// SPDX-FileCopyrightText: 2002-2024 PCSX2 Dev Team // SPDX-License-Identifier: GPL-3.0+ #ifdef VERTEX_SHADER layout(location = 0) in vec4 a_pos; layout(location = 1) in vec2 a_tex; layout(location = 0) out vec2 v_tex; void main() { gl_Position = vec4(a_pos.x, -a_pos.y, a_pos.z, a_pos.w); v_tex = a_tex; } #endif #ifdef FRAGMENT_SHADER layout(push_constant) uniform cb10 { vec4 u_source_rect; vec4 u_target_rect; vec2 u_source_size; vec2 u_target_size; vec2 u_target_resolution; vec2 u_rcp_target_resolution; // 1 / u_target_resolution vec2 u_source_resolution; vec2 u_rcp_source_resolution; // 1 / u_source_resolution float u_time; }; layout(location = 0) in vec2 v_tex; layout(location = 0) out vec4 o_col0; layout(set = 0, binding = 0) uniform sampler2D samp0; vec4 sample_c(vec2 uv) { return texture(samp0, uv); } vec4 ps_crt(uint i) { vec4 mask[4] = vec4[4]( vec4(1, 0, 0, 0), vec4(0, 1, 0, 0), vec4(0, 0, 1, 0), vec4(1, 1, 1, 0)); return sample_c(v_tex) * clamp((mask[i] + 0.5f), 0.0f, 1.0f); } vec4 ps_scanlines(uint i) { vec4 mask[2] = { vec4(1, 1, 1, 0), vec4(0, 0, 0, 0)}; return sample_c(v_tex) * clamp((mask[i] + 0.5f), 0.0f, 1.0f); } #ifdef ps_copy void ps_copy() { o_col0 = sample_c(v_tex); } #endif #ifdef ps_filter_scanlines void ps_filter_scanlines() // scanlines { uvec4 p = uvec4(gl_FragCoord); o_col0 = ps_scanlines(p.y % 2); } #endif #ifdef ps_filter_diagonal void ps_filter_diagonal() // diagonal { uvec4 p = uvec4(gl_FragCoord); o_col0 = ps_crt((p.x + (p.y % 3)) % 3); } #endif #ifdef ps_filter_triangular void ps_filter_triangular() // triangular { uvec4 p = uvec4(gl_FragCoord); // output.c = ps_crt(input, ((p.x + (p.y & 1) * 3) >> 1) % 3); o_col0 = ps_crt(((p.x + ((p.y >> 1) & 1) * 3) >> 1) % 3); } #endif #ifdef ps_filter_complex void ps_filter_complex() // triangular { const float PI = 3.14159265359f; vec2 texdim = vec2(textureSize(samp0, 0)); o_col0 = (0.9 - 0.4 * cos(2 * PI * v_tex.y * texdim.y)) * sample_c(vec2(v_tex.x, (floor(v_tex.y * texdim.y) + 0.5) / texdim.y)); } #endif #ifdef ps_filter_lottes #define MaskingType 4 //[1|2|3|4] The type of CRT shadow masking used. 1: compressed TV style, 2: Aperture-grille, 3: Stretched VGA style, 4: VGA style. #define ScanBrightness -8.00 //[-16.0 to 1.0] The overall brightness of the scanline effect. Lower for darker, higher for brighter. #define FilterCRTAmount -1.00 //[-4.0 to 1.0] The amount of filtering used, to replicate the TV CRT look. Lower for less, higher for more. #define HorizontalWarp 0.00 //[0.0 to 0.1] The distortion warping effect for the horizontal (x) axis of the screen. Use small increments. #define VerticalWarp 0.00 //[0.0 to 0.1] The distortion warping effect for the verticle (y) axis of the screen. Use small increments. #define MaskAmountDark 0.80 //[0.0 to 1.0] The value of the dark masking line effect used. Lower for darker lower end masking, higher for brighter. #define MaskAmountLight 1.50 //[0.0 to 2.0] The value of the light masking line effect used. Lower for darker higher end masking, higher for brighter. #define ResolutionScale 2.00 //[0.1 to 4.0] The scale of the image resolution. Lowering this can give off a nice retro TV look. Raising it can clear up the image. #define MaskResolutionScale 0.80 //[0.1 to 2.0] The scale of the CRT mask resolution. Use this for balancing the scanline mask scale for difference resolution scaling. #define UseShadowMask 1 //[0 or 1] Enables, or disables the use of the CRT shadow mask. 0 is disabled, 1 is enabled. #define saturate(x) clamp(x, 0.0, 1.0) float ToLinear1(float c) { c = saturate(c); return c <= 0.04045 ? c / 12.92 : pow((c + 0.055) / 1.055, 2.4); } vec3 ToLinear(vec3 c) { return vec3(ToLinear1(c.r), ToLinear1(c.g), ToLinear1(c.b)); } float ToSrgb1(float c) { c = saturate(c); return c < 0.0031308 ? c * 12.92 : 1.055 * pow(c, 0.41666) - 0.055; } vec3 ToSrgb(vec3 c) { return vec3(ToSrgb1(c.r), ToSrgb1(c.g), ToSrgb1(c.b)); } vec3 Fetch(vec2 pos, vec2 off) { vec2 screenSize = u_source_resolution; vec2 res = (screenSize * ResolutionScale); pos = round(pos * res + off) / res; if (max(abs(pos.x - 0.5), abs(pos.y - 0.5)) > 0.5) { return vec3(0.0, 0.0, 0.0); } else { return ToLinear(texture(samp0, pos.xy).rgb); } } vec2 Dist(vec2 pos) { vec2 crtRes = u_rcp_target_resolution; vec2 res = (crtRes * MaskResolutionScale); pos = (pos * res); return -((pos - floor(pos)) - vec2(0.5, 0.5)); } float Gaus(float pos, float scale) { return exp2(scale * pos * pos); } vec3 Horz3(vec2 pos, float off) { vec3 b = Fetch(pos, vec2(-1.0, off)); vec3 c = Fetch(pos, vec2(0.0, off)); vec3 d = Fetch(pos, vec2(1.0, off)); float dst = Dist(pos).x; // Convert distance to weight. float scale = FilterCRTAmount; float wb = Gaus(dst - 1.0, scale); float wc = Gaus(dst + 0.0, scale); float wd = Gaus(dst + 1.0, scale); return (b * wb) + (c * wc) + (d * wd) / (wb + wc + wd); } vec3 Horz5(vec2 pos, float off) { vec3 a = Fetch(pos, vec2(-2.0, off)); vec3 b = Fetch(pos, vec2(-1.0, off)); vec3 c = Fetch(pos, vec2(0.0, off)); vec3 d = Fetch(pos, vec2(1.0, off)); vec3 e = Fetch(pos, vec2(2.0, off)); float dst = Dist(pos).x; // Convert distance to weight. float scale = FilterCRTAmount; float wa = Gaus(dst - 2.0, scale); float wb = Gaus(dst - 1.0, scale); float wc = Gaus(dst + 0.0, scale); float wd = Gaus(dst + 1.0, scale); float we = Gaus(dst + 2.0, scale); return (a * wa) + (b * wb) + (c * wc) + (d * wd) + (e * we) / (wa + wb + wc + wd + we); } // Return scanline weight. float Scan(vec2 pos, float off) { float dst = Dist(pos).y; return Gaus(dst + off, ScanBrightness); } vec3 Tri(vec2 pos) { vec3 a = Horz3(pos, -1.0); vec3 b = Horz5(pos, 0.0); vec3 c = Horz3(pos, 1.0); float wa = Scan(pos, -1.0); float wb = Scan(pos, 0.0); float wc = Scan(pos, 1.0); return (a * wa) + (b * wb) + (c * wc); } vec2 Warp(vec2 pos) { pos = pos * 2.0 - 1.0; pos *= vec2(1.0 + (pos.y * pos.y) * HorizontalWarp, 1.0 + (pos.x * pos.x) * VerticalWarp); return pos * 0.5 + 0.5; } vec3 Mask(vec2 pos) { #if MaskingType == 1 // Very compressed TV style shadow mask. float lines = MaskAmountLight; float odd = 0.0; if (fract(pos.x / 6.0) < 0.5) { odd = 1.0; } if (fract((pos.y + odd) / 2.0) < 0.5) { lines = MaskAmountDark; } pos.x = fract(pos.x / 3.0); vec3 mask = vec3(MaskAmountDark, MaskAmountDark, MaskAmountDark); if (pos.x < 0.333) { mask.r = MaskAmountLight; } else if (pos.x < 0.666) { mask.g = MaskAmountLight; } else { mask.b = MaskAmountLight; } mask *= lines; return mask; #elif MaskingType == 2 // Aperture-grille. pos.x = fract(pos.x / 3.0); vec3 mask = vec3(MaskAmountDark, MaskAmountDark, MaskAmountDark); if (pos.x < 0.333) { mask.r = MaskAmountLight; } else if (pos.x < 0.666) { mask.g = MaskAmountLight; } else { mask.b = MaskAmountLight; } return mask; #elif MaskingType == 3 // Stretched VGA style shadow mask (same as prior shaders). pos.x += pos.y * 3.0; vec3 mask = vec3(MaskAmountDark, MaskAmountDark, MaskAmountDark); pos.x = fract(pos.x / 6.0); if (pos.x < 0.333) { mask.r = MaskAmountLight; } else if (pos.x < 0.666) { mask.g = MaskAmountLight; } else { mask.b = MaskAmountLight; } return mask; #else // VGA style shadow mask. pos.xy = floor(pos.xy * vec2(1.0, 0.5)); pos.x += pos.y * 3.0; vec3 mask = vec3(MaskAmountDark, MaskAmountDark, MaskAmountDark); pos.x = fract(pos.x / 6.0); if (pos.x < 0.333) { mask.r = MaskAmountLight; } else if (pos.x < 0.666) { mask.g = MaskAmountLight; } else { mask.b = MaskAmountLight; } return mask; #endif } vec4 LottesCRTPass() { vec4 fragcoord = gl_FragCoord - u_target_rect; vec4 color; vec2 inSize = u_target_resolution - (2 * u_target_rect.xy); vec2 pos = Warp(fragcoord.xy / inSize); #if UseShadowMask == 0 color.rgb = Tri(pos); #else color.rgb = Tri(pos) * Mask(fragcoord.xy); #endif color.rgb = ToSrgb(color.rgb); color.a = 1.0; return color; } void ps_filter_lottes() { o_col0 = LottesCRTPass(); } #endif #ifdef ps_4x_rgss void ps_4x_rgss() { vec2 dxy = vec2(dFdx(v_tex.x), dFdy(v_tex.y)); vec3 color = vec3(0); float s = 1.0/8.0; float l = 3.0/8.0; color += sample_c(v_tex + vec2( s, l) * dxy).rgb; color += sample_c(v_tex + vec2( l,-s) * dxy).rgb; color += sample_c(v_tex + vec2(-s,-l) * dxy).rgb; color += sample_c(v_tex + vec2(-l, s) * dxy).rgb; o_col0 = vec4(color * 0.25,1); } #endif #ifdef ps_automagical_supersampling void ps_automagical_supersampling() { vec2 ratio = (u_source_size / u_target_size) * 0.5; vec2 steps = floor(ratio); vec3 col = sample_c(v_tex).rgb; float div = 1; for (float y = 0; y < steps.y; y++) { for (float x = 0; x < steps.x; x++) { vec2 offset = vec2(x,y) - ratio * 0.5; col += sample_c(v_tex + offset * u_rcp_source_resolution * 2.0).rgb; div++; } } o_col0 = vec4(col / div, 1); } #endif #endif