/* SPU2-X, A plugin for Emulating the Sound Processing Unit of the Playstation 2 * Developed and maintained by the Pcsx2 Development Team. * * Original portions from SPU2ghz are (c) 2008 by David Quintana [gigaherz] * * SPU2-X is free software: you can redistribute it and/or modify it under the terms * of the GNU Lesser General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * SPU2-X is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with SPU2-X. If not, see . */ #include "Global.h" #include "SoundTouch/SoundTouch.h" #include "SoundTouch/WavFile.h" static soundtouch::SoundTouch* pSoundTouch = NULL; static int ts_stats_stretchblocks = 0; static int ts_stats_normalblocks = 0; static int ts_stats_logcounter = 0; // data prediction amount, used to "commit" data that hasn't // finished timestretch processing. s32 SndBuffer::m_predictData; // records last buffer status (fill %, range -100 to 100, with 0 being 50% full) float SndBuffer::lastPct; float SndBuffer::lastEmergencyAdj; float SndBuffer::cTempo = 1; float SndBuffer::eTempo = 1; void SndBuffer::PredictDataWrite( int samples ) { m_predictData += samples; } // Calculate the buffer status percentage. // Returns range from -1.0 to 1.0 // 1.0 = buffer overflow! // 0.0 = buffer nominal (50% full) // -1.0 = buffer underflow! float SndBuffer::GetStatusPct() { // Get the buffer status of the output driver too, so that we can // obtain a more accurate overall buffer status. int drvempty = mods[OutputModule]->GetEmptySampleCount(); // / 2; //ConLog( "Data %d >>> driver: %d predict: %d\n", m_data, drvempty, m_predictData ); float result = (float)(m_data + m_predictData - drvempty) - (m_size/16); result /= (m_size/16); return result; } void SndBuffer::UpdateTempoChangeSoundTouch() { float statusPct = GetStatusPct(); float pctChange = statusPct - lastPct; float tempoChange; float emergencyAdj = 0; float newcee = cTempo; // workspace var. for cTempo // IMPORTANT! // If you plan to tweak these values, make sure you're using a release build // OUTSIDE THE DEBUGGER to test it! The Visual Studio debugger can really cause // erratic behavior in the audio buffers, and makes the timestretcher seem a // lot more inconsistent than it really is. // We have two factors. // * Distance from nominal buffer status (50% full) // * The change from previous update to this update. // Prediction based on the buffer change: // (linear seems to work better here) tempoChange = pctChange * 0.75f; if( statusPct * tempoChange < 0.0f ) { // only apply tempo change if it is in synch with the buffer status. // In other words, if the buffer is high (over 0%), and is decreasing, // ignore it. It'll just muck things up. tempoChange = 0; } // Sudden spikes in framerate can cause the nominal buffer status // to go critical, in which case we have to enact an emergency // stretch. The following cubic formulas do that. Values near // the extremeites give much larger results than those near 0. // And the value is added only this time, and does not accumulate. // (otherwise a large value like this would cause problems down the road) // Constants: // Weight - weights the statusPct's "emergency" consideration. // higher values here will make the buffer perform more drastic // compensations at the outer edges of the buffer (at -75 or +75% // or beyond, for example). // Range - scales the adjustment to the given range (more or less). // The actual range is dependent on the weight used, so if you increase // Weight you'll usually want to decrease Range somewhat to compensate. // Prediction based on the buffer fill status: const float statusWeight = 2.99f; const float statusRange = 0.068f; // "non-emergency" deadzone: In this area stretching will be strongly discouraged. // Note: due tot he nature of timestretch latency, it's always a wee bit harder to // cope with low fps (underruns) than it is high fps (overruns). So to help out a // little, the low-end portions of this check are less forgiving than the high-sides. if( cTempo < 0.965f || cTempo > 1.060f || pctChange < -0.38f || pctChange > 0.54f || statusPct < -0.42f || statusPct > 0.70f || eTempo < 0.89f || eTempo > 1.19f ) { //printf("Emergency stretch: cTempo = %f eTempo = %f pctChange = %f statusPct = %f\n",cTempo,eTempo,pctChange,statusPct); emergencyAdj = ( pow( statusPct*statusWeight, 3.0f ) * statusRange); } // Smooth things out by factoring our previous adjustment into this one. // It helps make the system 'feel' a little smarter by giving it at least // one packet worth of history to help work off of: emergencyAdj = (emergencyAdj * 0.75f) + (lastEmergencyAdj * 0.25f ); lastEmergencyAdj = emergencyAdj; lastPct = statusPct; // Accumulate a fraction of the tempo change into the tempo itself. // This helps the system run "smarter" to games that run consistently // fast or slow by altering the base tempo to something closer to the // game's active speed. In tests most games normalize within 2 seconds // at 100ms latency, which is pretty good (larger buffers normalize even // quicker). newcee += newcee * (tempoChange+emergencyAdj) * 0.03f; // Apply tempoChange as a scale of cTempo. That way the effect is proportional // to the current tempo. (otherwise tempos rate of change at the extremes would // be too drastic) float newTempo = newcee + ( emergencyAdj * cTempo ); // ... and as a final optimization, only stretch if the new tempo is outside // a nominal threshold. Keep this threshold check small, because it could // cause some serious side effects otherwise. (enlarging the cTempo check above // is usually better/safer) if( newTempo < 0.970f || newTempo > 1.045f ) { cTempo = (float)newcee; if( newTempo < 0.10f ) newTempo = 0.10f; else if( newTempo > 10.0f ) newTempo = 10.0f; if( cTempo < 0.15f ) cTempo = 0.15f; else if( cTempo > 7.5f ) cTempo = 7.5f; pSoundTouch->setTempo( eTempo = (float)newTempo ); ts_stats_stretchblocks++; /*ConLog("* SPU2-X: [Nominal %d%%] [Emergency: %d%%] (baseTempo: %d%% ) (newTempo: %d%%) (buffer: %d%%)\n", //(relation < 0.0) ? "Normalize" : "", (int)(tempoChange * 100.0 * 0.03), (int)(emergencyAdj * 100.0), (int)(cTempo * 100.0), (int)(newTempo * 100.0), (int)(statusPct * 100.0) );*/ } else { // Nominal operation -- turn off stretching. // note: eTempo 'slides' toward 1.0 for smoother audio and better // protection against spikes. if( cTempo != 1.0f ) { cTempo = 1.0f; eTempo = ( 1.0f + eTempo ) * 0.5f; pSoundTouch->setTempo( eTempo ); } else { if( eTempo != cTempo ) pSoundTouch->setTempo( eTempo=cTempo ); ts_stats_normalblocks++; } } } extern uint TickInterval; void SndBuffer::UpdateTempoChangeAsyncMixing() { float statusPct = GetStatusPct(); lastPct = statusPct; if( statusPct < -0.4f ) { TickInterval -= 4; if( TickInterval <= 200 ) TickInterval = 200; //printf("-- %d, %f\n",TickInterval,statusPct); } else if( statusPct > 0.5f ) { TickInterval += 1; if( TickInterval >= 7000 ) TickInterval = 7000; //printf("++ %d, %f\n",TickInterval,statusPct); } else TickInterval = 768; } void SndBuffer::timeStretchUnderrun() { // timeStretcher failed it's job. We need to slow down the audio some. cTempo -= (cTempo * 0.12f); eTempo -= (eTempo * 0.30f); if( eTempo < 0.1f ) eTempo = 0.1f; pSoundTouch->setTempo( eTempo ); } s32 SndBuffer::timeStretchOverrun() { // If we overran it means the timestretcher failed. We need to speed // up audio playback. cTempo += cTempo * 0.12f; eTempo += eTempo * 0.40f; if( eTempo > 7.5f ) eTempo = 7.5f; pSoundTouch->setTempo( eTempo ); // Throw out just a little bit (two packets worth) to help // give the TS some room to work: return SndOutPacketSize*2; } static void CvtPacketToFloat( StereoOut32* srcdest ) { StereoOutFloat* dest = (StereoOutFloat*)srcdest; const StereoOut32* src = (StereoOut32*)srcdest; for( uint i=0; iputSamples( (float*)sndTempBuffer, SndOutPacketSize ); int tempProgress; while( tempProgress = pSoundTouch->receiveSamples( (float*)sndTempBuffer, SndOutPacketSize), tempProgress != 0 ) { // Hint: It's assumed that pSoundTouch will return chunks of 128 bytes (it always does as // long as the SSE optimizations are enabled), which means we can do our own SSE opts here. CvtPacketToInt( sndTempBuffer, tempProgress ); _WriteSamples( sndTempBuffer, tempProgress ); progress = true; } UpdateTempoChangeSoundTouch(); if( MsgOverruns() ) { if( progress ) { if( ++ts_stats_logcounter > 150 ) { ts_stats_logcounter = 0; ConLog( " * SPU2 > Timestretch Stats > %d percent stretched. Total stretchblocks = %d.\n", ( ts_stats_stretchblocks * 100 ) / ( ts_stats_normalblocks + ts_stats_stretchblocks ), ts_stats_stretchblocks); ts_stats_normalblocks = 0; ts_stats_stretchblocks = 0; } } } } void SndBuffer::soundtouchInit() { pSoundTouch = new soundtouch::SoundTouch(); pSoundTouch->setSampleRate(SampleRate); pSoundTouch->setChannels(2); pSoundTouch->setSetting( SETTING_USE_QUICKSEEK, 0 ); pSoundTouch->setSetting( SETTING_USE_AA_FILTER, 0 ); SoundtouchCfg::ApplySettings( *pSoundTouch ); pSoundTouch->setTempo(1); // some timestretch management vars: cTempo = 1.0; eTempo = 1.0; lastPct = 0; lastEmergencyAdj = 0; m_predictData = 0; } // reset timestretch management vars, and delay updates a bit: void SndBuffer::soundtouchClearContents() { if( pSoundTouch == NULL ) return; pSoundTouch->clear(); pSoundTouch->setTempo(1); cTempo = 1.0; eTempo = 1.0; lastPct = 0; lastEmergencyAdj = 0; m_predictData = 0; } void SndBuffer::soundtouchCleanup() { safe_delete( pSoundTouch ); }