetTime(); return Promote(it->first&~TARGET_VIRTUAL_KEY); } // check if there exists a more recent target that this target could update from // only update if target isn't mirrored bool bCheckHalfCovering = (conf.settings().full_16_bit_res) && PSMT_ISHALF(it->second->psm) && it->second->fbh + 32 < frame.fbh; for (MAPTARGETS::iterator itnew = mapTargets.begin(); itnew != mapTargets.end(); ++itnew) { if (itnew->second != it->second && itnew->second->ptex != it->second->ptex && itnew->second->ptexFeedback != it->second->ptex && itnew->second->lastused > it->second->lastused && !(itnew->second->status & CRenderTarget::TS_NeedUpdate)) { // if new target totally encompasses the current one if (itnew->second->start <= it->second->start && itnew->second->end >= it->second->end) { it->second->status |= CRenderTarget::TS_NeedUpdate; it->second->nUpdateTarg = itnew->first; break; } // if 16bit, then check for half encompassing targets if (bCheckHalfCovering && itnew->second->start > it->second->start && itnew->second->start < it->second->end && itnew->second->end <= it->second->end + 0x2000) { it->second->status |= CRenderTarget::TS_NeedUpdate; it->second->nUpdateTarg = itnew->first; break; } } } it->second->lastused = timeGetTime(); return it->second; } // NOTE: instead of resolving, if current render targ is completely outside of old, can transfer // the data like that. // first search for the target CRenderTarget* ptarg = NULL; // have to change, so recreate (find all intersecting targets and Resolve) u32 besttarg = 0; if (!(opts & CRenderTargetMngr::TO_Virtual)) { int start, end; GetRectMemAddress(start, end, frame.psm, 0, 0, frame.fbw, frame.fbh, frame.fbp, frame.fbw); CRenderTarget* pbesttarg = NULL; if (besttarg == 0) { // if there is only one intersecting target and it encompasses the current one, update the new render target with // its data instead of resolving then updating (ffx2). Do not change the original target. for (MAPTARGETS::iterator it = mapTargets.begin(); it != mapTargets.end(); ++it) { if (it->second->start < end && start < it->second->end) { if ((conf.settings().fast_update) || ((frame.fbw == it->second->fbw) && // check depth targets only if partialdepth option ((it->second->fbp != frame.fbp) || ((conf.settings().partial_depth) && (opts & CRenderTargetMngr::TO_DepthBuffer))))) { if (besttarg != 0) { besttarg = 0; break; } if (start >= it->second->start && end <= it->second->end) { besttarg = it->first; pbesttarg = it->second; } } } } } if (besttarg != 0 && pbesttarg->fbw != frame.fbw) { // printf ("A %d %d %d %d\n", frame.psm, frame.fbw, pbesttarg->psm, pbesttarg->fbw); vb[0].frame.fbw = pbesttarg->fbw; // Something should be here, but what? } if (besttarg == 0) { // if none found, resolve all DestroyAllTargs(start, end, frame.fbw); } else if (key == besttarg && pbesttarg != NULL) { // add one and store in a different location until best targ is processed mapTargets.erase(besttarg); besttarg++; mapTargets[besttarg] = pbesttarg; } } if (mapTargets.size() > 8) { // release some resources it = GetOldestTarg(mapTargets); // if more than 5s passed since target used, destroy if ((it->second != vb[0].prndr) && (it->second != vb[1].prndr) && (it->second != vb[0].pdepth) && (it->second != vb[1].pdepth) && ((timeGetTime() - it->second->lastused) > 5000)) { delete it->second; mapTargets.erase(it); } } if (ptarg == NULL) { // not found yet, so create if (mapDummyTargs.size() > 8) { it = GetOldestTarg(mapDummyTargs); delete it->second; mapDummyTargs.erase(it); } it = mapDummyTargs.find(GetFrameKeyDummy(frame)); if (it != mapDummyTargs.end()) { ZZLog::Debug_Log("Dummy Frame fbw:0x%x fbh:0x%x psm:0x%x fbp:0x%x", frame.fbw, frame.fbh, frame.psm, frame.fbp); PrintTargets(); ZZLog::Debug_Log("Dummy it->second fbw:0x%x fbh:0x%x psm:0x%x fbp:0x%x", it->second->fbw, it->second->fbh, it->second->psm, it->second->fbp); ptarg = it->second; mapDummyTargs.erase(it); // restore all setttings ptarg->psm = frame.psm; ptarg->fbm = frame.fbm; ptarg->fbp = frame.fbp; GetRectMemAddress(ptarg->start, ptarg->end, frame.psm, 0, 0, frame.fbw, frame.fbh, frame.fbp, frame.fbw); ptarg->status = CRenderTarget::TS_NeedUpdate; } else { ZZLog::Debug_Log("Frame fbw:0x%x fbh:0x%x psm:0x%x fbp:0x%x", frame.fbw, frame.fbh, frame.psm, frame.fbp); PrintTargets(); // create anew ptarg = (opts & TO_DepthBuffer) ? new CDepthTarget : new CRenderTarget; CRenderTargetMngr* pmngrs[2] = { &s_DepthRTs, this == &s_RTs ? &s_RTs : NULL }; int cur = 0; while (!ptarg->Create(frame)) { // destroy unused targets if (mapDummyTargs.size() > 0) { it = mapDummyTargs.begin(); delete it->second; mapDummyTargs.erase(it); continue; } if (g_MemTargs.listClearedTargets.size() > 0) { g_MemTargs.DestroyCleared(); continue; } else if (g_MemTargs.listTargets.size() > 32) { g_MemTargs.DestroyOldest(); continue; } if (pmngrs[cur] == NULL) { cur = !cur; if (pmngrs[cur] == NULL) { ZZLog::Warn_Log("Out of memory!"); delete ptarg; return NULL; } } if (pmngrs[cur]->mapTargets.size() == 0) { pmngrs[cur] = NULL; cur = !cur; continue; } it = GetOldestTarg(pmngrs[cur]->mapTargets); DestroyTarg(it->second); pmngrs[cur]->mapTargets.erase(it); cur = !cur; } } } if ((opts & CRenderTargetMngr::TO_Virtual)) { ptarg->status = CRenderTarget::TS_Virtual; key |= TARGET_VIRTUAL_KEY; if ((it = mapTargets.find(key)) != mapTargets.end()) { DestroyTarg(it->second); it->second = ptarg; ptarg->nUpdateTarg = besttarg; return ptarg; } } else { assert(mapTargets.find(key) == mapTargets.end()); } ptarg->nUpdateTarg = besttarg; mapTargets[key] = ptarg; return ptarg; } ZeroGS::CRenderTargetMngr::MAPTARGETS::iterator ZeroGS::CRenderTargetMngr::GetOldestTarg(MAPTARGETS& m) { FUNCLOG if (m.size() == 0) { return m.end(); } // release some resources MAPTARGETS::iterator itmaxtarg = m.begin(); for (MAPTARGETS::iterator it = ++m.begin(); it != m.end(); ++it) { if (itmaxtarg->second->lastused < it->second->lastused) itmaxtarg = it; } return itmaxtarg; } void ZeroGS::CRenderTargetMngr::GetTargs(int start, int end, list& listTargets) const { FUNCLOG for (MAPTARGETS::const_iterator it = mapTargets.begin(); it != mapTargets.end(); ++it) { if ((it->second->start < end) && (start < it->second->end)) listTargets.push_back(it->second); } } void ZeroGS::CRenderTargetMngr::Resolve(int start, int end) { FUNCLOG for (MAPTARGETS::const_iterator it = mapTargets.begin(); it != mapTargets.end(); ++it) { if ((it->second->start < end) && (start < it->second->end)) it->second->Resolve(); } } void ZeroGS::CMemoryTargetMngr::Destroy() { FUNCLOG listTargets.clear(); listClearedTargets.clear(); } int memcmp_clut16(u16* pSavedBuffer, u16* pClutBuffer, int clutsize) { FUNCLOG assert((clutsize&31) == 0); // left > 0 only when csa < 16 int left = 0; if (((u32)(uptr)pClutBuffer & 2) == 0) { left = (((u32)(uptr)pClutBuffer & 0x3ff) / 2) + clutsize - 512; clutsize -= left; } while (clutsize > 0) { for (int i = 0; i < 16; ++i) { if (pSavedBuffer[i] != pClutBuffer[2*i]) return 1; } clutsize -= 32; pSavedBuffer += 16; pClutBuffer += 32; } if (left > 0) { pClutBuffer = (u16*)(g_pbyGSClut + 2); while (left > 0) { for (int i = 0; i < 16; ++i) { if (pSavedBuffer[i] != pClutBuffer[2*i]) return 1; } left -= 32; pSavedBuffer += 16; pClutBuffer += 32; } } return 0; } bool ZeroGS::CMemoryTarget::ValidateClut(const tex0Info& tex0) { FUNCLOG assert(tex0.psm == psm && PSMT_ISCLUT(psm) && cpsm == tex0.cpsm); int nClutOffset = 0, clutsize = 0; int entries = PSMT_IS8CLUT(tex0.psm) ? 256 : 16; if (PSMT_IS32BIT(tex0.cpsm)) // 32 bit { nClutOffset = 64 * tex0.csa; clutsize = min(entries, 256 - tex0.csa * 16) * 4; } else { nClutOffset = 32 * (tex0.csa & 15) + (tex0.csa >= 16 ? 2 : 0); clutsize = min(entries, 512 - tex0.csa * 16) * 2; } assert(clutsize == clut.size()); if (PSMT_IS32BIT(cpsm)) { if (memcmp_mmx(&clut[0], g_pbyGSClut + nClutOffset, clutsize)) return false; } else { if (memcmp_clut16((u16*)&clut[0], (u16*)(g_pbyGSClut + nClutOffset), clutsize)) return false; } return true; } bool ZeroGS::CMemoryTarget::ValidateTex(const tex0Info& tex0, int starttex, int endtex, bool bDeleteBadTex) { FUNCLOG if (clearmaxy == 0) return true; int checkstarty = max(starttex, clearminy); int checkendy = min(endtex, clearmaxy); if (checkstarty >= checkendy) return true; if (validatecount++ > VALIDATE_THRESH) { height = 0; return false; } // lock and compare assert(ptex != NULL && ptex->memptr != NULL); int result = memcmp_mmx(ptex->memptr + (checkstarty - realy) * 4 * GPU_TEXWIDTH, g_pbyGSMemory + checkstarty * 4 * GPU_TEXWIDTH, (checkendy - checkstarty) * 4 * GPU_TEXWIDTH); if (result == 0) { clearmaxy = 0; return true; } if (!bDeleteBadTex) return false; // delete clearminy, clearmaxy range (not the checkstarty, checkendy range) //int newstarty = 0; if (clearminy <= starty) { if (clearmaxy < starty + height) { // preserve end height = starty + height - clearmaxy; starty = clearmaxy; assert(height > 0); } else { // destroy height = 0; } } else { // beginning can be preserved height = clearminy - starty; } clearmaxy = 0; assert((starty >= realy) && ((starty + height) <= (realy + realheight))); return false; } // used to build clut textures (note that this is for both 16 and 32 bit cluts) template static __forceinline void BuildClut(u32 psm, u32 height, T* pclut, u8* psrc, T* pdst) { switch (psm) { case PSMT8: for (u32 i = 0; i < height; ++i) { for (int j = 0; j < GPU_TEXWIDTH / 2; ++j) { pdst[0] = pclut[psrc[0]]; pdst[1] = pclut[psrc[1]]; pdst[2] = pclut[psrc[2]]; pdst[3] = pclut[psrc[3]]; pdst[4] = pclut[psrc[4]]; pdst[5] = pclut[psrc[5]]; pdst[6] = pclut[psrc[6]]; pdst[7] = pclut[psrc[7]]; pdst += 8; psrc += 8; } } break; case PSMT4: for (u32 i = 0; i < height; ++i) { for (int j = 0; j < GPU_TEXWIDTH; ++j) { pdst[0] = pclut[psrc[0] & 15]; pdst[1] = pclut[psrc[0] >> 4]; pdst[2] = pclut[psrc[1] & 15]; pdst[3] = pclut[psrc[1] >> 4]; pdst[4] = pclut[psrc[2] & 15]; pdst[5] = pclut[psrc[2] >> 4]; pdst[6] = pclut[psrc[3] & 15]; pdst[7] = pclut[psrc[3] >> 4]; pdst += 8; psrc += 4; } } break; case PSMT8H: for (u32 i = 0; i < height; ++i) { for (int j = 0; j < GPU_TEXWIDTH / 8; ++j) { pdst[0] = pclut[psrc[3]]; pdst[1] = pclut[psrc[7]]; pdst[2] = pclut[psrc[11]]; pdst[3] = pclut[psrc[15]]; pdst[4] = pclut[psrc[19]]; pdst[5] = pclut[psrc[23]]; pdst[6] = pclut[psrc[27]]; pdst[7] = pclut[psrc[31]]; pdst += 8; psrc += 32; } } break; case PSMT4HH: for (u32 i = 0; i < height; ++i) { for (int j = 0; j < GPU_TEXWIDTH / 8; ++j) { pdst[0] = pclut[psrc[3] >> 4]; pdst[1] = pclut[psrc[7] >> 4]; pdst[2] = pclut[psrc[11] >> 4]; pdst[3] = pclut[psrc[15] >> 4]; pdst[4] = pclut[psrc[19] >> 4]; pdst[5] = pclut[psrc[23] >> 4]; pdst[6] = pclut[psrc[27] >> 4]; pdst[7] = pclut[psrc[31] >> 4]; pdst += 8; psrc += 32; } } break; case PSMT4HL: for (u32 i = 0; i < height; ++i) { for (int j = 0; j < GPU_TEXWIDTH / 8; ++j) { pdst[0] = pclut[psrc[3] & 15]; pdst[1] = pclut[psrc[7] & 15]; pdst[2] = pclut[psrc[11] & 15]; pdst[3] = pclut[psrc[15] & 15]; pdst[4] = pclut[psrc[19] & 15]; pdst[5] = pclut[psrc[23] & 15]; pdst[6] = pclut[psrc[27] & 15]; pdst[7] = pclut[psrc[31] & 15]; pdst += 8; psrc += 32; } } break; default: assert(0); } } #define TARGET_THRESH 0x500 extern int g_MaxTexWidth, g_MaxTexHeight; //#define SORT_TARGETS inline list::iterator ZeroGS::CMemoryTargetMngr::DestroyTargetIter(list::iterator& it) { // find the target and destroy list::iterator itprev = it; ++it; listClearedTargets.splice(listClearedTargets.end(), listTargets, itprev); if (listClearedTargets.size() > TEXDESTROY_THRESH) { listClearedTargets.pop_front(); } return it; } int MemoryTarget_CompareTarget(list::iterator& it, const tex0Info& tex0, int clutsize, int nClutOffset) { if (PSMT_ISCLUT(it->psm) != PSMT_ISCLUT(tex0.psm)) { return 1; } if (PSMT_ISCLUT(tex0.psm)) { assert(it->clut.size() > 0); if (it->psm != tex0.psm || it->cpsm != tex0.cpsm || it->clut.size() != clutsize) { return 1; } if (PSMT_IS32BIT(tex0.cpsm)) { if (memcmp_mmx(&it->clut[0], g_pbyGSClut + nClutOffset, clutsize)) { return 2; } } else { if (memcmp_clut16((u16*)&it->clut[0], (u16*)(g_pbyGSClut + nClutOffset), clutsize)) { return 2; } } } else if (PSMT_IS16BIT(tex0.psm) != PSMT_IS16BIT(it->psm)) { return 1; } return 0; } void MemoryTarget_GetClutVariables(int& nClutOffset, int& clutsize, const tex0Info& tex0) { nClutOffset = 0; clutsize = 0; if (PSMT_ISCLUT(tex0.psm)) { int entries = PSMT_IS8CLUT(tex0.psm) ? 256 : 16; if (PSMT_IS32BIT(tex0.cpsm)) { nClutOffset = 64 * tex0.csa; clutsize = min(entries, 256 - tex0.csa * 16) * 4; } else { nClutOffset = 64 * (tex0.csa & 15) + (tex0.csa >= 16 ? 2 : 0); clutsize = min(entries, 512 - tex0.csa * 16) * 2; } } } void MemoryTarget_GetMemAddress(int& start, int& end, const tex0Info& tex0) { int nbStart, nbEnd; GetRectMemAddress(nbStart, nbEnd, tex0.psm, 0, 0, tex0.tw, tex0.th, tex0.tbp0, tex0.tbw); assert(nbStart < nbEnd); nbEnd = min(nbEnd, 0x00400000); start = nbStart / (4 * GPU_TEXWIDTH); end = (nbEnd + GPU_TEXWIDTH * 4 - 1) / (4 * GPU_TEXWIDTH); assert(start < end); } ZeroGS::CMemoryTarget* ZeroGS::CMemoryTargetMngr::MemoryTarget_SearchExistTarget(int start, int end, int nClutOffset, int clutsize, const tex0Info& tex0, int forcevalidate) { for (list::iterator it = listTargets.begin(); it != listTargets.end();) { if (it->starty <= start && it->starty + it->height >= end) { int res = MemoryTarget_CompareTarget(it, tex0, clutsize, nClutOffset); if (res == 1) { if (it->validatecount++ > VALIDATE_THRESH) { it = DestroyTargetIter(it); if (listTargets.size() == 0) break; } else { ++it; } continue; } else if (res == 2) { ++it; continue; } if (forcevalidate) //&& listTargets.size() < TARGET_THRESH ) { { // do more validation checking. delete if not been used for a while if (!it->ValidateTex(tex0, start, end, curstamp > it->usedstamp + 3)) { if (it->height <= 0) { it = DestroyTargetIter(it); if (listTargets.size() == 0) break; } else { ++it; } continue; } } it->usedstamp = curstamp; it->validatecount = 0; return &(*it); } #ifdef SORT_TARGETS else if (it->starty >= end) break; #endif ++it; } return NULL; } static __forceinline int NumberOfChannels(int psm) { int channels = 1; if (PSMT_ISCLUT(psm)) { if (psm == PSMT8) channels = 4; else if (psm == PSMT4) channels = 8; } else { if (PSMT_IS16BIT(psm)) { // 16z needs to be a8r8g8b8 channels = 2; } } return channels; } ZeroGS::CMemoryTarget* ZeroGS::CMemoryTargetMngr::MemoryTarget_ClearedTargetsSearch(int fmt, int widthmult, int channels, int height) { CMemoryTarget* targ = NULL; if (listClearedTargets.size() > 0) { list::iterator itbest = listClearedTargets.begin(); while (itbest != listClearedTargets.end()) { if ((height <= itbest->realheight) && (itbest->fmt == fmt) && (itbest->widthmult == widthmult) && (itbest->channels == channels)) { // check channels int targchannels = NumberOfChannels(itbest->psm); if (targchannels == channels) break; } ++itbest; } if (itbest != listClearedTargets.end()) { listTargets.splice(listTargets.end(), listClearedTargets, itbest); targ = &listTargets.back(); targ->validatecount = 0; } else { // create a new listTargets.push_back(CMemoryTarget()); targ = &listTargets.back(); } } else { listTargets.push_back(CMemoryTarget()); targ = &listTargets.back(); } return targ; } ZeroGS::CMemoryTarget* ZeroGS::CMemoryTargetMngr::GetMemoryTarget(const tex0Info& tex0, int forcevalidate) { FUNCLOG int start, end, nClutOffset, clutsize; MemoryTarget_GetClutVariables(nClutOffset, clutsize, tex0); MemoryTarget_GetMemAddress(start, end, tex0); ZeroGS::CMemoryTarget* it = MemoryTarget_SearchExistTarget(start, end, nClutOffset, clutsize, tex0, forcevalidate); if (it != NULL) return it; // couldn't find so create CMemoryTarget* targ; u32 fmt = GL_UNSIGNED_BYTE; if (PSMT_ISHALF_STORAGE(tex0)) fmt = GL_UNSIGNED_SHORT_1_5_5_5_REV; int widthmult = 1, channels = 1; if ((g_MaxTexHeight < 4096) && (end - start > g_MaxTexHeight)) widthmult = 2; channels = NumberOfChannels(tex0.psm); targ = MemoryTarget_ClearedTargetsSearch(fmt, widthmult, channels, end - start); // fill local clut if (PSMT_ISCLUT(tex0.psm)) { assert(clutsize > 0); targ->cpsm = tex0.cpsm; targ->clut.reserve(256*4); // no matter what targ->clut.resize(clutsize); if (PSMT_IS32BIT(tex0.cpsm)) { memcpy_amd(&targ->clut[0], g_pbyGSClut + nClutOffset, clutsize); } else { u16* pClutBuffer = (u16*)(g_pbyGSClut + nClutOffset); u16* pclut = (u16*) & targ->clut[0]; int left = ((u32)nClutOffset & 2) ? 0 : ((nClutOffset & 0x3ff) / 2) + clutsize - 512; if (left > 0) clutsize -= left; while (clutsize > 0) { pclut[0] = pClutBuffer[0]; pclut++; pClutBuffer += 2; clutsize -= 2; } if (left > 0) { pClutBuffer = (u16*)(g_pbyGSClut + 2); while (left > 0) { pclut[0] = pClutBuffer[0]; left -= 2; pClutBuffer += 2; pclut++; } } } } if (targ->ptex != NULL) { assert(end - start <= targ->realheight && targ->fmt == fmt && targ->widthmult == widthmult); // good enough, so init targ->realy = targ->starty = start; targ->usedstamp = curstamp; targ->psm = tex0.psm; targ->cpsm = tex0.cpsm; targ->height = end - start; } if (targ->ptex == NULL) { // not initialized yet targ->fmt = fmt; targ->realy = targ->starty = start; targ->realheight = targ->height = end - start; targ->usedstamp = curstamp; targ->psm = tex0.psm; targ->cpsm = tex0.cpsm; targ->widthmult = widthmult; targ->channels = channels; // alloc the mem targ->ptex = new CMemoryTarget::TEXTURE(); targ->ptex->ref = 1; } #if defined(ZEROGS_DEVBUILD) g_TransferredToGPU += GPU_TEXWIDTH * channels * 4 * targ->height; #endif const int texH = (targ->realheight + widthmult - 1) / widthmult; const int texW = GPU_TEXWIDTH * channels * widthmult; // fill with data if (targ->ptex->memptr == NULL) { targ->ptex->memptr = (u8*)_aligned_malloc(4 * GPU_TEXWIDTH * targ->realheight, 16); assert(targ->ptex->ref > 0); } memcpy_amd(targ->ptex->memptr, g_pbyGSMemory + 4 * GPU_TEXWIDTH * targ->realy, 4 * GPU_TEXWIDTH * targ->height); vector texdata; u8* ptexdata = NULL; if (PSMT_ISCLUT(tex0.psm)) { texdata.resize(((tex0.cpsm <= 1) ? 4 : 2) * texW * texH); ptexdata = &texdata[0]; u8* psrc = (u8*)(g_pbyGSMemory + 4 * GPU_TEXWIDTH * targ->realy); if (PSMT_IS32BIT(tex0.cpsm)) { u32* pclut = (u32*) & targ->clut[0]; u32* pdst = (u32*)ptexdata; BuildClut(tex0.psm, targ->height, pclut, psrc, pdst); } else { u16* pclut = (u16*) & targ->clut[0]; u16* pdst = (u16*)ptexdata; BuildClut(tex0.psm, targ->height, pclut, psrc, pdst); } } else { if (tex0.psm == PSMT16Z || tex0.psm == PSMT16SZ) { texdata.resize(4 * texW * texH #if defined(ZEROGS_SSE2) + 15 // reserve additional elements for alignment if SSE2 used. // better do it now, so less resizing would be needed #endif ); ptexdata = &texdata[0]; // needs to be 8 bit, use xmm for unpacking u16* dst = (u16*)ptexdata; u16* src = (u16*)(g_pbyGSMemory + 4 * GPU_TEXWIDTH * targ->realy); #if defined(ZEROGS_SSE2) if (((u32)(uptr)dst) % 16 != 0) { // This is not unusual situation, when vector does not 16bit alignment, that is destructive for SSE2 // instruction movdqa [%eax], xmm0 // The idea would be resise vector to 15 elements, that set ptxedata to aligned position. // Later we would move eax by 16, so only we should verify is first element align // FIXME. As I see, texdata used only once here, it does not have any impact on other code. // Probably, usage of _aligned_maloc() would be preferable. int disalignment = 16 - ((u32)(uptr)dst) % 16; // This is value of shift. It could be 0 < disalignment <= 15 ptexdata = &texdata[disalignment]; // Set pointer to aligned element dst = (u16*)ptexdata; ZZLog::GS_Log("Made alignment for texdata, 0x%x", dst); assert(((u32)(uptr)dst) % 16 == 0); // Assert, because at future could be vectors with uncontigious spaces } int iters = targ->height * GPU_TEXWIDTH / 16; SSE2_UnswizzleZ16Target(dst, src, iters) ; #else // ZEROGS_SSE2 for (int i = 0; i < targ->height; ++i) { for (int j = 0; j < GPU_TEXWIDTH; ++j) { dst[0] = src[0]; dst[1] = 0; dst[2] = src[1]; dst[3] = 0; dst += 4; src += 2; } } #endif // ZEROGS_SSE2 } else { ptexdata = targ->ptex->memptr; } } // create the texture GL_REPORT_ERRORD(); assert(ptexdata != NULL); if (targ->ptex->tex == 0) glGenTextures(1, &targ->ptex->tex); glBindTexture(GL_TEXTURE_RECTANGLE_NV, targ->ptex->tex); if (fmt == GL_UNSIGNED_BYTE) TextureRect(4, texW, texH, GL_RGBA, fmt, ptexdata); else TextureRect(GL_RGB5_A1, texW, texH, GL_RGBA, fmt, ptexdata); int realheight = targ->realheight; while (glGetError() != GL_NO_ERROR) { // release resources until can create if (listClearedTargets.size() > 0) { listClearedTargets.pop_front(); } else { if (listTargets.size() == 0) { ZZLog::Error_Log("Failed to create %dx%x texture.", GPU_TEXWIDTH*channels*widthmult, (realheight + widthmult - 1) / widthmult); channels = 1; return NULL; } DestroyOldest(); } TextureRect(4, texW, texH, GL_RGBA, fmt, ptexdata); } setRectWrap(GL_CLAMP); assert(tex0.psm != 0xd); if (PSMT_ISCLUT(tex0.psm)) assert(targ->clut.size() > 0); return targ; } void ZeroGS::CMemoryTargetMngr::ClearRange(int nbStartY, int nbEndY) { FUNCLOG int starty = nbStartY / (4 * GPU_TEXWIDTH); int endy = (nbEndY + 4 * GPU_TEXWIDTH - 1) / (4 * GPU_TEXWIDTH); //int endy = (nbEndY+4096-1) / 4096; //if( listTargets.size() < TARGET_THRESH ) { for (list::iterator it = listTargets.begin(); it != listTargets.end();) { if (it->starty < endy && (it->starty + it->height) > starty) { // intersects, reduce valid texture mem (or totally delete texture) // there are 4 cases int miny = max(it->starty, starty); int maxy = min(it->starty + it->height, endy); assert(miny < maxy); if (it->clearmaxy == 0) { it->clearminy = miny; it->clearmaxy = maxy; } else { if (it->clearminy > miny) it->clearminy = miny; if (it->clearmaxy < maxy) it->clearmaxy = maxy; } } ++it; } // } // else { // for(list::iterator it = listTargets.begin(); it != listTargets.end(); ) { // // if( it->starty < endy && (it->starty+it->height) > starty ) { // int newstarty = 0; // if( starty <= it->starty ) { // if( endy < it->starty + it->height) { // // preserve end // it->height = it->starty+it->height-endy; // it->starty = endy; // assert(it->height > 0); // } // else { // // destroy // it->height = 0; // } // } // else { // // beginning can be preserved // it->height = starty-it->starty; // } // // assert( it->starty >= it->realy && it->starty+it->height<=it->realy+it->realheight ); // if( it->height <= 0 ) { // list::iterator itprev = it; ++it; // listClearedTargets.splice(listClearedTargets.end(), listTargets, itprev); // continue; // } // } // // ++it; // } // } } void ZeroGS::CMemoryTargetMngr::DestroyCleared() { FUNCLOG for (list::iterator it = listClearedTargets.begin(); it != listClearedTargets.end();) { if (it->usedstamp < curstamp - 2) { it = listClearedTargets.erase(it); continue; } ++it; } if ((curstamp % 3) == 0) { // purge old targets every 3 frames for (list::iterator it = listTargets.begin(); it != listTargets.end();) { if (it->usedstamp < curstamp - 3) { it = listTargets.erase(it); continue; } ++it; } } ++curstamp; } void ZeroGS::CMemoryTargetMngr::DestroyOldest() { FUNCLOG if (listTargets.size() == 0) return; list::iterator it, itbest; it = itbest = listTargets.begin(); while (it != listTargets.end()) { if (it->usedstamp < itbest->usedstamp) itbest = it; ++it; } listTargets.erase(itbest); } ////////////////////////////////////// // Texture Mngr For Bitwise AND Ops // ////////////////////////////////////// void ZeroGS::CBitwiseTextureMngr::Destroy() { FUNCLOG for (map::iterator it = mapTextures.begin(); it != mapTextures.end(); ++it) { glDeleteTextures(1, &it->second); } mapTextures.clear(); } u32 ZeroGS::CBitwiseTextureMngr::GetTexInt(u32 bitvalue, u32 ptexDoNotDelete) { FUNCLOG if (mapTextures.size() > 32) { // randomly delete 8 for (map::iterator it = mapTextures.begin(); it != mapTextures.end();) { if (!(rand()&3) && it->second != ptexDoNotDelete) { glDeleteTextures(1, &it->second); mapTextures.erase(it++); } else { ++it; } } } if (glGetError() != GL_NO_ERROR) ZZLog::Error_Log("Error before creation of bitmask texture."); // create a new tex u32 ptex; glGenTextures(1, &ptex); if (glGetError() != GL_NO_ERROR) ZZLog::Error_Log("Error on generation of bitmask texture."); vector data(GPU_TEXMASKWIDTH + 1); for (u32 i = 0; i < GPU_TEXMASKWIDTH; ++i) { data[i] = (((i << MASKDIVISOR) & bitvalue) << 6); // add the 1/2 offset so that } data[GPU_TEXMASKWIDTH] = 0; glBindTexture(GL_TEXTURE_RECTANGLE_NV, ptex); if (glGetError() != GL_NO_ERROR) ZZLog::Error_Log("Error on binding bitmask texture."); TextureRect(GL_LUMINANCE16, GPU_TEXMASKWIDTH + 1, 1, GL_LUMINANCE, GL_UNSIGNED_SHORT, &data[0]); if (glGetError() != GL_NO_ERROR) ZZLog::Error_Log("Error on applying bitmask texture."); // Removing clamping, as it seems lead to numerous troubles at some drivers // Need to observe, may be clamping is not really needed. /* setTexRectWrap(GL_REPEAT); GLint Error = glGetError(); if( Error != GL_NO_ERROR ) { ERROR_LOG_SPAM_TEST("Failed to create bitmask texture; \t"); if (SPAM_PASS) { ZZLog::Log("bitmask cache %d; \t", mapTextures.size()); switch (Error) { case GL_INVALID_ENUM: ZZLog::Error_Log("Invalid enumerator.") ; break; case GL_INVALID_VALUE: ZZLog::Error_Log("Invalid value."); break; case GL_INVALID_OPERATION: ZZLog::Error_Log("Invalid operation."); break; default: ZZLog::Error_Log("Error number: %d.", Error); } } return 0; }*/ mapTextures[bitvalue] = ptex; return ptex; } void ZeroGS::CRangeManager::RangeSanityCheck() { #ifdef _DEBUG // sanity check for (int i = 0; i < (int)ranges.size() - 1; ++i) { assert(ranges[i].end < ranges[i+1].start); } #endif } void ZeroGS::CRangeManager::Insert(int start, int end) { FUNCLOG int imin = 0, imax = (int)ranges.size(), imid; RangeSanityCheck(); switch (ranges.size()) { case 0: ranges.push_back(RANGE(start, end)); return; case 1: if (end < ranges.front().start) { ranges.insert(ranges.begin(), RANGE(start, end)); } else if (start > ranges.front().end) { ranges.push_back(RANGE(start, end)); } else { if (start < ranges.front().start) ranges.front().start = start; if (end > ranges.front().end) ranges.front().end = end; } return; } // find where start is while (imin < imax) { imid = (imin + imax) >> 1; assert(imid < (int)ranges.size()); if ((ranges[imid].end >= start) && ((imid == 0) || (ranges[imid-1].end < start))) { imin = imid; break; } else if (ranges[imid].start > start) { imax = imid; } else { imin = imid + 1; } } int startindex = imin; if (startindex >= (int)ranges.size()) { // non intersecting assert(start > ranges.back().end); ranges.push_back(RANGE(start, end)); return; } if (startindex == 0 && end < ranges.front().start) { ranges.insert(ranges.begin(), RANGE(start, end)); RangeSanityCheck(); return; } imin = 0; imax = (int)ranges.size(); // find where end is while (imin < imax) { imid = (imin + imax) >> 1; assert(imid < (int)ranges.size()); if ((ranges[imid].end <= end) && ((imid == ranges.size() - 1) || (ranges[imid+1].start > end))) { imin = imid; break; } else if (ranges[imid].start >= end) { imax = imid; } else { imin = imid + 1; } } int endindex = imin; if (startindex > endindex) { // create a new range ranges.insert(ranges.begin() + startindex, RANGE(start, end)); RangeSanityCheck(); return; } if (endindex >= (int)ranges.size() - 1) { // pop until startindex is reached int lastend = ranges.back().end; int numpop = (int)ranges.size() - startindex - 1; while (numpop-- > 0) { ranges.pop_back(); } assert(start <= ranges.back().end); if (start < ranges.back().start) ranges.back().start = start; if (lastend > ranges.back().end) ranges.back().end = lastend; if (end > ranges.back().end) ranges.back().end = end; RangeSanityCheck(); return; } if (endindex == 0) { assert(end >= ranges.front().start); if (start < ranges.front().start) ranges.front().start = start; if (end > ranges.front().end) ranges.front().end = end; RangeSanityCheck(); } // somewhere in the middle if (ranges[startindex].start < start) start = ranges[startindex].start; if (startindex < endindex) { ranges.erase(ranges.begin() + startindex, ranges.begin() + endindex); } if (start < ranges[startindex].start) ranges[startindex].start = start; if (end > ranges[startindex].end) ranges[startindex].end = end; RangeSanityCheck(); } namespace ZeroGS { CRangeManager s_RangeMngr; // manages overwritten memory static int gs_imageEnd = 0; void ResolveInRange(int start, int end) { FUNCLOG list listTargs = CreateTargetsList(start, end); /* s_DepthRTs.GetTargs(start, end, listTargs); s_RTs.GetTargs(start, end, listTargs);*/ if (listTargs.size() > 0) { FlushBoth(); // We need another list, because old one could be brocken by Flush(). listTargs.clear(); listTargs = CreateTargetsList(start, end); /* s_DepthRTs.GetTargs(start, end, listTargs_1); s_RTs.GetTargs(start, end, listTargs_1);*/ for (list::iterator it = listTargs.begin(); it != listTargs.end(); ++it) { // only resolve if not completely covered if ((*it)->created == 123) (*it)->Resolve(); else ZZLog::Debug_Log("Resolving non-existing object! Destroy code %d.", (*it)->created); } } } ////////////////// // Transferring // ////////////////// void FlushTransferRanges(const tex0Info* ptex) { FUNCLOG assert(s_RangeMngr.ranges.size() > 0); //bool bHasFlushed = false; list listTransmissionUpdateTargs; int texstart = -1, texend = -1; if (ptex != NULL) { GetRectMemAddress(texstart, texend, ptex->psm, 0, 0, ptex->tw, ptex->th, ptex->tbp0, ptex->tbw); } for (vector::iterator itrange = s_RangeMngr.ranges.begin(); itrange != s_RangeMngr.ranges.end(); ++itrange) { int start = itrange->start; int end = itrange->end; listTransmissionUpdateTargs.clear(); listTransmissionUpdateTargs = CreateTargetsList(start, end); /* s_DepthRTs.GetTargs(start, end, listTransmissionUpdateTargs); s_RTs.GetTargs(start, end, listTransmissionUpdateTargs);*/ // if( !bHasFlushed && listTransmissionUpdateTargs.size() > 0 ) { // FlushBoth(); // //#ifdef _DEBUG // // make sure targets are still the same // list::iterator it; // FORIT(it, listTransmissionUpdateTargs) { // CRenderTargetMngr::MAPTARGETS::iterator itmap; // for(itmap = s_RTs.mapTargets.begin(); itmap != s_RTs.mapTargets.end(); ++itmap) { // if( itmap->second == *it ) // break; // } // // if( itmap == s_RTs.mapTargets.end() ) { // // for(itmap = s_DepthRTs.mapTargets.begin(); itmap != s_DepthRTs.mapTargets.end(); ++itmap) { // if( itmap->second == *it ) // break; // } // // assert( itmap != s_DepthRTs.mapTargets.end() ); // } // } //#endif // } for (list::iterator it = listTransmissionUpdateTargs.begin(); it != listTransmissionUpdateTargs.end(); ++it) { CRenderTarget* ptarg = *it; if ((ptarg->status & CRenderTarget::TS_Virtual)) continue; if (!(ptarg->start < texend && ptarg->end > texstart)) { // check if target is currently being used if (!(conf.settings().no_quick_resolve)) { if (ptarg->fbp != vb[0].gsfb.fbp) //&& (vb[0].prndr == NULL || ptarg->fbp != vb[0].prndr->fbp) ) { { if (ptarg->fbp != vb[1].gsfb.fbp) //&& (vb[1].prndr == NULL || ptarg->fbp != vb[1].prndr->fbp) ) { { // this render target currently isn't used and is not in the texture's way, so can safely ignore // resolving it. Also the range has to be big enough compared to the target to really call it resolved // (ffx changing screens, shadowhearts) // start == ptarg->start, used for kh to transfer text if (ptarg->IsDepth() || end - start > 0x50000 || ((conf.settings().quick_resolve_1) && start == ptarg->start)) ptarg->status |= CRenderTarget::TS_NeedUpdate | CRenderTarget::TS_Resolved; continue; } } } } else { // if( start <= texstart && end >= texend ) { // // texture taken care of so can skip!? // continue; // } } // the first range check was very rough; some games (dragonball z) have the zbuf in the same page as textures (but not overlapping) // so detect that condition if (ptarg->fbh % m_Blocks[ptarg->psm].height) { // get start of left-most boundry page int targstart, targend; ZeroGS::GetRectMemAddress(targstart, targend, ptarg->psm, 0, 0, ptarg->fbw, ptarg->fbh & ~(m_Blocks[ptarg->psm].height - 1), ptarg->fbp, ptarg->fbw); if (start >= targend) { // don't bother if ((ptarg->fbh % m_Blocks[ptarg->psm].height) <= 2) continue; // calc how many bytes of the block that the page spans } } if (!(ptarg->status & CRenderTarget::TS_Virtual)) { if (start < ptarg->end && end > ptarg->start) { // suikoden5 is faster with check, but too big of a value and kh screens mess up /* Zeydlitz remove this check, it does not do anything good if ((end - start > 0x8000) && (!(conf.settings() & GAME_GUSTHACK) || (end-start > 0x40000))) { // intersects, do only one sided resolves if( end-start > 4*ptarg->fbw ) { // at least it be greater than one scanline (spiro is faster) if( start > ptarg->start ) { ptarg->Resolve(ptarg->start, start); } else if( end < ptarg->end ) { ptarg->Resolve(end, ptarg->end); } } }*/ ptarg->status |= CRenderTarget::TS_Resolved; if ((!ptarg->IsDepth() || (!(conf.settings().no_depth_update) || end - start > 0x1000)) && ((end - start > 0x40000) || !(conf.settings().gust))) ptarg->status |= CRenderTarget::TS_NeedUpdate; } } } ZeroGS::g_MemTargs.ClearRange(start, end); } s_RangeMngr.Clear(); } static vector s_vTempBuffer, s_vTransferCache; void InitTransferHostLocal() { FUNCLOG //if (g_bIsLost) return; #if defined(ZEROGS_DEVBUILD) if (gs.trxpos.dx + gs.imageWnew > gs.dstbuf.bw) ZZLog::Warn_Log("Transfer error, width exceeded."); #endif //bool bHasFlushed = false; gs.imageX = gs.trxpos.dx; gs.imageY = gs.trxpos.dy; gs.imageEndX = gs.imageX + gs.imageWnew; gs.imageEndY = gs.imageY + gs.imageHnew; assert(gs.imageEndX < 2048 && gs.imageEndY < 2048); // hack! viewful joe if (gs.dstbuf.psm == 63) gs.dstbuf.psm = 0; int start, end; GetRectMemAddress(start, end, gs.dstbuf.psm, gs.trxpos.dx, gs.trxpos.dy, gs.imageWnew, gs.imageHnew, gs.dstbuf.bp, gs.dstbuf.bw); if (end > 0x00400000) { ZZLog::Warn_Log("Host local out of bounds!"); //gs.imageTransfer = -1; end = 0x00400000; } gs_imageEnd = end; if (vb[0].nCount > 0) Flush(0); if (vb[1].nCount > 0) Flush(1); //ZZLog::Prim_Log("trans: bp:%x x:%x y:%x w:%x h:%x\n", gs.dstbuf.bp, gs.trxpos.dx, gs.trxpos.dy, gs.imageWnew, gs.imageHnew); // if( !bHasFlushed && (vb[0].bNeedFrameCheck || vb[0].bNeedZCheck || vb[1].bNeedFrameCheck || vb[1].bNeedZCheck)) { // FlushBoth(); // bHasFlushed = 1; // } // // // for all ranges, flush the targets // // check if new rect intersects with current rendering texture, if so, flush // if( vb[0].nCount > 0 && vb[0].curprim.tme ) { // int tstart, tend; // GetRectMemAddress(tstart, tend, vb[0].tex0.psm, 0, 0, vb[0].tex0.tw, vb[0].tex0.th, vb[0].tex0.tbp0, vb[0].tex0.tbw); // // if( start < tend && end > tstart ) { // FlushBoth(); // bHasFlushed = 1; // } // } // // if( !bHasFlushed && vb[1].nCount > 0 && vb[1].curprim.tme ) { // int tstart, tend; // GetRectMemAddress(tstart, tend, vb[1].tex0.psm, 0, 0, vb[1].tex0.tw, vb[1].tex0.th, vb[1].tex0.tbp0, vb[1].tex0.tbw); // // if( start < tend && end > tstart ) { // FlushBoth(); // bHasFlushed = 1; // } // } //ZeroGS::g_MemTargs.ClearRange(start, end); //s_RangeMngr.Insert(start, end); } void TransferHostLocal(const void* pbyMem, u32 nQWordSize) { FUNCLOG // if (g_bIsLost) return; int start, end; GetRectMemAddress(start, end, gs.dstbuf.psm, gs.imageX, gs.imageY, gs.imageWnew, gs.imageHnew, gs.dstbuf.bp, gs.dstbuf.bw); assert(start < gs_imageEnd); end = gs_imageEnd; // sometimes games can decompress to alpha channel of render target only, in this case // do a resolve right away. wolverine x2 if (((gs.dstbuf.psm == PSMT8H) || (gs.dstbuf.psm == PSMT4HL) || (gs.dstbuf.psm == PSMT4HH)) && !(conf.settings().gust)) { list listTransmissionUpdateTargs; s_RTs.GetTargs(start, end, listTransmissionUpdateTargs); for (list::iterator it = listTransmissionUpdateTargs.begin(); it != listTransmissionUpdateTargs.end(); ++it) { CRenderTarget* ptarg = *it; if ((ptarg->status & CRenderTarget::TS_Virtual)) continue; //ZZLog::Error_Log("Resolving to alpha channel."); ptarg->Resolve(); } } s_RangeMngr.Insert(start, min(end, start + (int)nQWordSize*16)); const u8* porgend = (const u8*)pbyMem + 4 * nQWordSize; if (s_vTransferCache.size() > 0) { int imagecache = s_vTransferCache.size(); s_vTempBuffer.resize(imagecache + nQWordSize*4); memcpy(&s_vTempBuffer[0], &s_vTransferCache[0], imagecache); memcpy(&s_vTempBuffer[imagecache], pbyMem, nQWordSize*4); pbyMem = (const void*) & s_vTempBuffer[0]; porgend = &s_vTempBuffer[0] + s_vTempBuffer.size(); int wordinc = imagecache / 4; if ((nQWordSize * 4 + imagecache) / 3 == ((nQWordSize + wordinc) * 4) / 3) { // can use the data nQWordSize += wordinc; } } int leftover = m_Blocks[gs.dstbuf.psm].TransferHostLocal(pbyMem, nQWordSize); if (leftover > 0) { // copy the last gs.image24bitOffset to the cache s_vTransferCache.resize(leftover); memcpy(&s_vTransferCache[0], porgend - leftover, leftover); } else { s_vTransferCache.resize(0); } #if defined(_DEBUG) if (g_bSaveTrans) { tex0Info t; t.tbp0 = gs.dstbuf.bp; t.tw = gs.imageWnew; t.th = gs.imageHnew; t.tbw = gs.dstbuf.bw; t.psm = gs.dstbuf.psm; SaveTex(&t, 0); } #endif } #if 0 // left/right, top/down //void TransferHostLocal(const void* pbyMem, u32 nQWordSize) //{ // assert( gs.imageTransfer == 0 ); // u8* pstart = g_pbyGSMemory + gs.dstbuf.bp*256; // // const u8* pendbuf = (const u8*)pbyMem + nQWordSize*4; // int i = gs.imageY, j = gs.imageX; // //#define DSTPSM gs.dstbuf.psm // //#define TRANSFERHOSTLOCAL(psm, T, widthlimit) { \ // const T* pbuf = (const T*)pbyMem; \ // u32 nSize = nQWordSize*(4/sizeof(T)); \ // assert( (nSize%widthlimit) == 0 && widthlimit <= 4 ); \ // if( ((gs.imageEndX-gs.trxpos.dx)%widthlimit) ) ZZLog::Error_Log("Bad Transmission! %d %d, psm: %d.", gs.trxpos.dx, gs.imageEndX, DSTPSM); \ // for(; i < gs.imageEndY; ++i) { \ // for(; j < gs.imageEndX && nSize > 0; j += widthlimit, nSize -= widthlimit, pbuf += widthlimit) { \ // /* write as many pixel at one time as possible */ \ // writePixel##psm##_0(pstart, j%2048, i%2048, pbuf[0], gs.dstbuf.bw); \ // \ // if( widthlimit > 1 ) { \ // writePixel##psm##_0(pstart, (j+1)%2048, i%2048, pbuf[1], gs.dstbuf.bw); \ // \ // if( widthlimit > 2 ) { \ // writePixel##psm##_0(pstart, (j+2)%2048, i%2048, pbuf[2], gs.dstbuf.bw); \ // \ // if( widthlimit > 3 ) { \ // writePixel##psm##_0(pstart, (j+3)%2048, i%2048, pbuf[3], gs.dstbuf.bw); \ // } \ // } \ // } \ // } \ // \ // if( j >= gs.imageEndX ) { assert(j == gs.imageEndX); j = gs.trxpos.dx; } \ // else { assert( nSize == 0 ); goto End; } \ // } \ //} \ // //#define TRANSFERHOSTLOCAL_4(psm) { \ // const u8* pbuf = (const u8*)pbyMem; \ // u32 nSize = nQWordSize*8; \ // for(; i < gs.imageEndY; ++i) { \ // for(; j < gs.imageEndX && nSize > 0; j += 8, nSize -= 8) { \ // /* write as many pixel at one time as possible */ \ // writePixel##psm##_0(pstart, j%2048, i%2048, *pbuf&0x0f, gs.dstbuf.bw); \ // writePixel##psm##_0(pstart, (j+1)%2048, i%2048, *pbuf>>4, gs.dstbuf.bw); \ // pbuf++; \ // writePixel##psm##_0(pstart, (j+2)%2048, i%2048, *pbuf&0x0f, gs.dstbuf.bw); \ // writePixel##psm##_0(pstart, (j+3)%2048, i%2048, *pbuf>>4, gs.dstbuf.bw); \ // pbuf++; \ // writePixel##psm##_0(pstart, (j+4)%2048, i%2048, *pbuf&0x0f, gs.dstbuf.bw); \ // writePixel##psm##_0(pstart, (j+5)%2048, i%2048, *pbuf>>4, gs.dstbuf.bw); \ // pbuf++; \ // writePixel##psm##_0(pstart, (j+6)%2048, i%2048, *pbuf&0x0f, gs.dstbuf.bw); \ // writePixel##psm##_0(pstart, (j+7)%2048, i%2048, *pbuf>>4, gs.dstbuf.bw); \ // pbuf++; \ // } \ // \ // if( j >= gs.imageEndX ) { /*assert(j == gs.imageEndX);*/ j = gs.trxpos.dx; } \ // else { assert( nSize == 0 ); goto End; } \ // } \ //} \ // // switch (gs.dstbuf.psm) { // case 0x0: TRANSFERHOSTLOCAL(32, u32, 2); break; // case 0x1: TRANSFERHOSTLOCAL(24, u32, 4); break; // case 0x2: TRANSFERHOSTLOCAL(16, u16, 4); break; // case 0xA: TRANSFERHOSTLOCAL(16S, u16, 4); break; // case 0x13: // if( ((gs.imageEndX-gs.trxpos.dx)%4) ) { // TRANSFERHOSTLOCAL(8, u8, 1); // } // else { // TRANSFERHOSTLOCAL(8, u8, 4); // } // break; // // case 0x14: //// if( (gs.imageEndX-gs.trxpos.dx)%8 ) { //// // hack //// if( abs((int)nQWordSize*8 - (gs.imageEndY-i)*(gs.imageEndX-gs.trxpos.dx)+(j-gs.trxpos.dx)) <= 8 ) { //// // don't transfer //// ZZLog::Error_Log("bad texture 4: %d %d %d.", gs.trxpos.dx, gs.imageEndX, nQWordSize); //// gs.imageEndX = gs.trxpos.dx + (gs.imageEndX-gs.trxpos.dx)&~7; //// //i = gs.imageEndY; //// //goto End; //// gs.imageTransfer = -1; //// } //// } // TRANSFERHOSTLOCAL_4(4); // break; // case 0x1B: TRANSFERHOSTLOCAL(8H, u8, 4); break; // case 0x24: TRANSFERHOSTLOCAL_4(4HL); break; // case 0x2C: TRANSFERHOSTLOCAL_4(4HH); break; // case 0x30: TRANSFERHOSTLOCAL(32Z, u32, 2); break; // case 0x31: TRANSFERHOSTLOCAL(24Z, u32, 4); break; // case 0x32: TRANSFERHOSTLOCAL(16Z, u16, 4); break; // case 0x3A: TRANSFERHOSTLOCAL(16SZ, u16, 4); break; // } // //End: // if( i >= gs.imageEndY ) { // assert( i == gs.imageEndY ); // gs.imageTransfer = -1; // // if( g_bSaveTrans ) { // tex0Info t; // t.tbp0 = gs.dstbuf.bp; // t.tw = gs.imageWnew; // t.th = gs.imageHnew; // t.tbw = gs.dstbuf.bw; // t.psm = gs.dstbuf.psm; // SaveTex(&t, 0); // } // } // else { // /* update new params */ // gs.imageY = i; // gs.imageX = j; // } //} #endif //if 0 void InitTransferLocalHost() { FUNCLOG assert(gs.trxpos.sx + gs.imageWnew <= 2048 && gs.trxpos.sy + gs.imageHnew <= 2048); #if defined(ZEROGS_DEVBUILD) if (gs.trxpos.sx + gs.imageWnew > gs.srcbuf.bw) ZZLog::Warn_Log("Transfer error, width exceeded."); #endif gs.imageX = gs.trxpos.sx; gs.imageY = gs.trxpos.sy; gs.imageEndX = gs.imageX + gs.imageWnew; gs.imageEndY = gs.imageY + gs.imageHnew; s_vTransferCache.resize(0); int start, end; GetRectMemAddress(start, end, gs.srcbuf.psm, gs.trxpos.sx, gs.trxpos.sy, gs.imageWnew, gs.imageHnew, gs.srcbuf.bp, gs.srcbuf.bw); ResolveInRange(start, end); } template void TransferLocalHost(void* pbyMem, u32 nQWordSize, int& x, int& y, u8 *pstart, _readPixel_0 rp) { int i = x, j = y; T* pbuf = (T*)pbyMem; u32 nSize = nQWordSize * 16 / sizeof(T); for (; i < gs.imageEndY; ++i) { for (; j < gs.imageEndX && nSize > 0; ++j, --nSize) { *pbuf++ = rp(pstart, j % 2048, i % 2048, gs.srcbuf.bw); } if (j >= gs.imageEndX) { assert(j == gs.imageEndX); j = gs.trxpos.sx; } else { assert(nSize == 0); break; } } } void TransferLocalHost_24(void* pbyMem, u32 nQWordSize, int& x, int& y, u8 *pstart, _readPixel_0 rp) { int i = x, j = y; u8* pbuf = (u8*)pbyMem; u32 nSize = nQWordSize * 16 / 3; for (; i < gs.imageEndY; ++i) { for (; j < gs.imageEndX && nSize > 0; ++j, --nSize) { u32 p = rp(pstart, j % 2048, i % 2048, gs.srcbuf.bw); pbuf[0] = (u8)p; pbuf[1] = (u8)(p >> 8); pbuf[2] = (u8)(p >> 16); pbuf += 3; } if (j >= gs.imageEndX) { assert(j == gs.imageEndX); j = gs.trxpos.sx; } else { assert(nSize == 0); break; } } } // left/right, top/down void TransferLocalHost(void* pbyMem, u32 nQWordSize) { FUNCLOG assert(gs.imageTransfer == 1); u8* pstart = g_pbyGSMemory + 256 * gs.srcbuf.bp; int i = gs.imageY, j = gs.imageX; switch (gs.srcbuf.psm) { case PSMCT32: TransferLocalHost(pbyMem, nQWordSize, i, j, pstart, readPixel32_0); break; case PSMCT24: TransferLocalHost_24(pbyMem, nQWordSize, i, j, pstart, readPixel24_0); break; case PSMCT16: TransferLocalHost(pbyMem, nQWordSize, i, j, pstart, readPixel16_0); break; case PSMCT16S: TransferLocalHost(pbyMem, nQWordSize, i, j, pstart, readPixel16S_0); break; case PSMT8: TransferLocalHost(pbyMem, nQWordSize, i, j, pstart, readPixel8_0); break; case PSMT8H: TransferLocalHost(pbyMem, nQWordSize, i, j, pstart, readPixel8H_0); break; case PSMT32Z: TransferLocalHost(pbyMem, nQWordSize, i, j, pstart, readPixel32Z_0); break; case PSMT24Z: TransferLocalHost_24(pbyMem, nQWordSize, i, j, pstart, readPixel24Z_0); break; case PSMT16Z: TransferLocalHost(pbyMem, nQWordSize, i, j, pstart, readPixel16Z_0); break; case PSMT16SZ: TransferLocalHost(pbyMem, nQWordSize, i, j, pstart, readPixel16SZ_0); break; default: assert(0); } gs.imageY = i; gs.imageX = j; if (gs.imageY >= gs.imageEndY) { assert(gs.imageY == gs.imageEndY); gs.imageTransfer = -1; } } // dir depends on trxpos.dirx & trxpos.diry void TransferLocalLocal() { FUNCLOG assert(gs.imageTransfer == 2); assert(gs.trxpos.sx + gs.imageWnew < 2048 && gs.trxpos.sy + gs.imageHnew < 2048); assert(gs.trxpos.dx + gs.imageWnew < 2048 && gs.trxpos.dy + gs.imageHnew < 2048); assert((gs.srcbuf.psm&0x7) == (gs.dstbuf.psm&0x7)); if (gs.trxpos.sx + gs.imageWnew > gs.srcbuf.bw) ZZLog::Warn_Log("Transfer error, src width exceeded."); if (gs.trxpos.dx + gs.imageWnew > gs.dstbuf.bw) ZZLog::Warn_Log("Transfer error, dst width exceeded."); int srcstart, srcend, dststart, dstend; GetRectMemAddress(srcstart, srcend, gs.srcbuf.psm, gs.trxpos.sx, gs.trxpos.sy, gs.imageWnew, gs.imageHnew, gs.srcbuf.bp, gs.srcbuf.bw); GetRectMemAddress(dststart, dstend, gs.dstbuf.psm, gs.trxpos.dx, gs.trxpos.dy, gs.imageWnew, gs.imageHnew, gs.dstbuf.bp, gs.dstbuf.bw); // resolve the targs ResolveInRange(srcstart, srcend); list listTargs; s_RTs.GetTargs(dststart, dstend, listTargs); for (list::iterator it = listTargs.begin(); it != listTargs.end(); ++it) { if (!((*it)->status & CRenderTarget::TS_Virtual)) { (*it)->Resolve(); //(*it)->status |= CRenderTarget::TS_NeedUpdate; } } u8* pSrcBuf = g_pbyGSMemory + gs.srcbuf.bp * 256; u8* pDstBuf = g_pbyGSMemory + gs.dstbuf.bp * 256; #define TRANSFERLOCALLOCAL(srcpsm, dstpsm, widthlimit) { \ if( (gs.imageWnew&widthlimit)!=0 ) break; \ assert( (gs.imageWnew&widthlimit)==0 && widthlimit <= 4); \ for(int i = gs.trxpos.sy, i2 = gs.trxpos.dy; i < gs.trxpos.sy+gs.imageHnew; i++, i2++) { \ for(int j = gs.trxpos.sx, j2 = gs.trxpos.dx; j < gs.trxpos.sx+gs.imageWnew; j+=widthlimit, j2+=widthlimit) { \ \ writePixel##dstpsm##_0(pDstBuf, j2%2048, i2%2048, \ readPixel##srcpsm##_0(pSrcBuf, j%2048, i%2048, gs.srcbuf.bw), gs.dstbuf.bw); \ \ if( widthlimit > 1 ) { \ writePixel##dstpsm##_0(pDstBuf, (j2+1)%2048, i2%2048, \ readPixel##srcpsm##_0(pSrcBuf, (j+1)%2048, i%2048, gs.srcbuf.bw), gs.dstbuf.bw); \ \ if( widthlimit > 2 ) { \ writePixel##dstpsm##_0(pDstBuf, (j2+2)%2048, i2%2048, \ readPixel##srcpsm##_0(pSrcBuf, (j+2)%2048, i%2048, gs.srcbuf.bw), gs.dstbuf.bw); \ \ if( widthlimit > 3 ) { \ writePixel##dstpsm##_0(pDstBuf, (j2+3)%2048, i2%2048, \ readPixel##srcpsm##_0(pSrcBuf, (j+3)%2048, i%2048, gs.srcbuf.bw), gs.dstbuf.bw); \ } \ } \ } \ } \ } \ } \ #define TRANSFERLOCALLOCAL_4(srcpsm, dstpsm) { \ assert( (gs.imageWnew%8) == 0 ); \ for(int i = gs.trxpos.sy, i2 = gs.trxpos.dy; i < gs.trxpos.sy+gs.imageHnew; ++i, ++i2) { \ for(int j = gs.trxpos.sx, j2 = gs.trxpos.dx; j < gs.trxpos.sx+gs.imageWnew; j+=8, j2+=8) { \ /* NOTE: the 2 conseq 4bit values are in NOT in the same byte */ \ u32 read = getPixelAddress##srcpsm##_0(j%2048, i%2048, gs.srcbuf.bw); \ u32 write = getPixelAddress##dstpsm##_0(j2%2048, i2%2048, gs.dstbuf.bw); \ pDstBuf[write] = (pDstBuf[write]&0xf0)|(pSrcBuf[read]&0x0f); \ \ read = getPixelAddress##srcpsm##_0((j+1)%2048, i%2048, gs.srcbuf.bw); \ write = getPixelAddress##dstpsm##_0((j2+1)%2048, i2%2048, gs.dstbuf.bw); \ pDstBuf[write] = (pDstBuf[write]&0x0f)|(pSrcBuf[read]&0xf0); \ \ read = getPixelAddress##srcpsm##_0((j+2)%2048, i%2048, gs.srcbuf.bw); \ write = getPixelAddress##dstpsm##_0((j2+2)%2048, i2%2048, gs.dstbuf.bw); \ pDstBuf[write] = (pDstBuf[write]&0xf0)|(pSrcBuf[read]&0x0f); \ \ read = getPixelAddress##srcpsm##_0((j+3)%2048, i%2048, gs.srcbuf.bw); \ write = getPixelAddress##dstpsm##_0((j2+3)%2048, i2%2048, gs.dstbuf.bw); \ pDstBuf[write] = (pDstBuf[write]&0x0f)|(pSrcBuf[read]&0xf0); \ \ read = getPixelAddress##srcpsm##_0((j+2)%2048, i%2048, gs.srcbuf.bw); \ write = getPixelAddress##dstpsm##_0((j2+2)%2048, i2%2048, gs.dstbuf.bw); \ pDstBuf[write] = (pDstBuf[write]&0xf0)|(pSrcBuf[read]&0x0f); \ \ read = getPixelAddress##srcpsm##_0((j+3)%2048, i%2048, gs.srcbuf.bw); \ write = getPixelAddress##dstpsm##_0((j2+3)%2048, i2%2048, gs.dstbuf.bw); \ pDstBuf[write] = (pDstBuf[write]&0x0f)|(pSrcBuf[read]&0xf0); \ \ read = getPixelAddress##srcpsm##_0((j+2)%2048, i%2048, gs.srcbuf.bw); \ write = getPixelAddress##dstpsm##_0((j2+2)%2048, i2%2048, gs.dstbuf.bw); \ pDstBuf[write] = (pDstBuf[write]&0xf0)|(pSrcBuf[read]&0x0f); \ \ read = getPixelAddress##srcpsm##_0((j+3)%2048, i%2048, gs.srcbuf.bw); \ write = getPixelAddress##dstpsm##_0((j2+3)%2048, i2%2048, gs.dstbuf.bw); \ pDstBuf[write] = (pDstBuf[write]&0x0f)|(pSrcBuf[read]&0xf0); \ } \ } \ } \ switch (gs.srcbuf.psm) { case PSMCT32: if (gs.dstbuf.psm == PSMCT32) { TRANSFERLOCALLOCAL(32, 32, 2); } else { TRANSFERLOCALLOCAL(32, 32Z, 2); } break; case PSMCT24: if (gs.dstbuf.psm == PSMCT24) { TRANSFERLOCALLOCAL(24, 24, 4); } else { TRANSFERLOCALLOCAL(24, 24Z, 4); } break; case PSMCT16: switch (gs.dstbuf.psm) { case PSMCT16: TRANSFERLOCALLOCAL(16, 16, 4); break; case PSMCT16S: TRANSFERLOCALLOCAL(16, 16S, 4); break; case PSMT16Z: TRANSFERLOCALLOCAL(16, 16Z, 4); break; case PSMT16SZ: TRANSFERLOCALLOCAL(16, 16SZ, 4); break; } break; case PSMCT16S: switch (gs.dstbuf.psm) { case PSMCT16: TRANSFERLOCALLOCAL(16S, 16, 4); break; case PSMCT16S: TRANSFERLOCALLOCAL(16S, 16S, 4); break; case PSMT16Z: TRANSFERLOCALLOCAL(16S, 16Z, 4); break; case PSMT16SZ: TRANSFERLOCALLOCAL(16S, 16SZ, 4); break; } break; case PSMT8: if (gs.dstbuf.psm == PSMT8) { TRANSFERLOCALLOCAL(8, 8, 4); } else { TRANSFERLOCALLOCAL(8, 8H, 4); } break; case PSMT4: switch (gs.dstbuf.psm) { case PSMT4: TRANSFERLOCALLOCAL_4(4, 4); break; case PSMT4HL: TRANSFERLOCALLOCAL_4(4, 4HL); break; case PSMT4HH: TRANSFERLOCALLOCAL_4(4, 4HH); break; } break; case PSMT8H: if (gs.dstbuf.psm == PSMT8) { TRANSFERLOCALLOCAL(8H, 8, 4); } else { TRANSFERLOCALLOCAL(8H, 8H, 4); } break; case PSMT4HL: switch (gs.dstbuf.psm) { case PSMT4: TRANSFERLOCALLOCAL_4(4HL, 4); break; case PSMT4HL: TRANSFERLOCALLOCAL_4(4HL, 4HL); break; case PSMT4HH: TRANSFERLOCALLOCAL_4(4HL, 4HH); break; } break; case PSMT4HH: switch (gs.dstbuf.psm) { case PSMT4: TRANSFERLOCALLOCAL_4(4HH, 4); break; case PSMT4HL: TRANSFERLOCALLOCAL_4(4HH, 4HL); break; case PSMT4HH: TRANSFERLOCALLOCAL_4(4HH, 4HH); break; } break; case PSMT32Z: if (gs.dstbuf.psm == PSMCT32) { TRANSFERLOCALLOCAL(32Z, 32, 2); } else { TRANSFERLOCALLOCAL(32Z, 32Z, 2); } break; case PSMT24Z: if (gs.dstbuf.psm == PSMCT24) { TRANSFERLOCALLOCAL(24Z, 24, 4); } else { TRANSFERLOCALLOCAL(24Z, 24Z, 4); } break; case PSMT16Z: switch (gs.dstbuf.psm) { case PSMCT16: TRANSFERLOCALLOCAL(16Z, 16, 4); break; case PSMCT16S: TRANSFERLOCALLOCAL(16Z, 16S, 4); break; case PSMT16Z: TRANSFERLOCALLOCAL(16Z, 16Z, 4); break; case PSMT16SZ: TRANSFERLOCALLOCAL(16Z, 16SZ, 4); break; } break; case PSMT16SZ: switch (gs.dstbuf.psm) { case PSMCT16: TRANSFERLOCALLOCAL(16SZ, 16, 4); break; case PSMCT16S: TRANSFERLOCALLOCAL(16SZ, 16S, 4); break; case PSMT16Z: TRANSFERLOCALLOCAL(16SZ, 16Z, 4); break; case PSMT16SZ: TRANSFERLOCALLOCAL(16SZ, 16SZ, 4); break; } break; } g_MemTargs.ClearRange(dststart, dstend); #ifdef DEVBUILD if (g_bSaveTrans) { tex0Info t; t.tbp0 = gs.dstbuf.bp; t.tw = gs.imageWnew; t.th = gs.imageHnew; t.tbw = gs.dstbuf.bw; t.psm = gs.dstbuf.psm; SaveTex(&t, 0); t.tbp0 = gs.srcbuf.bp; t.tw = gs.imageWnew; t.th = gs.imageHnew; t.tbw = gs.srcbuf.bw; t.psm = gs.srcbuf.psm; SaveTex(&t, 0); } #endif } void GetRectMemAddress(int& start, int& end, int psm, int x, int y, int w, int h, int bp, int bw) { FUNCLOG if (m_Blocks[psm].bpp == 0) { ZZLog::Error_Log("ZeroGS: Bad psm 0x%x.", psm); start = 0; end = 0x00400000; return; } if (PSMT_ISZTEX(psm) || psm == PSMCT16S) { const BLOCK& b = m_Blocks[psm]; bw = (bw + b.width - 1) / b.width; start = bp * 256 + ((y / b.height) * bw + (x / b.width)) * 0x2000; end = bp * 256 + (((y + h - 1) / b.height) * bw + (x + w + b.width - 1) / b.width) * 0x2000; } else { // just take the addresses switch (psm) { case PSMCT32: case PSMCT24: case PSMT8H: case PSMT4HL: case PSMT4HH: start = 4 * getPixelAddress32(x, y, bp, bw); end = 4 * getPixelAddress32(x + w - 1, y + h - 1, bp, bw) + 4; break; case PSMCT16: start = 2 * getPixelAddress16(x, y, bp, bw); end = 2 * getPixelAddress16(x + w - 1, y + h - 1, bp, bw) + 2; break; case PSMT8: start = getPixelAddress8(x, y, bp, bw); end = getPixelAddress8(x + w - 1, y + h - 1, bp, bw) + 1; break; case PSMT4: { start = getPixelAddress4(x, y, bp, bw) / 2; int newx = ((x + w - 1 + 31) & ~31) - 1; int newy = ((y + h - 1 + 15) & ~15) - 1; end = (getPixelAddress4(max(newx, x), max(newy, y), bp, bw) + 2) / 2; break; } } } } // I removed some code here that wasn't getting called. The old versions #if'ed out below this. #define RESOLVE_32_BIT(PSM, T, Tsrc, convfn) \ { \ u32 mask, imask; \ \ if (PSMT_ISHALF(psm)) /* 16 bit */ \ {\ /* mask is shifted*/ \ imask = RGBA32to16(fbm);\ mask = (~imask)&0xffff;\ }\ else \ {\ mask = ~fbm;\ imask = fbm;\ }\ \ Tsrc* src = (Tsrc*)(psrc); \ T* pPageOffset = (T*)g_pbyGSMemory + fbp*(256/sizeof(T)), *dst; \ int maxfbh = (0x00400000-fbp*256) / (sizeof(T) * fbw); \ if( maxfbh > fbh ) maxfbh = fbh; \ \ for(int i = 0; i < maxfbh; ++i) { \ for(int j = 0; j < fbw; ++j) { \ T dsrc = convfn(src[RW(j)]); \ dst = pPageOffset + getPixelAddress##PSM##_0(j, i, fbw); \ *dst = (dsrc & mask) | (*dst & imask); \ } \ src += RH(Pitch(fbw))/sizeof(Tsrc); \ } \ } \ void _Resolve(const void* psrc, int fbp, int fbw, int fbh, int psm, u32 fbm, bool mode = true) { FUNCLOG int start, end; s_nResolved += 2; // align the rect to the nearest page // note that fbp is always aligned on page boundaries GetRectMemAddress(start, end, psm, 0, 0, fbw, fbh, fbp, fbw); if (GetRenderFormat() == RFT_byte8) { // start the conversion process A8R8G8B8 -> psm switch (psm) { case PSMCT32: case PSMCT24: RESOLVE_32_BIT(32, u32, u32, (u32)); break; case PSMCT16: RESOLVE_32_BIT(16, u16, u32, RGBA32to16); break; case PSMCT16S: RESOLVE_32_BIT(16S, u16, u32, RGBA32to16); break; case PSMT32Z: case PSMT24Z: RESOLVE_32_BIT(32Z, u32, u32, (u32)); break; case PSMT16Z: RESOLVE_32_BIT(16Z, u16, u32, (u16)); break; case PSMT16SZ: RESOLVE_32_BIT(16SZ, u16, u32, (u16)); break; } } else // float16 { switch (psm) { case PSMCT32: case PSMCT24: RESOLVE_32_BIT(32, u32, Vector_16F, Float16ToARGB); break; case PSMCT16: RESOLVE_32_BIT(16, u16, Vector_16F, Float16ToARGB16); break; case PSMCT16S: RESOLVE_32_BIT(16S, u16, Vector_16F, Float16ToARGB16); break; case PSMT32Z: case PSMT24Z: RESOLVE_32_BIT(32Z, u32, Vector_16F, Float16ToARGB_Z); break; case PSMT16Z: RESOLVE_32_BIT(16Z, u16, Vector_16F, Float16ToARGB16_Z); break; case PSMT16SZ: RESOLVE_32_BIT(16SZ, u16, Vector_16F, Float16ToARGB16_Z); break; } } g_MemTargs.ClearRange(start, end); INC_RESOLVE(); } // Leaving this code in for reference for the moment. #if 0 void _Resolve(const void* psrc, int fbp, int fbw, int fbh, int psm, u32 fbm, bool mode) { FUNCLOG //GL_REPORT_ERRORD(); s_nResolved += 2; // align the rect to the nearest page // note that fbp is always aligned on page boundaries int start, end; GetRectMemAddress(start, end, psm, 0, 0, fbw, fbh, fbp, fbw); int i, j; //short smask1 = gs.smask&1; //short smask2 = gs.smask&2; u32 mask, imask; if (PSMT_ISHALF(psm)) // 16 bit { // mask is shifted imask = RGBA32to16(fbm); mask = (~imask) & 0xffff; } else { mask = ~fbm; imask = fbm; if ((psm&0xf) > 0 && 0) { // preserve the alpha? mask &= 0x00ffffff; imask |= 0xff000000; } } // Targets over 2000 should be shuffle. FFX and KH2 (0x2100) int X = (psm == 0) ? 0 : 0; //if (X == 1) //ZZLog::Error_Log("resolve: %x %x %x %x (%x-%x).", psm, fbp, fbw, fbh, start, end); #define RESOLVE_32BIT(psm, T, Tsrc, blockbits, blockwidth, blockheight, convfn, frame, aax, aay) \ { \ Tsrc* src = (Tsrc*)(psrc); \ T* pPageOffset = (T*)g_pbyGSMemory + fbp*(256/sizeof(T)), *dst; \ int srcpitch = Pitch(fbw) * blockheight/sizeof(Tsrc); \ int maxfbh = (0x00400000-fbp*256) / (sizeof(T) * fbw); \ if( maxfbh > fbh ) maxfbh = fbh; \ for(i = 0; i < (maxfbh&~(blockheight-1))*X; i += blockheight) { \ /*if( smask2 && (i&1) == smask1 ) continue; */ \ for(j = 0; j < fbw; j += blockwidth) { \ /* have to write in the tiled format*/ \ frame##SwizzleBlock##blockbits(pPageOffset + getPixelAddress##psm##_0(j, i, fbw), \ src+RW(j), Pitch(fbw)/sizeof(Tsrc), mask); \ } \ src += RH(srcpitch); \ } \ for(; i < maxfbh; ++i) { \ for(j = 0; j < fbw; ++j) { \ T dsrc = convfn(src[RW(j)]); \ dst = pPageOffset + getPixelAddress##psm##_0(j, i, fbw); \ *dst = (dsrc & mask) | (*dst & imask); \ } \ src += RH(Pitch(fbw))/sizeof(Tsrc); \ } \ } \ if( GetRenderFormat() == RFT_byte8 ) { // start the conversion process A8R8G8B8 -> psm switch (psm) { case PSMCT32: case PSMCT24: if (s_AAy) { RESOLVE_32BIT(32, u32, u32, 32A4, 8, 8, (u32), Frame, s_AAx, s_AAy); } else if (s_AAx) { RESOLVE_32BIT(32, u32, u32, 32A2, 8, 8, (u32), Frame, 1, 0); } else { RESOLVE_32BIT(32, u32, u32, 32, 8, 8, (u32), Frame, 0, 0); } break; case PSMCT16: if (s_AAy) { RESOLVE_32BIT(16, u16, u32, 16A4, 16, 8, RGBA32to16, Frame, s_AAx, s_AAy); } else if (s_AAx) { RESOLVE_32BIT(16, u16, u32, 16A2, 16, 8, RGBA32to16, Frame, 1, 0); } else { RESOLVE_32BIT(16, u16, u32, 16, 16, 8, RGBA32to16, Frame, 0, 0); } break; case PSMCT16S: if (s_AAy) { RESOLVE_32BIT(16S, u16, u32, 16A4, 16, 8, RGBA32to16, Frame, s_AAx, s_AAy); } else if (s_AAx) { RESOLVE_32BIT(16S, u16, u32, 16A2, 16, 8, RGBA32to16, Frame, 1, 0); } else { RESOLVE_32BIT(16S, u16, u32, 16, 16, 8, RGBA32to16, Frame, 0, 0); } break; case PSMT32Z: case PSMT24Z: if (s_AAy) { RESOLVE_32BIT(32Z, u32, u32, 32A4, 8, 8, (u32), Frame, s_AAx, s_AAy); } else if (s_AAx) { RESOLVE_32BIT(32Z, u32, u32, 32A2, 8, 8, (u32), Frame, 1, 0); } else { RESOLVE_32BIT(32Z, u32, u32, 32, 8, 8, (u32), Frame, 0, 0); } break; case PSMT16Z: if (s_AAy) { RESOLVE_32BIT(16Z, u16, u32, 16A4, 16, 8, (u16), Frame, s_AAx, s_AAy); } else if (s_AAx) { RESOLVE_32BIT(16Z, u16, u32, 16A2, 16, 8, (u16), Frame, 1, 0); } else { RESOLVE_32BIT(16Z, u16, u32, 16, 16, 8, (u16), Frame, 0, 0); } break; case PSMT16SZ: if (s_AAy) { RESOLVE_32BIT(16SZ, u16, u32, 16A4, 16, 8, (u16), Frame, s_AAx, s_AAy); } else if (s_AAx) { RESOLVE_32BIT(16SZ, u16, u32, 16A2, 16, 8, (u16), Frame, 1, 0); } else { RESOLVE_32BIT(16SZ, u16, u32, 16, 16, 8, (u16), Frame, 0, 0); } break; } } else // float16 { switch (psm) { case PSMCT32: case PSMCT24: if (s_AAy) { RESOLVE_32BIT(32, u32, Vector_16F, 32A4, 8, 8, Float16ToARGB, Frame16, 1, 1); } else if (s_AAx) { RESOLVE_32BIT(32, u32, Vector_16F, 32A2, 8, 8, Float16ToARGB, Frame16, 1, 0); } else { RESOLVE_32BIT(32, u32, Vector_16F, 32, 8, 8, Float16ToARGB, Frame16, 0, 0); } break; case PSMCT16: if (s_AAy) { RESOLVE_32BIT(16, u16, Vector_16F, 16A4, 16, 8, Float16ToARGB16, Frame16, 1, 1); } else if (s_AAx) { RESOLVE_32BIT(16, u16, Vector_16F, 16A2, 16, 8, Float16ToARGB16, Frame16, 1, 0); } else { RESOLVE_32BIT(16, u16, Vector_16F, 16, 16, 8, Float16ToARGB16, Frame16, 0, 0); } break; case PSMCT16S: if (s_AAy) { RESOLVE_32BIT(16S, u16, Vector_16F, 16A4, 16, 8, Float16ToARGB16, Frame16, 1, 1); } else if (s_AAx) { RESOLVE_32BIT(16S, u16, Vector_16F, 16A2, 16, 8, Float16ToARGB16, Frame16, 1, 0); } else { RESOLVE_32BIT(16S, u16, Vector_16F, 16, 16, 8, Float16ToARGB16, Frame16, 0, 0); } break; case PSMT32Z: case PSMT24Z: if (s_AAy) { RESOLVE_32BIT(32Z, u32, Vector_16F, 32ZA4, 8, 8, Float16ToARGB_Z, Frame16, 1, 1); } else if (s_AAx) { RESOLVE_32BIT(32Z, u32, Vector_16F, 32ZA2, 8, 8, Float16ToARGB_Z, Frame16, 1, 0); } else { RESOLVE_32BIT(32Z, u32, Vector_16F, 32Z, 8, 8, Float16ToARGB_Z, Frame16, 0, 0); } break; case PSMT16Z: if (s_AAy) { RESOLVE_32BIT(16Z, u16, Vector_16F, 16ZA4, 16, 8, Float16ToARGB16_Z, Frame16, 1, 1); } else if (s_AAx) { RESOLVE_32BIT(16Z, u16, Vector_16F, 16ZA2, 16, 8, Float16ToARGB16_Z, Frame16, 1, 0); } else { RESOLVE_32BIT(16Z, u16, Vector_16F, 16Z, 16, 8, Float16ToARGB16_Z, Frame16, 0, 0); } break; case PSMT16SZ: if (s_AAy) { RESOLVE_32BIT(16SZ, u16, Vector_16F, 16ZA4, 16, 8, Float16ToARGB16_Z, Frame16, 1, 1); } else if (s_AAx) { RESOLVE_32BIT(16SZ, u16, Vector_16F, 16ZA2, 16, 8, Float16ToARGB16_Z, Frame16, 1, 0); } else { RESOLVE_32BIT(16SZ, u16, Vector_16F, 16Z, 16, 8, Float16ToARGB16_Z, Frame16, 0, 0); } break; } } g_MemTargs.ClearRange(start, end); INC_RESOLVE(); } #endif } // End of namespece ZeroGS