/*===============================================================================*\ |######################## [PCSX2 Fx 2.00 Revised] #########################| |########################## By Asmodean ###########################| || || || This program is free software; you can redistribute it and/or || || modify it under the terms of the GNU General Public License || || as published by the Free Software Foundation; either version 2 || || of the License, or (at your option) any later version. || || || || This program is distributed in the hope that it will be useful, || || but WITHOUT ANY WARRANTY; without even the implied warranty of || || MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the || || GNU General Public License for more details. (c)2013 || || || |#################################################################################| \*===============================================================================*/ #if defined(SHADER_MODEL) // make safe to include in resource file to enforce dependency /*------------------------------------------------------------------------------ [DEFINITIONS & ON/OFF OPTIONS] ------------------------------------------------------------------------------*/ //---------------------------#[CHOOSE EFFECTS]#--------------------------------\\ //-#[ANTIALIASING TECHNIQUES] [1=ON|0=OFF] #READ: For best results: Use post antialiasing OR FS filtering. Not both. Postfix [2D/3D] after descriptions indicates if it's typically better for 2D, or 3D. #define UHQ_FXAA 1 //#High Quality Fast Approximate Anti Aliasing. Adapted for GSdx from Timothy Lottes FXAA 3.11. [3D] //-#[FS FILTERING TECHNIQUES] [1=ON|0=OFF] #READ: For best results: Only enable one type of filtering at one time. Use post antialiasing OR FS filtering, not both. #define BILINEAR_FILTERING 0 //#BiLinear Fullscreen Texture Filtering. BiLinear filtering - light to medium filtering of textures. [2D] #define BICUBIC_FILTERING 0 //#BiCubic Fullscreen Texture Filtering. BiCubic filtering - medium to strong filtering of textures. [2D] #define GAUSSIAN_FILTERING 0 //#Gaussian Fullscreen Texture Filtering. BiLinear filtering - strong to extra strong filtering of textures. [2D] //-#[LIGHTING & COLOUR] [1=ON|0=OFF] #READ: These can all be turned on & off independently of each other. [For High Dynamic Range(HDR) - use Bloom, Tonemapping, & Gamma Correction together] #define BLENDED_BLOOM 1 //#High Quality Bloom, using blend techniques. Blooms naturally, per environment. [For best results: use bloom, tone mapping, & gamma together]. #define SCENE_TONEMAPPING 1 //#Scene Tonemapping & RGB Colour Correction. [For best results: use bloom, tone mapping, & gamma together]. #define GAMMA_CORRECTION 1 //#RGB Post Gamma Correction Curve. [For best results: use bloom, tone mapping, & gamma together]. #define S_CURVE_CONTRAST 1 //#S-Curve Scene Contrast Enhancement. Naturally adjusts contrast using S-curves. #define TEXTURE_SHARPENING 1 //#HQ Luma-Based Texture Sharpen, looks similar to a negative mip LOD Bias, enhances texture fidelity. #define PIXEL_VIBRANCE 0 //#Pixel Vibrance. Intelligently adjusts pixel vibrance depending on original saturation. #define COLOR_GRADING 0 //#Post-Complement Colour Grading. Alters individual colour components on a scene, to enhance selected colour tones. #define CEL_SHADING 0 //#Cel Shaded toon look, simulates the look of animation/toon. Typically best suited for animated-style games. (cel edges interfere with post AA.) //-#[TV EMU TECHNIQUES] [1=ON|0=OFF] #READ: These can all be turned on & off independently of each other. These effects are typically used to simulated older TVs/CRT etc. #define SCANLINES 0 //#Scanlines to simulate the look of a CRT TV. Typically best suited for 2D/sprite games. #define VIGNETTE 0 //#Darkens the edges of the screen, to make it look more like it was shot with a camera lens. #define DITHERING 0 //#Subpixel Dithering to simulate more colors than your monitor can display. Smoothes gradiants, this can reduce color banding. /*------------------------------------------------------------------------------ [SHADER FX CONFIG OPTIONS] ------------------------------------------------------------------------------*/ //-[FXAA OPTIONS] #define FxaaSubpixMax 0.00 //[0.00 to 1.00] Amount of subpixel aliasing removal. Higher values: more subpixel antialiasing(softer). Lower values: less subpixel antialiasing(sharper). 0.00: Edge only antialiasing (no blurring) #define FxaaQuality 4 //[1|2|3|4] Overall Fxaa quality preset (pixel coverage). 1: Low, 2: Medium, 3: High, 4: Ultra. I use these labels lightly, as even the 'low coverage' preset is in fact, still pretty high quality. #define FxaaEarlyExit 1 //[0 or 1] Use Fxaa early exit pathing. This basically tells the algorithm to offset only luma-edge detected pixels. When disabled, the entire scene is antialiased(FSAA). 0 is off, 1 is on. //-[BILINEAR OPTIONS] #define FilterStrength 1.00 //[0.10 to 1.50] Bilinear filtering strength. Controls the overall strength of the filtering. #define OffsetAmount 0.0 //[0.0 to 1.5] Pixel offset amount. If you want to use an st offset, 0.5 is generally recommended. 0.0 is off. //-[BICUBIC OPTIONS] #define Interpolation Triangular //[CatMullRom, Bell, BSpline, Triangular, Cubic] Type of interpolation to use. From left to right is lighter<-->stronger filtering. Try them out, and use what you prefer. #define PixelOffset 0.0 //[0.0 to 1.5] Pixel offset amount. If you want to use an st offset, 0.5 is generally recommended. 0.0 is off. //-[GAUSSIAN OPTIONS] #define FilterAmount 0.75 //[0.10 to 1.50] Gaussian filtering strength. Controls the overall strength of the filtering. #define GaussianSpread 1.00 //[0.50 to 4.00] The filtering spread & offset levels. Controls the sampling spread of the filtering. //-[BLOOM OPTIONS] #define BloomType BlendScreen //[BlendScreen, BlendOverlay, BlendAddLight] The type of blend for the bloom (Default: BlendScreen). If using BlendOverlay set ToneAmount to 2.20, or it may be too dark. #define BloomPower 0.330 //[0.000 to 2.000] Strength of the bloom. You may need to readjust for each blend type. #define BlendPower 1.000 //[0.000 to 1.500] Strength of the bloom blend. Lower for less blending, higher for more. Default is 1.000. #define BlendSpread 4.000 //[0.000 to 8.000] Width of the bloom glow spread. Scales with BloomPower. Raising SharpenClamp affects this. 0.000 = off. #define BloomMixType 1 //[1|2|3] The interpolation mix type between the base colour, and bloom. (Default is 1) BloomPower/BlendSpread may need re-adjusting depending on type. //-[TONEMAP OPTIONS] #define TonemapType 1 //[1 or 2] Type of tone mapping. 1 is Natural(default), 2 is Filmic(cinematic) You might want to increase/decrease ToneAmount to compensate for diff types. #define ToneAmount 2.00 //[1.00 to 4.00] Tonemapping & Gamma curve (Tonemapping/Shadow correction). Lower values for darker tones, Higher values for lighter tones. Default: 2.20 #define Luminance 1.00 //[0.10 to 2.00] Luminance Average (luminance correction) Higher values to decrease luminance average, lower values to increase luminance. Adjust by small amounts, eg: increments of 0.1 #define Exposure 1.00 //[0.10 to 2.00] White Correction (brightness) Higher values = more Exposure, lower = less Exposure. Adjust by small amounts, eg: increments of 0.1 #define WhitePoint 1.00 //[0.10 to 2.00] Whitepoint Avg (lum correction) Adjust by small amounts, eg: increments of 0.01. Generally it's best left at 1.00. #define RedCurve 1.00 //[1.00 to 8.00] Red channel component of the RGB correction curve. Use this to reduce/correct the red colour component. Higher values equals more red reduction. 1.00 is default. #define GreenCurve 1.00 //[1.00 to 8.00] Green channel component of the RGB correction curve. Use this to reduce/correct the green colour component. Higher values equals more green reduction. 1.00 is default. #define BlueCurve 1.00 //[1.00 to 8.00] Blue channel component of the RGB correction curve. Use this to reduce/correct the blue colour component. Higher values equals more blue reduction. 1.00 is default. //-[CONTRAST OPTIONS] #define CurveType 0 //[0|1|2] Choose what to apply contrast to. 0 = Luma, 1 = Chroma, 2 = both Luma and Chroma. Default is 0 (Luma) #define CurvesContrast 0.60 //[0.00 to 2.00] The amount of contrast you want. CurvesFormula 1 typically needs half the amount of CurvesFormula 2, for the same strength. #define CurvesFormula 1 //[1|2] The contrast s-curve you want to use. 1 is a softer curve. 2 is a harsher curve. //-[SHARPEN OPTIONS] #define SharpeningType 2 //[1 or 2] The type of sharpening to use. Type 1 is the original High Pass Gaussian, and type 2 is a new Bicubic Sampling type. #define SharpenStrength 0.75 //[0.10 to 2.00] Strength of the texture sharpening effect. This is the maximum strength that will be used. The clamp below limits the minimum, and maximum that is allowed per pixel. #define SharpenClamp 0.020 //[0.005 to 0.500] Reduces the clamping/limiting on the maximum amount of sharpening each pixel recieves. Raise this to reduce the clamping. #define SharpenBias 1.25 //[1.00 to 4.00] Sharpening edge bias. Lower values for clean subtle sharpen, and higher values for a deeper textured sharpen. For SharpeningType 2, best stay under ~2.00, or it may look odd. #define DebugSharpen 0 //[0 or 1] Visualize the sharpening effect. Useful for fine-tuning. //-[VIBRANCE OPTIONS] #define Vibrance 0.10 //[-1.00 to 1.00] Intelligently saturates (or desaturates with negative values) pixels depending on their original saturation. 0.00 is original vibrance. //-[GAMMA OPTIONS] #define Gamma 2.2 //Lower values for more Gamma toning(darker), higher Values for brighter (2.2 correction is generally recommended) //-[GRADING OPTIONS] #define RedGrading 1.02 //[0.0 to 3.0] Red colour grading coefficient. Adjust to influence the red channel coefficients of the grading, and highlight tones. #define GreenGrading 0.96 //[0.0 to 3.0] Green colour grading coefficient. Adjust to influence the Green channel coefficients of the grading, and highlight tones. #define BlueGrading 0.88 //[0.0 to 3.0] Blue colour grading coefficient. Adjust to influence the Blue channel coefficients of the grading, and highlight tones. #define GradingStrength 0.40 //[0.00 to 1.00] The overall max strength of the colour grading effect. Raise to increase, lower to decrease the amount. #define Correlation 0.50 //[0.10 to 1.00] Correlation between the base colour, and the grading influence. Lower = more of the scene is graded, Higher = less of the scene is graded. //-[TOON OPTIONS] #define EdgeStrength 1.25 //[0.00 to 4.00] Strength of the cel edge outline effect. 0.00 = no outlines. #define EdgeFilter 0.50 //[0.10 to 2.00] Raise this to filter out fainter cel edges. You might need to increase the power to compensate, when raising this. #define EdgeThickness 1.00 //[0.50 to 4.00] Thickness of the cel edges. Decrease for thinner outlining, Increase for thicker outlining. 1.00 is default. #define PaletteType 2 //[1|2|3] The colour palette to use. 1 is Original, 2 is Animated Shading, 3 is Water Painting (Default is 2: Animated Shading). Below options don't affect palette 1. #define UseYuvLuma 0 //[0 or 1] Uses YUV luma calculations, or base colour luma calculations. 0 is base luma, 1 is Yuv luma. Color luma can be more accurate. Yuv luma can be better for a shaded look. #define LumaConversion 1 //[0 or 1] Uses BT.601, or BT.709, RGB<-YUV->RGB conversions. Some games prefer 601, but most prefer 709. BT.709 is typically recommended. #define ColorRounding 0 //[0 or 1] Uses rounding methods on colors. This can emphasise shaded toon colors. Looks good in some games, and odd in others. Try it in-game and see. //-[SCANLINE OPTIONS] #define ScanlineType 3 //[0|1|2|3] The type & orientation of the scanlines. 0 is x(horizontal), 1 is y(vertical), 2 is both(xy), ScanlineType 3 is a different algorithm, to work around PCSX2's IR scaling. #define ScanlineScale 1.00 //[0.20 to 2.00] The scaling & thickness of the scanlines. Changing this can help with PCSX2 IR scaling problems. Defaults: 0.50 for ScanlineType 0|1|2, (1.20 for ScanlineType 3, use 1.0 with low IR (lower than 3x)). #define ScanlineIntensity 0.50 //[0.10 to 1.00] The intensity of the scanlines. Defaults: 0.20 for ScanlineType 0|1|2, 0.50 for ScanlineType 3. #define ScanlineBrightness 1.50 //[0.50 to 2.00] The brightness of the scanlines. Defaults: 1.75 for ScanlineType 0|1|2, 1.50 for ScanlineType 3. //-[VIGNETTE OPTIONS] #define VignetteRatio 1.77 //[0.15 to 6.00] Sets the espect ratio of the vignette. 1.77 for 16:9, 1.60 for 16:10, 1.33 for 4:3, 1.00 for 1:1. #define VignetteRadius 1.00 //[0.50 to 3.00] Radius of the vignette effect. Lower values for stronger radial effect from center #define VignetteAmount 0.75 //[0.00 to 2.00] Strength of black edge occlusion. Increase for higher strength, decrease for lower. #define VignetteSlope 8 //[2|4|8|12|16] How far away from the center the vignetting will start. //-[DITHERING OPTIONS] #define DitherMethod 2 //[1 or 2] 1 is Ordering dithering(faster, lower quality), 2 is Random dithering (better dithering, but not as fast) //-[END OF USER OPTIONS] /*------------------------------------------------------------------------------ [GLOBALS|FUNCTIONS] ------------------------------------------------------------------------------*/ #if (SHADER_MODEL == 0x500) #define VS_VERSION vs_5_0 #define PS_VERSION ps_5_0 #else #define VS_VERSION vs_4_0 #define PS_VERSION ps_4_0 #endif Texture2D Texture : TEXTURE : register(PS_VERSION, t0); SamplerState TextureSampler : register(PS_VERSION, s0) { Filter = Anisotropic; MaxAnisotropy = 16; AddressU = Clamp; AddressV = Clamp; }; cbuffer cb0 { float4 _rcpFrame : VIEWPORT : register(PS_VERSION, b0); matrixworldMatrix : WORLD; matrixviewMatrix : VIEW; matrixprojectionMatrix : PROJECTION; static const float GammaConst = 2.2; }; struct VS_INPUT { float4 p : POSITION; float2 t : TEXCOORD0; }; struct VS_OUTPUT { float4 p : SV_Position; float2 t : TEXCOORD0; }; struct PS_OUTPUT { float4 c : SV_Target0; }; //experimental, not used currently. float TrueLuminance(float3 color) { float maxRGB; float minRGB; float r = color.x; float g = color.y; float b = color.z; if (r >= g) { maxRGB = r; } if (r >= b) { maxRGB = r; } if (g >= r) { maxRGB = g; } if (g >= b) { maxRGB = g; } if (b >= r) { maxRGB = b; } if (b >= g) { maxRGB = b; } if (r <= g) { minRGB = r; } if (r <= b) { minRGB = r; } if (g <= r) { minRGB = g; } if (g <= b) { minRGB = g; } if (b <= r) { minRGB = b; } if (b <= g) { minRGB = b; } float lumin = ((maxRGB + minRGB) / 2); return lumin; } float RGBLuminance(float3 color) { const float3 lumCoeff = float3(0.2126729, 0.7151522, 0.0721750); return dot(color.rgb, lumCoeff); } float RGBGammaToLinear(float color, float gamma) { color = abs(color); color = ((color <= 0.0) ? color / 12.92 : pow((color + 0.055) / 1.055, gamma)); return color; } float LinearToRGBGamma(float color, float gamma) { color = abs(color); color = (color <= 0.0) ? color * 12.92 : (1.055 * pow(color, 1.0 / gamma) - 0.055); return color; } #define PixelSize float2(_rcpFrame.x, _rcpFrame.y) #define GammaCorrection(color, gamma) pow(color, gamma) #define InverseGammaCorrection(color, gamma) pow(color, 1.0/gamma) /*------------------------------------------------------------------------------ [VERTEX CODE SECTION] ------------------------------------------------------------------------------*/ //Not used currently - here for testing on custom builds. VS_OUTPUT vs_main(VS_INPUT input) { VS_OUTPUT output; output.p = mul(input.p, worldMatrix); output.p = mul(input.p, viewMatrix); output.p = mul(input.p, projectionMatrix); output.p = input.p; output.t = input.t; return output; } /*------------------------------------------------------------------------------ [GAMMA PREPASS CODE SECTION] ------------------------------------------------------------------------------*/ float4 PreGammaPass(float4 color, float2 uv0) { color = Texture.Sample(TextureSampler, uv0); color.r = RGBGammaToLinear(color.r, GammaConst); color.g = RGBGammaToLinear(color.g, GammaConst); color.b = RGBGammaToLinear(color.b, GammaConst); color.r = LinearToRGBGamma(color.r, GammaConst); color.g = LinearToRGBGamma(color.g, GammaConst); color.b = LinearToRGBGamma(color.b, GammaConst); color.a = RGBLuminance(color.rgb); return color; } /*------------------------------------------------------------------------------ [FXAA CODE SECTION] ------------------------------------------------------------------------------*/ #if (UHQ_FXAA == 1) #if (SHADER_MODEL == 0x500) #define FXAA_HLSL_5 1 #define FXAA_GATHER4_ALPHA 1 #elif (SHADER_MODEL == 0x400) #define FXAA_HLSL_4 1 #define FXAA_GATHER4_ALPHA 0 #endif #if (FxaaQuality == 4) #define FxaaEdgeThreshold (0.033) #define FxaaEdgeThresholdMin (0.00) #define FXAA_QUALITY__PS 14 #define FXAA_QUALITY__P0 1.0 #define FXAA_QUALITY__P1 1.5 #define FXAA_QUALITY__P2 2.0 #define FXAA_QUALITY__P3 2.0 #define FXAA_QUALITY__P4 2.0 #define FXAA_QUALITY__P5 2.0 #define FXAA_QUALITY__P6 2.0 #define FXAA_QUALITY__P7 2.0 #define FXAA_QUALITY__P8 2.0 #define FXAA_QUALITY__P9 2.0 #define FXAA_QUALITY__P10 4.0 #define FXAA_QUALITY__P11 8.0 #define FXAA_QUALITY__P12 8.0 #elif (FxaaQuality == 3) #define FxaaEdgeThreshold (0.125) #define FxaaEdgeThresholdMin (0.0312) #define FXAA_QUALITY__PS 12 #define FXAA_QUALITY__P0 1.0 #define FXAA_QUALITY__P1 1.5 #define FXAA_QUALITY__P2 2.0 #define FXAA_QUALITY__P3 2.0 #define FXAA_QUALITY__P4 2.0 #define FXAA_QUALITY__P5 2.0 #define FXAA_QUALITY__P6 2.0 #define FXAA_QUALITY__P7 2.0 #define FXAA_QUALITY__P8 2.0 #define FXAA_QUALITY__P9 2.0 #define FXAA_QUALITY__P10 4.0 #define FXAA_QUALITY__P11 8.0 #elif (FxaaQuality == 2) #define FxaaEdgeThreshold (0.166) #define FxaaEdgeThresholdMin (0.0625) #define FXAA_QUALITY__PS 10 #define FXAA_QUALITY__P0 1.0 #define FXAA_QUALITY__P1 1.5 #define FXAA_QUALITY__P2 2.0 #define FXAA_QUALITY__P3 2.0 #define FXAA_QUALITY__P4 2.0 #define FXAA_QUALITY__P5 2.0 #define FXAA_QUALITY__P6 2.0 #define FXAA_QUALITY__P7 2.0 #define FXAA_QUALITY__P8 4.0 #define FXAA_QUALITY__P9 8.0 #elif (FxaaQuality == 1) #define FxaaEdgeThreshold (0.250) #define FxaaEdgeThresholdMin (0.0833) #define FXAA_QUALITY__PS 8 #define FXAA_QUALITY__P0 1.0 #define FXAA_QUALITY__P1 1.5 #define FXAA_QUALITY__P2 2.0 #define FXAA_QUALITY__P3 2.0 #define FXAA_QUALITY__P4 2.0 #define FXAA_QUALITY__P5 2.0 #define FXAA_QUALITY__P6 4.0 #define FXAA_QUALITY__P7 12.0 #endif #if (FXAA_HLSL_5 == 1) struct FxaaTex { SamplerState smpl; Texture2D tex; }; #define FxaaTexTop(t, p) t.tex.SampleLevel(t.smpl, p, 0.0) #define FxaaTexOff(t, p, o, r) t.tex.SampleLevel(t.smpl, p, 0.0, o) #define FxaaTexAlpha4(t, p) t.tex.GatherAlpha(t.smpl, p) #define FxaaTexOffAlpha4(t, p, o) t.tex.GatherAlpha(t.smpl, p, o) #define FxaaDiscard clip(-1) #define FxaaSat(x) saturate(x) #elif (FXAA_HLSL_4 == 1) struct FxaaTex { SamplerState smpl; Texture2D tex; }; #define FxaaTexTop(t, p) t.tex.SampleLevel(t.smpl, p, 0.0) #define FxaaTexOff(t, p, o, r) t.tex.SampleLevel(t.smpl, p, 0.0, o) #define FxaaDiscard clip(-1) #define FxaaSat(x) saturate(x) #endif float FxaaLuma(float4 rgba) { rgba.w = RGBLuminance(rgba.xyz); return rgba.w; } float4 FxaaPixelShader(float2 pos, FxaaTex tex, float2 fxaaRcpFrame, float fxaaSubpix, float fxaaEdgeThreshold, float fxaaEdgeThresholdMin) { float2 posM; posM.x = pos.x; posM.y = pos.y; #if (FXAA_GATHER4_ALPHA == 1) float4 rgbyM = FxaaTexTop(tex, posM); float4 luma4A = FxaaTexAlpha4(tex, posM); float4 luma4B = FxaaTexOffAlpha4(tex, posM, int2(-1, -1)); rgbyM.w = RGBLuminance(rgbyM.xyz); #define lumaM rgbyM.w #define lumaE luma4A.z #define lumaS luma4A.x #define lumaSE luma4A.y #define lumaNW luma4B.w #define lumaN luma4B.z #define lumaW luma4B.x #else float4 rgbyM = FxaaTexTop(tex, posM); rgbyM.w = RGBLuminance(rgbyM.xyz); #define lumaM rgbyM.w float lumaS = FxaaLuma(FxaaTexOff(tex, posM, int2(0, 1), fxaaRcpFrame.xy)); float lumaE = FxaaLuma(FxaaTexOff(tex, posM, int2(1, 0), fxaaRcpFrame.xy)); float lumaN = FxaaLuma(FxaaTexOff(tex, posM, int2(0, -1), fxaaRcpFrame.xy)); float lumaW = FxaaLuma(FxaaTexOff(tex, posM, int2(-1, 0), fxaaRcpFrame.xy)); #endif float maxSM = max(lumaS, lumaM); float minSM = min(lumaS, lumaM); float maxESM = max(lumaE, maxSM); float minESM = min(lumaE, minSM); float maxWN = max(lumaN, lumaW); float minWN = min(lumaN, lumaW); float rangeMax = max(maxWN, maxESM); float rangeMin = min(minWN, minESM); float rangeMaxScaled = rangeMax * fxaaEdgeThreshold; float range = rangeMax - rangeMin; float rangeMaxClamped = max(fxaaEdgeThresholdMin, rangeMaxScaled); bool earlyExit = range < rangeMaxClamped; #if (FxaaEarlyExit == 1) if (earlyExit) { return rgbyM; } #endif #if (FXAA_GATHER4_ALPHA == 0) float lumaNW = FxaaLuma(FxaaTexOff(tex, posM, int2(-1, -1), fxaaRcpFrame.xy)); float lumaSE = FxaaLuma(FxaaTexOff(tex, posM, int2(1, 1), fxaaRcpFrame.xy)); float lumaNE = FxaaLuma(FxaaTexOff(tex, posM, int2(1, -1), fxaaRcpFrame.xy)); float lumaSW = FxaaLuma(FxaaTexOff(tex, posM, int2(-1, 1), fxaaRcpFrame.xy)); #else float lumaNE = FxaaLuma(FxaaTexOff(tex, posM, int2(1, -1), fxaaRcpFrame.xy)); float lumaSW = FxaaLuma(FxaaTexOff(tex, posM, int2(-1, 1), fxaaRcpFrame.xy)); #endif float lumaNS = lumaN + lumaS; float lumaWE = lumaW + lumaE; float subpixRcpRange = 1.0 / range; float subpixNSWE = lumaNS + lumaWE; float edgeHorz1 = (-2.0 * lumaM) + lumaNS; float edgeVert1 = (-2.0 * lumaM) + lumaWE; float lumaNESE = lumaNE + lumaSE; float lumaNWNE = lumaNW + lumaNE; float edgeHorz2 = (-2.0 * lumaE) + lumaNESE; float edgeVert2 = (-2.0 * lumaN) + lumaNWNE; float lumaNWSW = lumaNW + lumaSW; float lumaSWSE = lumaSW + lumaSE; float edgeHorz4 = (abs(edgeHorz1) * 2.0) + abs(edgeHorz2); float edgeVert4 = (abs(edgeVert1) * 2.0) + abs(edgeVert2); float edgeHorz3 = (-2.0 * lumaW) + lumaNWSW; float edgeVert3 = (-2.0 * lumaS) + lumaSWSE; float edgeHorz = abs(edgeHorz3) + edgeHorz4; float edgeVert = abs(edgeVert3) + edgeVert4; float subpixNWSWNESE = lumaNWSW + lumaNESE; float lengthSign = fxaaRcpFrame.x; bool horzSpan = edgeHorz >= edgeVert; float subpixA = subpixNSWE * 2.0 + subpixNWSWNESE; if (!horzSpan) lumaN = lumaW; if (!horzSpan) lumaS = lumaE; if (horzSpan) lengthSign = fxaaRcpFrame.y; float subpixB = (subpixA * (1.0 / 12.0)) - lumaM; float gradientN = lumaN - lumaM; float gradientS = lumaS - lumaM; float lumaNN = lumaN + lumaM; float lumaSS = lumaS + lumaM; bool pairN = abs(gradientN) >= abs(gradientS); float gradient = max(abs(gradientN), abs(gradientS)); if (pairN) lengthSign = -lengthSign; float subpixC = FxaaSat(abs(subpixB) * subpixRcpRange); float2 posB; posB.x = posM.x; posB.y = posM.y; float2 offNP; offNP.x = (!horzSpan) ? 0.0 : fxaaRcpFrame.x; offNP.y = (horzSpan) ? 0.0 : fxaaRcpFrame.y; if (!horzSpan) posB.x += lengthSign * 0.5; if (horzSpan) posB.y += lengthSign * 0.5; float2 posN; posN.x = posB.x - offNP.x * FXAA_QUALITY__P0; posN.y = posB.y - offNP.y * FXAA_QUALITY__P0; float2 posP; posP.x = posB.x + offNP.x * FXAA_QUALITY__P0; posP.y = posB.y + offNP.y * FXAA_QUALITY__P0; float subpixD = ((-2.0)*subpixC) + 3.0; float lumaEndN = FxaaLuma(FxaaTexTop(tex, posN)); float subpixE = subpixC * subpixC; float lumaEndP = FxaaLuma(FxaaTexTop(tex, posP)); if (!pairN) lumaNN = lumaSS; float gradientScaled = gradient * 1.0 / 4.0; float lumaMM = lumaM - lumaNN * 0.5; float subpixF = subpixD * subpixE; bool lumaMLTZero = lumaMM < 0.0; lumaEndN -= lumaNN * 0.5; lumaEndP -= lumaNN * 0.5; bool doneN = abs(lumaEndN) >= gradientScaled; bool doneP = abs(lumaEndP) >= gradientScaled; if (!doneN) posN.x -= offNP.x * FXAA_QUALITY__P1; if (!doneN) posN.y -= offNP.y * FXAA_QUALITY__P1; bool doneNP = (!doneN) || (!doneP); if (!doneP) posP.x += offNP.x * FXAA_QUALITY__P1; if (!doneP) posP.y += offNP.y * FXAA_QUALITY__P1; if (doneNP) { if (!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy)); if (!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy)); if (!doneN) lumaEndN = lumaEndN - lumaNN * 0.5; if (!doneP) lumaEndP = lumaEndP - lumaNN * 0.5; doneN = abs(lumaEndN) >= gradientScaled; doneP = abs(lumaEndP) >= gradientScaled; if (!doneN) posN.x -= offNP.x * FXAA_QUALITY__P2; if (!doneN) posN.y -= offNP.y * FXAA_QUALITY__P2; doneNP = (!doneN) || (!doneP); if (!doneP) posP.x += offNP.x * FXAA_QUALITY__P2; if (!doneP) posP.y += offNP.y * FXAA_QUALITY__P2; #if (FXAA_QUALITY__PS > 3) if (doneNP) { if (!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy)); if (!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy)); if (!doneN) lumaEndN = lumaEndN - lumaNN * 0.5; if (!doneP) lumaEndP = lumaEndP - lumaNN * 0.5; doneN = abs(lumaEndN) >= gradientScaled; doneP = abs(lumaEndP) >= gradientScaled; if (!doneN) posN.x -= offNP.x * FXAA_QUALITY__P3; if (!doneN) posN.y -= offNP.y * FXAA_QUALITY__P3; doneNP = (!doneN) || (!doneP); if (!doneP) posP.x += offNP.x * FXAA_QUALITY__P3; if (!doneP) posP.y += offNP.y * FXAA_QUALITY__P3; #if (FXAA_QUALITY__PS > 4) if (doneNP) { if (!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy)); if (!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy)); if (!doneN) lumaEndN = lumaEndN - lumaNN * 0.5; if (!doneP) lumaEndP = lumaEndP - lumaNN * 0.5; doneN = abs(lumaEndN) >= gradientScaled; doneP = abs(lumaEndP) >= gradientScaled; if (!doneN) posN.x -= offNP.x * FXAA_QUALITY__P4; if (!doneN) posN.y -= offNP.y * FXAA_QUALITY__P4; doneNP = (!doneN) || (!doneP); if (!doneP) posP.x += offNP.x * FXAA_QUALITY__P4; if (!doneP) posP.y += offNP.y * FXAA_QUALITY__P4; #if (FXAA_QUALITY__PS > 5) if (doneNP) { if (!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy)); if (!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy)); if (!doneN) lumaEndN = lumaEndN - lumaNN * 0.5; if (!doneP) lumaEndP = lumaEndP - lumaNN * 0.5; doneN = abs(lumaEndN) >= gradientScaled; doneP = abs(lumaEndP) >= gradientScaled; if (!doneN) posN.x -= offNP.x * FXAA_QUALITY__P5; if (!doneN) posN.y -= offNP.y * FXAA_QUALITY__P5; doneNP = (!doneN) || (!doneP); if (!doneP) posP.x += offNP.x * FXAA_QUALITY__P5; if (!doneP) posP.y += offNP.y * FXAA_QUALITY__P5; #if (FXAA_QUALITY__PS > 6) if (doneNP) { if (!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy)); if (!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy)); if (!doneN) lumaEndN = lumaEndN - lumaNN * 0.5; if (!doneP) lumaEndP = lumaEndP - lumaNN * 0.5; doneN = abs(lumaEndN) >= gradientScaled; doneP = abs(lumaEndP) >= gradientScaled; if (!doneN) posN.x -= offNP.x * FXAA_QUALITY__P6; if (!doneN) posN.y -= offNP.y * FXAA_QUALITY__P6; doneNP = (!doneN) || (!doneP); if (!doneP) posP.x += offNP.x * FXAA_QUALITY__P6; if (!doneP) posP.y += offNP.y * FXAA_QUALITY__P6; #if (FXAA_QUALITY__PS > 7) if (doneNP) { if (!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy)); if (!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy)); if (!doneN) lumaEndN = lumaEndN - lumaNN * 0.5; if (!doneP) lumaEndP = lumaEndP - lumaNN * 0.5; doneN = abs(lumaEndN) >= gradientScaled; doneP = abs(lumaEndP) >= gradientScaled; if (!doneN) posN.x -= offNP.x * FXAA_QUALITY__P7; if (!doneN) posN.y -= offNP.y * FXAA_QUALITY__P7; doneNP = (!doneN) || (!doneP); if (!doneP) posP.x += offNP.x * FXAA_QUALITY__P7; if (!doneP) posP.y += offNP.y * FXAA_QUALITY__P7; #if (FXAA_QUALITY__PS > 8) if (doneNP) { if (!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy)); if (!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy)); if (!doneN) lumaEndN = lumaEndN - lumaNN * 0.5; if (!doneP) lumaEndP = lumaEndP - lumaNN * 0.5; doneN = abs(lumaEndN) >= gradientScaled; doneP = abs(lumaEndP) >= gradientScaled; if (!doneN) posN.x -= offNP.x * FXAA_QUALITY__P8; if (!doneN) posN.y -= offNP.y * FXAA_QUALITY__P8; doneNP = (!doneN) || (!doneP); if (!doneP) posP.x += offNP.x * FXAA_QUALITY__P8; if (!doneP) posP.y += offNP.y * FXAA_QUALITY__P8; #if (FXAA_QUALITY__PS > 9) if (doneNP) { if (!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy)); if (!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy)); if (!doneN) lumaEndN = lumaEndN - lumaNN * 0.5; if (!doneP) lumaEndP = lumaEndP - lumaNN * 0.5; doneN = abs(lumaEndN) >= gradientScaled; doneP = abs(lumaEndP) >= gradientScaled; if (!doneN) posN.x -= offNP.x * FXAA_QUALITY__P9; if (!doneN) posN.y -= offNP.y * FXAA_QUALITY__P9; doneNP = (!doneN) || (!doneP); if (!doneP) posP.x += offNP.x * FXAA_QUALITY__P9; if (!doneP) posP.y += offNP.y * FXAA_QUALITY__P9; #if (FXAA_QUALITY__PS > 10) if (doneNP) { if (!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy)); if (!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy)); if (!doneN) lumaEndN = lumaEndN - lumaNN * 0.5; if (!doneP) lumaEndP = lumaEndP - lumaNN * 0.5; doneN = abs(lumaEndN) >= gradientScaled; doneP = abs(lumaEndP) >= gradientScaled; if (!doneN) posN.x -= offNP.x * FXAA_QUALITY__P10; if (!doneN) posN.y -= offNP.y * FXAA_QUALITY__P10; doneNP = (!doneN) || (!doneP); if (!doneP) posP.x += offNP.x * FXAA_QUALITY__P10; if (!doneP) posP.y += offNP.y * FXAA_QUALITY__P10; #if (FXAA_QUALITY__PS > 11) if (doneNP) { if (!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy)); if (!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy)); if (!doneN) lumaEndN = lumaEndN - lumaNN * 0.5; if (!doneP) lumaEndP = lumaEndP - lumaNN * 0.5; doneN = abs(lumaEndN) >= gradientScaled; doneP = abs(lumaEndP) >= gradientScaled; if (!doneN) posN.x -= offNP.x * FXAA_QUALITY__P11; if (!doneN) posN.y -= offNP.y * FXAA_QUALITY__P11; doneNP = (!doneN) || (!doneP); if (!doneP) posP.x += offNP.x * FXAA_QUALITY__P11; if (!doneP) posP.y += offNP.y * FXAA_QUALITY__P11; #if (FXAA_QUALITY__PS > 12) if (doneNP) { if (!doneN) lumaEndN = FxaaLuma(FxaaTexTop(tex, posN.xy)); if (!doneP) lumaEndP = FxaaLuma(FxaaTexTop(tex, posP.xy)); if (!doneN) lumaEndN = lumaEndN - lumaNN * 0.5; if (!doneP) lumaEndP = lumaEndP - lumaNN * 0.5; doneN = abs(lumaEndN) >= gradientScaled; doneP = abs(lumaEndP) >= gradientScaled; if (!doneN) posN.x -= offNP.x * FXAA_QUALITY__P12; if (!doneN) posN.y -= offNP.y * FXAA_QUALITY__P12; doneNP = (!doneN) || (!doneP); if (!doneP) posP.x += offNP.x * FXAA_QUALITY__P12; if (!doneP) posP.y += offNP.y * FXAA_QUALITY__P12; } #endif } #endif } #endif } #endif } #endif } #endif } #endif } #endif } #endif } #endif } float dstN = posM.x - posN.x; float dstP = posP.x - posM.x; if (!horzSpan) dstN = posM.y - posN.y; if (!horzSpan) dstP = posP.y - posM.y; bool goodSpanN = (lumaEndN < 0.0) != lumaMLTZero; float spanLength = (dstP + dstN); bool goodSpanP = (lumaEndP < 0.0) != lumaMLTZero; float spanLengthRcp = 1.0 / spanLength; bool directionN = dstN < dstP; float dst = min(dstN, dstP); bool goodSpan = directionN ? goodSpanN : goodSpanP; float subpixG = subpixF * subpixF; float pixelOffset = (dst * (-spanLengthRcp)) + 0.5; float subpixH = subpixG * fxaaSubpix; float pixelOffsetGood = goodSpan ? pixelOffset : 0.0; float pixelOffsetSubpix = max(pixelOffsetGood, subpixH); if (!horzSpan) posM.x += pixelOffsetSubpix * lengthSign; if (horzSpan) posM.y += pixelOffsetSubpix * lengthSign; return float4(FxaaTexTop(tex, posM).xyz, lumaM); } float4 FxaaPass(float4 FxaaColor : COLOR0, float2 uv0 : TEXCOORD0) : SV_Target0 { FxaaTex tex; tex.tex = Texture; tex.smpl = TextureSampler; Texture.GetDimensions(PixelSize.x, PixelSize.y); FxaaColor = FxaaPixelShader(uv0, tex, 1.0 / PixelSize.xy, FxaaSubpixMax, FxaaEdgeThreshold, FxaaEdgeThresholdMin); return FxaaColor; } #endif /*------------------------------------------------------------------------------ [TEXTURE FILTERING FUNCTIONS] ------------------------------------------------------------------------------*/ float BSpline(float x) { float f = x; if (f < 0.0) { f = -f; } if (f >= 0.0 && f <= 1.0) { return (2.0 / 3.0) + (0.5) * (f* f * f) - (f*f); } else if (f > 1.0 && f <= 2.0) { return 1.0 / 6.0 * pow((2.0 - f), 3.0); } return 1.0; } float CatMullRom(float x) { float b = 0.0; float c = 0.5; float f = x; if (f < 0.0) { f = -f; } if (f < 1.0) { return ((12.0 - 9.0 * b - 6.0 * c) * (f * f * f) + (-18.0 + 12.0 * b + 6.0 * c) * (f * f) + (6.0 - 2.0 * b)) / 6.0; } else if (f >= 1.0 && f < 2.0) { return ((-b - 6.0 * c) * (f * f * f) + (6.0 * b + 30.0 * c) * (f *f) + (-(12.0 * b) - 48.0 * c) * f + 8.0 * b + 24.0 * c) / 6.0; } else { return 0.0; } } float Bell(float x) { float f = (x / 2.0) * 1.5; if (f > -1.5 && f < -0.5) { return(0.5 * pow(f + 1.5, 2.0)); } else if (f > -0.5 && f < 0.5) { return 3.0 / 4.0 - (f * f); } else if ((f > 0.5 && f < 1.5)) { return(0.5 * pow(f - 1.5, 2.0)); } return 0.0; } float Triangular(float x) { x = x / 2.0; if (x < 0.0) { return (x + 1.0); } else { return (1.0 - x); } return 0.0; } float Cubic(float x) { float x2 = x * x; float x3 = x2 * x; float4 c; c.x = -x3 + 3.0 * x2 - 3.0 * x + 1.0; c.y = 3.0 * x3 - 6.0 * x2 + 4.0; c.z = -3.0 * x3 + 3.0 * x2 + 3.0 * x + 1.0; c.w = x3; float f = (lerp(c.x, c.y, 0.5) + lerp(c.z, c.w, 0.5)) / 6.0; //float f = (c.x + c.y + c.z + c.w) / 6.0; return f; } /*------------------------------------------------------------------------------ [BICUBIC FILTERING CODE SECTION] ------------------------------------------------------------------------------*/ #if (BICUBIC_FILTERING == 1) float4 BiCubicFilter(SamplerState texSample, float2 uv0 : TEXCOORD0) : SV_Target0 { Texture.GetDimensions(PixelSize.x, PixelSize.y); float texelSizeX = 1.0 / PixelSize.x; float texelSizeY = 1.0 / PixelSize.y; float4 nSum = (float4)0.0; float4 nDenom = (float4)0.0; float a = frac(uv0.x * PixelSize.x); float b = frac(uv0.y * PixelSize.y); int nX = int(uv0.x * PixelSize.x); int nY = int(uv0.y * PixelSize.y); float2 TexCoord1 = float2(float(nX) / PixelSize.x + PixelOffset / PixelSize.x, float(nY) / PixelSize.y + PixelOffset / PixelSize.y); for (int m = -1; m <= 2; m++) { for (int n = -1; n <= 2; n++) { float4 Samples = Texture.Sample(texSample, TexCoord1 + float2(texelSizeX * float(m), texelSizeY * float(n))); float vc1 = Interpolation(float(m) - a); float4 vecCoeff1 = float4(vc1, vc1, vc1, vc1); float vc2 = Interpolation(-(float(n) - b)); float4 vecCoeff2 = float4(vc2, vc2, vc2, vc2); nSum = nSum + (Samples * vecCoeff2 * vecCoeff1); nDenom = nDenom + (vecCoeff2 * vecCoeff1); } } return nSum / nDenom; } float4 BiCubicPass(float4 color : COLOR0, float2 uv0 : TEXCOORD0) : SV_Target0 { color = BiCubicFilter(TextureSampler, uv0); return color; } #endif /*------------------------------------------------------------------------------ [BILINEAR FILTERING CODE SECTION] ------------------------------------------------------------------------------*/ #if (BILINEAR_FILTERING == 1) float4 SampleBiLinear(SamplerState texSample, float2 uv0 : TEXCOORD0) : SV_Target0 { Texture.GetDimensions(PixelSize.x, PixelSize.y); float texelSizeX = 1.0 / PixelSize.x; float texelSizeY = 1.0 / PixelSize.y; int nX = int(uv0.x * PixelSize.x); int nY = int(uv0.y * PixelSize.y); float2 texCoord_New = float2((float(nX) + OffsetAmount) / PixelSize.x, (float(nY) + OffsetAmount) / PixelSize.y); // Take nearest two data in current row. float4 SampleA = Texture.Sample(texSample, texCoord_New); float4 SampleB = Texture.Sample(texSample, texCoord_New + float2(texelSizeX, 0.0)); // Take nearest two data in bottom row. float4 SampleC = Texture.Sample(texSample, texCoord_New + float2(0.0, texelSizeY)); float4 SampleD = Texture.Sample(texSample, texCoord_New + float2(texelSizeX, texelSizeY)); float LX = frac(uv0.x * PixelSize.x); //Get Interpolation factor for X direction. // Interpolate in X direction. float4 InterpolateA = lerp(SampleA, SampleB, LX); //Top row in X direction. float4 InterpolateB = lerp(SampleC, SampleD, LX); //Bottom row in X direction. float LY = frac(uv0.y * PixelSize.y); //Get Interpolation factor for Y direction. return lerp(InterpolateA, InterpolateB, LY); //Interpolate in Y direction. } float4 BiLinearPass(float4 color : COLOR0, float2 uv0 : TEXCOORD0) { float4 bilinear = SampleBiLinear(TextureSampler, uv0); color = lerp(color, bilinear, FilterStrength); return color; } #endif /*------------------------------------------------------------------------------ [GAUSSIAN FILTERING CODE SECTION] ------------------------------------------------------------------------------*/ #if (GAUSSIAN_FILTERING == 1) float4 GaussianPass(float4 color : COLOR0, float2 uv0 : TEXCOORD0) : SV_Target0 { Texture.GetDimensions(PixelSize.x, PixelSize.y); float2 dx = float2(1.0 / PixelSize.x * GaussianSpread, 0.0); float2 dy = float2(0.0, 1.0 / PixelSize.y * GaussianSpread); float2 dx2 = 2.0 * dx; float2 dy2 = 2.0 * dy; float4 gaussian = Texture.Sample(TextureSampler, uv0); gaussian += Texture.Sample(TextureSampler, uv0 - dx2 + dy2); gaussian += Texture.Sample(TextureSampler, uv0 - dx + dy2); gaussian += Texture.Sample(TextureSampler, uv0 + dy2); gaussian += Texture.Sample(TextureSampler, uv0 + dx + dy2); gaussian += Texture.Sample(TextureSampler, uv0 + dx2 + dy2); gaussian += Texture.Sample(TextureSampler, uv0 - dx2 + dy); gaussian += Texture.Sample(TextureSampler, uv0 - dx + dy); gaussian += Texture.Sample(TextureSampler, uv0 + dy); gaussian += Texture.Sample(TextureSampler, uv0 + dx + dy); gaussian += Texture.Sample(TextureSampler, uv0 + dx2 + dy); gaussian += Texture.Sample(TextureSampler, uv0 - dx2); gaussian += Texture.Sample(TextureSampler, uv0 - dx); gaussian += Texture.Sample(TextureSampler, uv0 + dx); gaussian += Texture.Sample(TextureSampler, uv0 + dx2); gaussian += Texture.Sample(TextureSampler, uv0 - dx2 - dy); gaussian += Texture.Sample(TextureSampler, uv0 - dx - dy); gaussian += Texture.Sample(TextureSampler, uv0 - dy); gaussian += Texture.Sample(TextureSampler, uv0 + dx - dy); gaussian += Texture.Sample(TextureSampler, uv0 + dx2 - dy); gaussian += Texture.Sample(TextureSampler, uv0 - dx2 - dy2); gaussian += Texture.Sample(TextureSampler, uv0 - dx - dy2); gaussian += Texture.Sample(TextureSampler, uv0 - dy2); gaussian += Texture.Sample(TextureSampler, uv0 + dx - dy2); gaussian += Texture.Sample(TextureSampler, uv0 + dx2 - dy2); gaussian /= 25.0; color = lerp(color, gaussian, FilterAmount); return color; } #endif /*------------------------------------------------------------------------------ [GAMMA CORRECTION CODE SECTION] ------------------------------------------------------------------------------*/ #if (GAMMA_CORRECTION == 1) float4 PostGammaPass(float4 color : COLOR0, float2 uv0 : TEXCOORD0) : SV_Target0 { color.r = RGBGammaToLinear(color.r, GammaConst); color.g = RGBGammaToLinear(color.g, GammaConst); color.b = RGBGammaToLinear(color.b, GammaConst); color.r = LinearToRGBGamma(color.r, Gamma); color.g = LinearToRGBGamma(color.g, Gamma); color.b = LinearToRGBGamma(color.b, Gamma); color.a = RGBLuminance(color.rgb); return color; } #endif /*------------------------------------------------------------------------------ [TEXTURE SHARPEN CODE SECTION] ------------------------------------------------------------------------------*/ #if (TEXTURE_SHARPENING == 1) #define px 1.0 / PixelSize.x #define py 1.0 / PixelSize.y #define SharpenLumCoeff float3(0.2126729, 0.7151522, 0.0721750) #if(SharpeningType == 2) float4 SampleBiCubic(SamplerState texSample, float2 uv0) { Texture.GetDimensions(PixelSize.x, PixelSize.y); float texelSizeX = 1.0 / PixelSize.x * SharpenBias; float texelSizeY = 1.0 / PixelSize.y * SharpenBias; float4 nSum = (float4)0.0; float4 nDenom = (float4)0.0; float a = frac(uv0.x * PixelSize.x); float b = frac(uv0.y * PixelSize.y); int nX = int(uv0.x * PixelSize.x); int nY = int(uv0.y * PixelSize.y); float2 uv1 = float2(float(nX) / PixelSize.x, float(nY) / PixelSize.y); for (int m = -1; m <= 2; m++) { for (int n = -1; n <= 2; n++) { float4 Samples = Texture.Sample(texSample, uv1 + float2(texelSizeX * float(m), texelSizeY * float(n))); float vc1 = Cubic(float(m) - a); float4 vecCoeff1 = float4(vc1, vc1, vc1, vc1); float vc2 = Cubic(-(float(n) - b)); float4 vecCoeff2 = float4(vc2, vc2, vc2, vc2); nSum = nSum + (Samples * vecCoeff2 * vecCoeff1); nDenom = nDenom + (vecCoeff2 * vecCoeff1); } } return nSum / nDenom; } float4 TexSharpenPass(float4 color : COLOR0, float2 uv0 : TEXCOORD0) : SV_Target0 { float3 calcSharpen = (SharpenLumCoeff * SharpenStrength); float4 blurredColor = SampleBiCubic(TextureSampler, uv0); float3 sharpenedColor = (color.rgb - blurredColor.rgb); float sharpenLuma = dot(sharpenedColor, calcSharpen); sharpenLuma = clamp(sharpenLuma, -SharpenClamp, SharpenClamp); color.rgb = color.rgb + sharpenLuma; color.a = RGBLuminance(color.rgb); #if (DebugSharpen == 1) color = saturate(0.5f + (sharpenLuma * 4)).rrrr; //visualise sharpening (for debugging) #endif return saturate(color); } #else float4 TexSharpenPass(float4 color : COLOR0, float2 uv0 : TEXCOORD0) : SV_Target0 { float3 blurredColor; Texture.GetDimensions(PixelSize.x, PixelSize.y); blurredColor = Texture.SampleLevel(TextureSampler, uv0 + float2(-px, py) * SharpenBias, 0.0).rgb; //North West blurredColor += Texture.SampleLevel(TextureSampler, uv0 + float2(px, -py) * SharpenBias, 0.0).rgb; //South East blurredColor += Texture.SampleLevel(TextureSampler, uv0 + float2(-px, -py) * SharpenBias, 0.0).rgb; //South West blurredColor += Texture.SampleLevel(TextureSampler, uv0 + float2(px, py) * SharpenBias, 0.0).rgb; //North East blurredColor += Texture.SampleLevel(TextureSampler, uv0 + float2(0.0, py) * SharpenBias, 0.0).rgb; //North blurredColor += Texture.SampleLevel(TextureSampler, uv0 + float2(0.0, -py) * SharpenBias, 0.0).rgb; //South blurredColor += Texture.SampleLevel(TextureSampler, uv0 + float2(-px, 0.0) * SharpenBias, 0.0).rgb; //West blurredColor += Texture.SampleLevel(TextureSampler, uv0 + float2(px, 0.0) * SharpenBias, 0.0).rgb; //East blurredColor /= 8.0; float3 sharpenedColor = color.rgb - blurredColor; float3 calcSharpen = (SharpenLumCoeff * SharpenStrength); float sharpenLuma = dot(sharpenedColor, calcSharpen); sharpenLuma = clamp(sharpenLuma, -SharpenClamp, SharpenClamp); color.rgb = color.rgb + sharpenLuma; color.a = RGBLuminance(color.rgb); #if (DebugSharpen == 1) color = saturate(0.5f + (sharpenLuma * 4)).rrrr; //visualise sharpening (for debugging) #endif return saturate(color); } #endif #endif /*------------------------------------------------------------------------------ [VIBRANCE CODE SECTION] ------------------------------------------------------------------------------*/ #if (PIXEL_VIBRANCE == 1) float4 VibrancePass(float4 color : COLOR0, float2 uv0 : TEXCOORD0) : SV_Target0 { float luma = RGBLuminance(color.rgb); float colorMax = max(color.r, max(color.g, color.b)); float colorMin = min(color.r, min(color.g, color.b)); float colorSaturation = colorMax - colorMin; color.rgb = lerp(luma, color.rgb, (1.0 + (Vibrance * (1.0 - (sign(Vibrance) * colorSaturation))))); color.a = RGBLuminance(color.rgb); return saturate(color); //Debug: return colorSaturation.xxxx; } #endif /*------------------------------------------------------------------------------ [BLOOM PASS CODE SECTION] ------------------------------------------------------------------------------*/ #if (BLENDED_BLOOM == 1) float3 BlendScreen(float3 color, float3 bloom) { return (color + bloom) - (color * bloom); } float3 BlendAddLight(float3 color, float3 bloom) { return color + bloom; } float3 BlendOverlay(float3 color, float3 bloom) { return float3((bloom.x <= 0.5) ? (2.0 * color.x * bloom.x) : (1.0 - 2.0 * (1.0 - bloom.x) * (1.0 - color.x)), (bloom.y <= 0.5) ? (2.0 * color.y * bloom.y) : (1.0 - 2.0 * (1.0 - bloom.y) * (1.0 - color.y)), (bloom.z <= 0.5) ? (2.0 * color.z * bloom.z) : (1.0 - 2.0 * (1.0 - bloom.z) * (1.0 - color.z))); } float4 BloomPass(float4 color : COLOR0, float2 uv0 : TEXCOORD0) : SV_Target0 { float4 bloom; float2 dx = float2(1.0 / PixelSize.x * BlendSpread, 0.0); float2 dy = float2(0.0, 1.0 / PixelSize.y * BlendSpread); float2 dx2 = 2.0 * dx; float2 dy2 = 2.0 * dy; float4 bloomBlend = color * 0.22520613262190495; bloomBlend += 0.002589001911021066 * Texture.Sample(TextureSampler, uv0 - dx2 + dy2); bloomBlend += 0.010778807494659370 * Texture.Sample(TextureSampler, uv0 - dx + dy2); bloomBlend += 0.024146616900339800 * Texture.Sample(TextureSampler, uv0 + dy2); bloomBlend += 0.010778807494659370 * Texture.Sample(TextureSampler, uv0 + dx + dy2); bloomBlend += 0.002589001911021066 * Texture.Sample(TextureSampler, uv0 + dx2 + dy2); bloomBlend += 0.010778807494659370 * Texture.Sample(TextureSampler, uv0 - dx2 + dy); bloomBlend += 0.044875475183061630 * Texture.Sample(TextureSampler, uv0 - dx + dy); bloomBlend += 0.100529757860782610 * Texture.Sample(TextureSampler, uv0 + dy); bloomBlend += 0.044875475183061630 * Texture.Sample(TextureSampler, uv0 + dx + dy); bloomBlend += 0.010778807494659370 * Texture.Sample(TextureSampler, uv0 + dx2 + dy); bloomBlend += 0.024146616900339800 * Texture.Sample(TextureSampler, uv0 - dx2); bloomBlend += 0.100529757860782610 * Texture.Sample(TextureSampler, uv0 - dx); bloomBlend += 0.100529757860782610 * Texture.Sample(TextureSampler, uv0 + dx); bloomBlend += 0.024146616900339800 * Texture.Sample(TextureSampler, uv0 + dx2); bloomBlend += 0.010778807494659370 * Texture.Sample(TextureSampler, uv0 - dx2 - dy); bloomBlend += 0.044875475183061630 * Texture.Sample(TextureSampler, uv0 - dx - dy); bloomBlend += 0.100529757860782610 * Texture.Sample(TextureSampler, uv0 - dy); bloomBlend += 0.044875475183061630 * Texture.Sample(TextureSampler, uv0 + dx - dy); bloomBlend += 0.010778807494659370 * Texture.Sample(TextureSampler, uv0 + dx2 - dy); bloomBlend += 0.002589001911021066 * Texture.Sample(TextureSampler, uv0 - dx2 - dy2); bloomBlend += 0.010778807494659370 * Texture.Sample(TextureSampler, uv0 - dx - dy2); bloomBlend += 0.024146616900339800 * Texture.Sample(TextureSampler, uv0 - dy2); bloomBlend += 0.010778807494659370 * Texture.Sample(TextureSampler, uv0 + dx - dy2); bloomBlend += 0.002589001911021066 * Texture.Sample(TextureSampler, uv0 + dx2 - dy2); bloomBlend = lerp(color, bloomBlend, BlendPower); bloom.rgb = BloomType(color.rgb, bloomBlend.rgb); bloom.r = bloom.r * 1.010778807494659370; color.a = RGBLuminance(color.rgb); bloom.a = RGBLuminance(bloom.rgb); #if (BloomMixType == 1) color = lerp(color, bloom, BloomPower); #elif (BloomMixType == 2) color = (lerp(color, bloom, BloomPower) + lerp(bloom, bloomBlend, BloomPower)) / 2.0; #elif (BloomMixType == 3) color = lerp(color, bloom, lerp(color.a * 0.5, bloom.a, BloomPower)); #endif return saturate(color); } #endif /*------------------------------------------------------------------------------ [COLOR CORRECTION/TONE MAPPING PASS CODE SECTION] ------------------------------------------------------------------------------*/ #if (SCENE_TONEMAPPING == 1) float YXYLuminance(float3 YXY) { return (-0.9692660 * YXY.x) + (1.8760108 * YXY.y) + (0.0415560 * YXY.z); } float3 FilmicTonemap(float3 x) { float A = 0.10; float B = 0.36; float C = 0.10; float D = 0.30; float E = 0.02; float F = 0.30; return ((x*(A*x + C*B) + D*E) / (x*(A*x + B) + D*F)) - E / F; } float3 ColorCorrection(float3 color) { float X = 1.0 / (1.0 + exp(RedCurve / 2.0)); float Y = 1.0 / (1.0 + exp(GreenCurve / 2.0)); float Z = 1.0 / (1.0 + exp(BlueCurve / 2.0)); color.r = (1.0 / (1.0 + exp(-RedCurve * (color.r - 0.5))) - X) / (1.0 - 2.0 * X); color.g = (1.0 / (1.0 + exp(-GreenCurve * (color.g - 0.5))) - Y) / (1.0 - 2.0 * Y); color.b = (1.0 / (1.0 + exp(-BlueCurve * (color.b - 0.5))) - Z) / (1.0 - 2.0 * Z); return color; } float4 TonemapPass(float4 color : COLOR0, float2 uv0 : TEXCOORD0) : SV_Target0 { float3 luminanceFactor = 1.0 / FilmicTonemap(Luminance); color.rgb = ColorCorrection(color.rgb); color.rgb = FilmicTonemap(Exposure * color.rgb); color.rgb = color.rgb * luminanceFactor; color.r = RGBGammaToLinear(color.r, GammaConst); color.g = RGBGammaToLinear(color.g, GammaConst); color.b = RGBGammaToLinear(color.b, GammaConst); #if (TonemapType == 1) color.r = LinearToRGBGamma(color.r, ToneAmount); color.g = LinearToRGBGamma(color.g, ToneAmount); color.b = LinearToRGBGamma(color.b, ToneAmount); #else color.r = LinearToRGBGamma(color.r, GammaConst); color.g = LinearToRGBGamma(color.g, GammaConst); color.b = LinearToRGBGamma(color.b, GammaConst); #endif float3 lumCoeff = float3(0.2126729, 0.7151522, 0.0721750); // RGB -> XYZ conversion const float3x3 RGB2XYZ = { 0.4124564, 0.3575761, 0.1804375, 0.2126729, 0.7151522, 0.0721750, 0.0193339, 0.1191920, 0.9503041 }; float3 XYZ = mul(RGB2XYZ, color.rgb); // XYZ -> Yxy conversion float3 Yxy = lumCoeff; Yxy.r = XYZ.g; // copy luminance Y Yxy.g = XYZ.r / (XYZ.r + XYZ.g + XYZ.b); // x = X / (X + Y + Z) Yxy.b = XYZ.g / (XYZ.r + XYZ.g + XYZ.b); // y = Y / (X + Y + Z) // (Lp) Map average luminance to the middlegrey zone by scaling pixel luminance #if (TonemapType == 1) float Lp = Yxy.r * Exposure / Luminance; #elif (TonemapType == 2) float Lp = ((Yxy.r * (YXYLuminance(Yxy.rrr) / 1.5)) + (Yxy.g * (YXYLuminance(Yxy.rrr) / 1.5)) + (Yxy.b *(YXYLuminance(Yxy.rrr) / 1.5))) * ((Exposure / Luminance) * (ToneAmount / 2.2)); #endif // (Ld) Scale all luminance within a displayable range of 0 to 1 Yxy.r = (Lp * (1.0 + Lp / (WhitePoint * WhitePoint))) / (1.0 + Lp); // Yxy -> XYZ conversion XYZ.r = Yxy.r * Yxy.g / Yxy.b; // X = Y * x / y XYZ.g = Yxy.r; // copy luminance Y XYZ.b = Yxy.r * (1.0 - Yxy.g - Yxy.b) / Yxy.b; // Z = Y * (1-x-y) / y // XYZ -> RGB conversion const float3x3 XYZ2RGB = { 3.2404542, -1.5371385, -0.4985314, -0.9692660, 1.8760108, 0.0415560, 0.0556434, -0.2040259, 1.0572252 }; color.rgb = mul(XYZ2RGB, XYZ); color.a = RGBLuminance(color.rgb); return saturate(color); } #endif /*------------------------------------------------------------------------------ [S-CURVE CONTRAST CODE SECTION] ------------------------------------------------------------------------------*/ #if (S_CURVE_CONTRAST == 1) float4 SCurvePass(float4 color : COLOR0, float2 uv0 : TEXCOORD0) : SV_Target0 { float CurveBlend = CurvesContrast; #if (CurveType != 2) float luma = RGBLuminance(color.rgb); float3 chroma = color.rgb - luma; #endif #if (CurveType == 2) float3 x = color.rgb; #elif (CurveType == 1) float3 x = chroma; x = x * 0.5 + 0.5; #else float x = luma; #endif // -- Curve 1 -- Cubic Bezier spline #if (CurvesFormula == 1) float3 a = float3(0.00, 0.00, 0.00); //start point float3 b = float3(0.25, 0.15, 0.85); //control point 1 float3 c = float3(0.80, 0.85, 0.15); //control point 2 float3 d = float3(1.00, 1.00, 1.00); //endpoint float3 ab = lerp(a, b, x); // point between a and b (green) float3 bc = lerp(b, c, x); // point between b and c (green) float3 cd = lerp(c, d, x); // point between c and d (green) float3 abbc = lerp(ab, bc, x); // point between ab and bc (blue) float3 bccd = lerp(bc, cd, x); // point between bc and cd (blue) float3 dest = lerp(abbc, bccd, x); // point on the bezier-curve (black) x = dest; #endif // -- Curve 2 -- Cubic Bezier spline II #if (CurvesFormula == 2) float a = 0.00; //start point float b = 0.00; //control point 1 float c = 1.00; //control point 2 float d = 1.00; //endpoint float r = (1 - x); float r2 = r*r; float r3 = r2 * r; float x2 = x*x; float x3 = x2*x; x = a*(1 - x)*(1 - x)*(1 - x) + 3 * b*(1 - x)*(1 - x)*x + 3 * c*(1 - x)*x*x + d*x*x*x; #endif #if (CurveType == 0) //Only Luma x = lerp(luma, x, CurveBlend); color.rgb = x + chroma; #elif (CurveType == 1) //Only Chroma x = x * 2 - 1; float3 LColor = luma + x; color.rgb = lerp(color.rgb, LColor, CurveBlend); #elif (CurveType == 2) //Both Luma and Chroma float3 LColor = x; color.rgb = lerp(color.rgb, LColor, CurveBlend); #endif color.a = RGBLuminance(color.rgb); return saturate(color); } #endif /*------------------------------------------------------------------------------ [CEL SHADING CODE SECTION] ------------------------------------------------------------------------------*/ #if (CEL_SHADING == 1) #define RoundingOffset float2(0.20, 0.40) static const int NUM = 9; static const float3 thresholds = float3(5.0, 8.0, 6.0); #if (LumaConversion == 1) #define celLumaCoef float3(0.2126729, 0.7151522, 0.0721750) #else #define celLumaCoef float3(0.299, 0.587, 0.114) #endif float3 GetYUV(float3 rgb) { #if (LumaConversion == 1) float3x3 RGB2YUV = { 0.2126, 0.7152, 0.0722, -0.09991, -0.33609, 0.436, 0.615, -0.55861, -0.05639 }; #else float3x3 RGB2YUV = { 0.299, 0.587, 0.114, -0.14713, -0.28886f, 0.436, 0.615, -0.51499, -0.10001 }; #endif return mul(RGB2YUV, rgb); } float3 GetRGB(float3 yuv) { #if (LumaConversion == 1) float3x3 YUV2RGB = { 1.000, 0.000, 1.28033, 1.000, -0.21482, -0.38059, 1.000, 2.12798, 0.000 }; #else float3x3 YUV2RGB = { 1.000, 0.000, 1.13983, 1.000, -0.39465, -0.58060, 1.000, 2.03211, 0.000 }; #endif return mul(YUV2RGB, yuv); } float GetCelLuminance(float3 rgb) { return dot(rgb, celLumaCoef); } float4 CelPass(float4 color : COLOR0, float2 uv0 : TEXCOORD0) : SV_Target0 { float3 yuv; float3 sum = color.rgb; float2 pixel = float2(1.0 / 2560.0, 1.0 / 1440.0) * EdgeThickness; float2 c[NUM] = { float2(-0.0078125, -0.0078125), float2(0.00, -0.0078125), float2(0.0078125, -0.0078125), float2(-0.0078125, 0.00), float2(0.00, 0.00), float2(0.0078125, 0.00), float2(-0.0078125, 0.0078125), float2(0.00, 0.0078125), float2(0.0078125, 0.0078125) }; float3 col[NUM]; float lum[NUM]; for (int i = 0; i < NUM; i++) { col[i] = Texture.Sample(TextureSampler, uv0 + c[i] * RoundingOffset).rgb; #if (ColorRounding == 1) col[i].r = saturate(round(col[i].r * thresholds.r) / thresholds.r); col[i].g = saturate(round(col[i].g * thresholds.g) / thresholds.g); col[i].b = saturate(round(col[i].b * thresholds.b) / thresholds.b); #endif lum[i] = GetCelLuminance(col[i].xyz); yuv = GetYUV(col[i]); if (UseYuvLuma == 0) { yuv.r = saturate(round(yuv.r * lum[i]) / thresholds.r + lum[i]); } else { yuv.r = saturate(round(yuv.r * thresholds.r) / thresholds.r + lum[i] / (255.0 / 5.0)); } yuv = GetRGB(yuv); sum += yuv; } float3 shadedColor = (sum / NUM); float edgeX = dot(Texture.Sample(TextureSampler, uv0 + pixel).rgb, celLumaCoef); edgeX = dot(float4(Texture.Sample(TextureSampler, uv0 - pixel).rgb, edgeX), float4(celLumaCoef, -1.0)); float edgeY = dot(Texture.Sample(TextureSampler, uv0 + float2(pixel.x, -pixel.y)).rgb, celLumaCoef); edgeY = dot(float4(Texture.Sample(TextureSampler, uv0 + float2(-pixel.x, pixel.y)).rgb, edgeY), float4(celLumaCoef, -1.0)); float edge = dot(float2(edgeX, edgeY), float2(edgeX, edgeY)); #if (PaletteType == 1) color.rgb = lerp(color.rgb, color.rgb + pow(edge, EdgeFilter) * -EdgeStrength, EdgeStrength); #elif (PaletteType == 2) color.rgb = lerp(color.rgb + pow(edge, EdgeFilter) * -EdgeStrength, shadedColor, 0.33); #elif (PaletteType == 3) color.rgb = lerp(shadedColor + edge * -EdgeStrength, pow(edge, EdgeFilter) * -EdgeStrength + color.rgb, 0.5); #endif color.a = RGBLuminance(color.rgb); return saturate(color); } #endif /*------------------------------------------------------------------------------ [COLOR GRADING CODE SECTION] ------------------------------------------------------------------------------*/ #if (COLOR_GRADING == 1) float RGBCVtoHUE(float3 RGB, float C, float V) { float3 Delta = (V - RGB) / C; Delta.rgb -= Delta.brg; Delta.rgb += float3(2, 4, 6); Delta.brg = step(V, RGB) * Delta.brg; float H; H = max(Delta.r, max(Delta.g, Delta.b)); return frac(H / 6); } float3 RGBtoHSV(float3 RGB) { float3 HSV = 0; HSV.z = max(RGB.r, max(RGB.g, RGB.b)); float M = min(RGB.r, min(RGB.g, RGB.b)); float C = HSV.z - M; if (C != 0) { HSV.x = RGBCVtoHUE(RGB, C, HSV.z); HSV.y = C / HSV.z; } return HSV; } float3 HUEtoRGB(float H) { float R = abs(H * 6 - 3) - 1; float G = 2 - abs(H * 6 - 2); float B = 2 - abs(H * 6 - 4); return saturate(float3(R, G, B)); } float3 HSVtoRGB(float3 HSV) { float3 RGB = HUEtoRGB(HSV.x); return ((RGB - 1) * HSV.y + 1) * HSV.z; } float3 HSVComplement(float3 HSV) { float3 complement = HSV; complement.x -= 0.5; if (complement.x < 0.0) { complement.x += 1.0; } return(complement); } float HueLerp(float h1, float h2, float v) { float d = abs(h1 - h2); if (d <= 0.5) { return lerp(h1, h2, v); } else if (h1 < h2) { return frac(lerp((h1 + 1.0), h2, v)); } else { return frac(lerp(h1, (h2 + 1.0), v)); } } float4 ColorGrading(float4 color : COLOR0, float2 uv0 : TEXCOORD0) : SV_Target0 { float3 guide = float3(RedGrading, GreenGrading, BlueGrading); float amount = GradingStrength; float correlation = Correlation; float concentration = 2.00; float3 colorHSV = RGBtoHSV(color.rgb); float3 huePoleA = RGBtoHSV(guide); float3 huePoleB = HSVComplement(huePoleA); float dist1 = abs(colorHSV.x - huePoleA.x); if (dist1 > 0.5) dist1 = 1.0 - dist1; float dist2 = abs(colorHSV.x - huePoleB.x); if (dist2 > 0.5) dist2 = 1.0 - dist2; float descent = smoothstep(0.0, correlation, colorHSV.y); float3 HSVColor = colorHSV; if (dist1 < dist2) { float c = descent * amount * (1.0 - pow((dist1 * 2.0), 1.0 / concentration)); HSVColor.x = HueLerp(colorHSV.x, huePoleA.x, c); HSVColor.y = lerp(colorHSV.y, huePoleA.y, c); } else { float c = descent * amount * (1.0 - pow((dist2 * 2.0), 1.0 / concentration)); HSVColor.x = HueLerp(colorHSV.x, huePoleB.x, c); HSVColor.y = lerp(colorHSV.y, huePoleB.y, c); } color.rgb = HSVtoRGB(HSVColor); color.a = RGBLuminance(color.rgb); return saturate(color); } #endif /*------------------------------------------------------------------------------ [SCANLINES CODE SECTION] ------------------------------------------------------------------------------*/ #if (SCANLINES == 1) float4 ScanlinesPass(float4 color : COLOR0, float2 uv0 : TEXCOORD0, float4 FragCoord : SV_Position) : SV_Target0 { #if (ScanlineType == 3) float amount = ScanlineBrightness; float intensity = ScanlineIntensity; float pos0 = ((uv0.y + 1.0) * 170.0 * amount); float pos1 = cos((frac(pos0 * ScanlineScale) - 0.5) * 3.1415926 * intensity) * 1.2; color = lerp(float4(0, 0, 0, 0), color, pos1); #else float4 intensity; #if (ScanlineType == 0) if (frac(FragCoord.y * 0.25) > ScanlineScale) #elif (ScanlineType == 1) if (frac(FragCoord.x * 0.25) > ScanlineScale) #elif (ScanlineType == 2) if (frac(FragCoord.x * 0.25) > ScanlineScale && frac(FragCoord.y * 0.25) > ScanlineScale) #endif { intensity = float4(0.0, 0.0, 0.0, 0.0); } else { intensity = smoothstep(0.2, ScanlineBrightness, color) + normalize(float4(color.xyz, RGBLuminance(color.xyz))); } float level = (4.0 - uv0.x) * ScanlineIntensity; color = intensity * (0.5 - level) + color * 1.1; #endif return color; } #endif /*------------------------------------------------------------------------------ [SUBPIXEL DITHERING CODE SECTION] ------------------------------------------------------------------------------*/ #if (DITHERING == 1) float4 DitherPass(float4 color : COLOR0, float2 uv0 : TEXCOORD0) : SV_Target { float ditherSize = 2.0; float ditherBits = 8.0; #if DitherMethod == 2 //random subpixel dithering float seed = dot(uv0, float2(12.9898, 78.233)); float sine = sin(seed); float noise = frac(sine * 43758.5453 + uv0.x); float ditherShift = (1.0 / (pow(2.0, ditherBits) - 1.0)); float ditherHalfShift = (ditherShift * 0.5); ditherShift = ditherShift * noise - ditherHalfShift; color.rgb += float3(-ditherShift, ditherShift, -ditherShift); #else //Ordered dithering float gridPosition = frac(dot(uv0, (PixelSize.xy / ditherSize)) + (0.5 / ditherSize)); float ditherShift = (0.75) * (1.0 / (pow(2, ditherBits) - 1.0)); float3 RGBShift = float3(ditherShift, -ditherShift, ditherShift); RGBShift = lerp(2.0 * RGBShift, -2.0 * RGBShift, gridPosition); color.rgb += RGBShift; #endif color.a = RGBLuminance(color.rgb); return color; } #endif /*------------------------------------------------------------------------------ [VIGNETTE CODE SECTION] ------------------------------------------------------------------------------*/ #if (VIGNETTE == 1) #define VignetteCenter float2(0.500, 0.500) float4 VignettePass(float4 color : COLOR0, float2 uv0 : TEXCOORD0) : SV_Target { float2 tc = uv0 - VignetteCenter; tc *= float2((PixelSize.y / PixelSize.x), VignetteRatio); tc /= VignetteRadius; float v = dot(tc, tc); color.rgb *= (1.0 + pow(v, VignetteSlope * 0.5) * -VignetteAmount); return color; } #endif /*------------------------------------------------------------------------------ [MAIN() & COMBINE PASS CODE SECTION] ------------------------------------------------------------------------------*/ PS_OUTPUT ps_main(VS_OUTPUT input) { PS_OUTPUT output; float4 color = PreGammaPass(color, input.t); #if (BILINEAR_FILTERING == 1) color = BiLinearPass(color, input.t); #endif #if (BICUBIC_FILTERING == 1) color = BiCubicPass(color, input.t); #endif #if (GAUSSIAN_FILTERING == 1) color = GaussianPass(color, input.t); #endif #if (UHQ_FXAA == 1) color = FxaaPass(color, input.t); #endif #if (GAMMA_CORRECTION == 1) color = PostGammaPass(color, input.t); #endif #if (TEXTURE_SHARPENING == 1) color = TexSharpenPass(color, input.t); #endif #if (SCANLINES == 1) color = ScanlinesPass(color, input.t, input.p); #endif #if (PIXEL_VIBRANCE == 1) color = VibrancePass(color, input.t); #endif #if (COLOR_GRADING == 1) color = ColorGrading(color, input.t); #endif #if (CEL_SHADING == 1) color = CelPass(color, input.t); #endif #if (BLENDED_BLOOM == 1) color = BloomPass(color, input.t); #endif #if (SCENE_TONEMAPPING == 1) color = TonemapPass(color, input.t); #endif #if (S_CURVE_CONTRAST == 1) color = SCurvePass(color, input.t); #endif #if (VIGNETTE == 1) color = VignettePass(color, input.t); #endif #if (DITHERING == 1) color = DitherPass(color, input.t); #endif output.c = color; return output; } #endif