/* PCSX2 - PS2 Emulator for PCs * Copyright (C) 2002-2009 PCSX2 Dev Team * * PCSX2 is free software: you can redistribute it and/or modify it under the terms * of the GNU Lesser General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with PCSX2. * If not, see . */ #pragma once #include // EBUSY #include #include #include "Pcsx2Defs.h" namespace Exception { ////////////////////////////////////////////////////////////////////////////////////////// // Thread termination exception, used to quickly terminate threads from anywhere in the // thread's call stack. This exception is handled by the PCSX2 PersistentThread class. Threads // not derived from that class will not handle this exception. // class ThreadTermination { }; } class wxTimeSpan; namespace Threading { ////////////////////////////////////////////////////////////////////////////////////////// // Define some useful object handles - wait events, mutexes. // pthread Cond is an evil api that is not suited for Pcsx2 needs. // Let's not use it. Use mutexes and semaphores instead to create waits. (Air) #if 0 struct WaitEvent { pthread_cond_t cond; pthread_mutex_t mutex; WaitEvent(); ~WaitEvent(); void Set(); void Wait(); }; #endif struct Semaphore { sem_t sema; Semaphore(); ~Semaphore(); void Reset(); void Post(); void Post( int multiple ); #if wxUSE_GUI void WaitGui(); bool WaitGui( const wxTimeSpan& timeout ); #endif void Wait(); bool Wait( const wxTimeSpan& timeout ); void WaitNoCancel(); int Count(); }; struct MutexLock { pthread_mutex_t mutex; MutexLock(); MutexLock( bool isRecursive ); ~MutexLock(); void Lock(); void Unlock(); }; // Returns the number of available logical CPUs (cores plus hyperthreaded cpus) extern void CountLogicalCores( int LogicalCoresPerPhysicalCPU, int PhysicalCoresPerPhysicalCPU ); // Releases a timeslice to other threads. extern void Timeslice(); // For use in spin/wait loops. extern void SpinWait(); // sleeps the current thread for the given number of milliseconds. extern void Sleep( int ms ); ////////////////////////////////////////////////////////////////////////////////////////// // PersistentThread - Helper class for the basics of starting/managing persistent threads. // // Use this as a base class for your threaded procedure, and implement the 'int ExecuteTask()' // method. Use Start() and Cancel() to start and shutdown the thread, and use m_sem_event // internally to post/receive events for the thread (make a public accessor for it in your // derived class if your thread utilizes the post). // // Notes: // * Constructing threads as static global vars isn't recommended since it can potentially // confuse w32pthreads, if the static initializers are executed out-of-order (C++ offers // no dependency options for ensuring correct static var initializations). Use heap // allocation to create thread objects instead. // class PersistentThread { DeclareNoncopyableObject(PersistentThread) protected: typedef int (*PlainJoeFP)(); pthread_t m_thread; Semaphore m_sem_event; // general wait event that's needed by most threads. Semaphore m_sem_finished; // used for canceling and closing threads in a deadlock-safe manner sptr m_returncode; // value returned from the thread on close. volatile long m_detached; // a boolean value which indicates if the m_thread handle is valid volatile long m_running; // set true by Start(), and set false by Cancel(), Block(), etc. public: virtual ~PersistentThread(); PersistentThread(); virtual void Start(); virtual void Cancel( bool isBlocking = true ); virtual void Detach(); // Gets the return code of the thread. // Throws std::logic_error if the thread has not terminated. virtual int GetReturnCode() const; virtual bool IsRunning() const; virtual sptr Block(); bool IsSelf() const; virtual void DoThreadCleanup(); protected: // Used to dispatch the thread callback function. // (handles some thread cleanup on Win32, and is basically a typecast // on linux). static void* _internal_callback( void* func ); // Implemented by derived class to handle threading actions! virtual sptr ExecuteTask()=0; }; ////////////////////////////////////////////////////////////////////////////////////////// // ScopedLock: Helper class for using Mutexes. // Using this class provides an exception-safe (and generally clean) method of locking // code inside a function or conditional block. // class ScopedLock { DeclareNoncopyableObject(ScopedLock) protected: MutexLock& m_lock; bool m_IsLocked; public: virtual ~ScopedLock() { if( m_IsLocked ) m_lock.Unlock(); } ScopedLock( MutexLock& locker ) : m_lock( locker ) , m_IsLocked( true ) { m_lock.Lock(); } // Provides manual unlocking of a scoped lock prior to object destruction. void Unlock() { if( !m_IsLocked ) return; m_IsLocked = false; m_lock.Unlock(); } // provides manual locking of a scoped lock, to re-lock after a manual unlocking. void Lock() { if( m_IsLocked ) return; m_lock.Lock(); m_IsLocked = true; } }; ////////////////////////////////////////////////////////////////////////////////////////// // BaseTaskThread - an abstract base class which provides simple parallel execution of // single tasks. // // Implementation: // To use this class your derived class will need to implement its own Task() function // and also a "StartTask( parameters )" function which suits the need of your task, along // with any local variables your task needs to do its job. You may additionally want to // implement a "GetResult()" function, which would be a combination of WaitForResult() // and a return value of the computational result. // // Thread Safety: // If operating on local variables, you must execute WaitForResult() before leaving the // variable scope -- or alternatively have your StartTask() implementation make full // copies of dependent data. Also, by default PostTask() always assumes the previous // task has completed. If your system can post a new task before the previous one has // completed, then it needs to explicitly call WaitForResult() or provide a mechanism // to cancel the previous task (which is probably more work than it's worth). // // Performance notes: // * Remember that thread creation is generally slow, so you should make your object // instance once early and then feed it tasks repeatedly over the course of program // execution. // // * For threading to be a successful speedup, the task being performed should be as lock // free as possible. For example using STL containers in parallel usually fails to // yield any speedup due to the gratuitous amount of locking that the STL performs // internally. // // * The best application of tasking threads is to divide a large loop over a linear array // into smaller sections. For example, if you have 20,000 items to process, the task // can be divided into two threads of 10,000 items each. // class BaseTaskThread : public PersistentThread { protected: volatile bool m_Done; volatile bool m_TaskComplete; Semaphore m_post_TaskComplete; public: virtual ~BaseTaskThread() {} BaseTaskThread() : m_Done( false ) , m_TaskComplete( false ) , m_post_TaskComplete() { } // Tells the thread to exit and then waits for thread termination. sptr Block() { if( !m_running ) return m_returncode; m_Done = true; m_sem_event.Post(); return PersistentThread::Block(); } // Initiates the new task. This should be called after your own StartTask has // initialized internal variables / preparations for task execution. void PostTask() { jASSUME( m_running ); m_TaskComplete = false; m_post_TaskComplete.Reset(); m_sem_event.Post(); } // Blocks current thread execution pending the completion of the parallel task. void WaitForResult() { if( !m_running ) return; if( !m_TaskComplete ) m_post_TaskComplete.Wait(); else m_post_TaskComplete.Reset(); } protected: // Abstract method run when a task has been posted. Implementing classes should do // all your necessary processing work here. virtual void Task()=0; sptr ExecuteTask() { do { // Wait for a job! m_sem_event.Wait(); if( m_Done ) break; Task(); m_TaskComplete = true; m_post_TaskComplete.Post(); } while( !m_Done ); return 0; } }; ////////////////////////////////////////////////////////////////////////////////////////// // Our fundamental interlocking functions. All other useful interlocks can be derived // from these little beasties! extern long pcsx2_InterlockedExchange(volatile long* Target, long srcval); extern long pcsx2_InterlockedCompareExchange( volatile long* target, long srcval, long comp ); extern long pcsx2_InterlockedExchangeAdd( volatile long* target, long addval ); extern void AtomicExchange( volatile u32& Target, u32 value ); extern void AtomicExchangeAdd( volatile u32& Target, u32 value ); extern void AtomicIncrement( volatile u32& Target ); extern void AtomicDecrement( volatile u32& Target ); extern void AtomicExchange( volatile s32& Target, s32 value ); extern void AtomicExchangeAdd( volatile s32& Target, u32 value ); extern void AtomicIncrement( volatile s32& Target ); extern void AtomicDecrement( volatile s32& Target ); extern void _AtomicExchangePointer( const void ** target, const void* value ); extern void _AtomicCompareExchangePointer( const void ** target, const void* value, const void* comparand ); #define AtomicExchangePointer( target, value ) \ _AtomicExchangePointer( (const void**)(&target), (const void*)(value) ) #define AtomicCompareExchangePointer( target, value, comparand ) \ _AtomicCompareExchangePointer( (const void**)(&target), (const void*)(value), (const void*)(comparand) ) }