#ifndef XBYAK_H_ #define XBYAK_H_ /*! @file xbyak.h @brief Xbyak ; JIT assembler for x86(IA32)/x64 by C++ @author herumi @version $Revision: 1.157 $ @url http://homepage1.nifty.com/herumi/soft/xbyak.html @date $Date: 2008/12/30 04:53:11 $ @note modified new BSD license http://www.opensource.org/licenses/bsd-license.php */ #include // for debug print #include #include #include #ifdef __GNUC__ #include #include #endif #ifdef __x86_64__ #define XBYAK64_GCC #elif defined(_WIN64) #define XBYAK64_WIN #endif #if !defined(XBYAK64) && !defined(XBYAK32) #if defined(XBYAK64_GCC) || defined(XBYAK64_WIN) #define XBYAK64 #else #define XBYAK32 #endif #endif #ifdef _MSC_VER #pragma warning(push) #pragma warning(disable : 4514) /* remove inline function */ #pragma warning(disable : 4786) /* identifier is too long */ #pragma warning(disable : 4503) /* name is too long */ #pragma warning(disable : 4127) /* constant expresison */ #if (_MSC_VER <= 1200) #ifndef for #define for if(0);else for #pragma warning(disable : 4127) /* condition is constant(for "if" trick) */ #endif #endif #include #endif #ifndef NUM_OF_ARRAY // template // size_t num_of_array(const T (&)[N]) { return N; } #define NUM_OF_ARRAY(x) (sizeof(x) / sizeof(*x)) #endif namespace Xbyak { #include "xbyak_bin2hex.h" enum { DEFAULT_MAX_CODE_SIZE = 2048, VERSION = 0x2070, /* 0xABCD = A.BC(D) */ }; /* #ifndef MIE_DEFINED_UINT32 #define MIE_DEFINED_UINT32 #ifdef _MSC_VER typedef unsigned __int64 uint64; #else typedef unsigned long long uint64; #endif typedef unsigned int uint32; typedef unsigned short uint16; typedef unsigned char uint8; #ifndef MIE_ALIGN #ifdef _MSC_VER #define MIE_ALIGN(x) __declspec(align(x)) #else #define MIE_ALIGN(x) __attribute__((aligned(x))) #endif #endif #endif */ enum Error { ERR_NONE = 0, ERR_BAD_ADDRESSING, ERR_CODE_IS_TOO_BIG, ERR_BAD_SCALE, ERR_ESP_CANT_BE_INDEX, ERR_BAD_COMBINATION, ERR_BAD_SIZE_OF_REGISTER, ERR_IMM_IS_TOO_BIG, ERR_BAD_ALIGN, ERR_LABEL_IS_REDEFINED, ERR_LABEL_IS_TOO_FAR, ERR_LABEL_IS_NOT_FOUND, ERR_CODE_ISNOT_COPYABLE, ERR_BAD_PARAMETER, ERR_CANT_PROTECT, ERR_CANT_USE_64BIT_DISP, ERR_OFFSET_IS_TOO_BIG, ERR_MEM_SIZE_IS_NOT_SPECIFIED, ERR_INTERNAL }; static inline const char *ConvertErrorToString(Error err) { static const char errTbl[][40] = { "none", "bad addressing", "code is too big", "bad scale", "esp can't be index", "bad combination", "bad size of register", "imm is too big", "bad align", "label is redefined", "label is too far", "label is not found", "code is not copyable", "bad parameter", "can't protect", "can't use 64bit disp(use (void*))", "offset is too big", "MEM size is not specified", "internal error", }; if (err < 0 || err > ERR_INTERNAL) return 0; return errTbl[err]; } namespace inner { enum { debug = 1 }; static inline uint32 GetPtrDist(const void *p1, const void *p2 = 0) { uint64 diff = static_cast(p1) - static_cast(p2); #ifdef XBYAK64 if (0x7FFFFFFFULL < diff && diff < 0xFFFFFFFF80000000ULL) throw ERR_OFFSET_IS_TOO_BIG; #endif return static_cast(diff); } static inline bool IsInDisp8(uint32 x) { return 0xFFFFFF80 <= x || x <= 0x7F; } } class Operand { private: const uint8 idx_; const uint8 kind_; const uint8 bit_; const uint8 ext8bit_; // 1 if spl/bpl/sil/dil, otherwise 0 void operator=(Operand&); public: enum Kind { NONE = 0, MEM = 1 << 1, IMM = 1 << 2, REG = 1 << 3, MMX = 1 << 4, XMM = 1 << 5, FPU = 1 << 6 }; enum Code { #ifdef XBYAK64 RAX = 0, RCX, RDX, RBX, RSP, RBP, RSI, RDI, R8, R9, R10, R11, R12, R13, R14, R15, R8D = 8, R9D, R10D, R11D, R12D, R13D, R14D, R15D, R8W = 8, R9W, R10W, R11W, R12W, R13W, R14W, R15W, R8B = 8, R9B, R10B, R11B, R12B, R13B, R14B, R15B, SPL = 4, BPL, SIL, DIL, #endif EAX = 0, ECX, EDX, EBX, ESP, EBP, ESI, EDI, AX = 0, CX, DX, BX, SP, BP, SI, DI, AL = 0, CL, DL, BL, AH, CH, DH, BH }; Operand() : idx_(0), kind_(0), bit_(0), ext8bit_(0) { } Operand(int idx, Kind kind, int bit, int ext8bit = 0) : idx_(static_cast(idx)) , kind_(static_cast(kind)) , bit_(static_cast(bit)) , ext8bit_(static_cast(ext8bit)) { assert((bit_ & (bit_ - 1)) == 0); // bit must be power of two } Kind getKind() const { return static_cast(kind_); } int getIdx() const { return idx_; } bool isNone() const { return kind_ == 0; } bool isMMX() const { return is(MMX); } bool isXMM() const { return is(XMM); } bool isREG(int bit = 0) const { return is(REG, bit); } bool isMEM(int bit = 0) const { return is(MEM, bit); } bool isExt8bit() const { return ext8bit_ != 0; } Operand changeBit(int bit) const { return Operand(idx_, static_cast(kind_), bit, ext8bit_); } // any bit is accetable if bit == 0 bool is(int kind, uint32 bit = 0) const { return (kind_ & kind) && (bit == 0 || (bit_ & bit)); // cf. you can set (8|16) } bool isBit(uint32 bit) const { return (bit_ & bit) != 0; } uint32 getBit() const { return bit_; } const char *toString() const { if (kind_ == REG) { if (ext8bit_) { static const char tbl[4][4] = { "spl", "bpl", "sil", "dil" }; return tbl[idx_ - 4]; } static const char tbl[4][16][5] = { { "al", "cl", "dl", "bl", "ah", "ch", "dh", "bh", "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b", "r15b" }, { "ax", "cx", "dx", "bx", "sp", "bp", "si", "di", "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w" }, { "eax", "ecx", "edx", "ebx", "esp", "ebp", "esi", "edi", "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d" }, { "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi", "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" }, }; return tbl[bit_ == 8 ? 0 : bit_ == 16 ? 1 : bit_ == 32 ? 2 : 3][idx_]; } else if (isMMX()) { static const char tbl[8][4] = { "mm0", "mm1", "mm2", "mm3", "mm4", "mm5", "mm6", "mm7" }; return tbl[idx_]; } else if (isXMM()) { static const char tbl[16][5] = { "xm0", "xm1", "xm2", "xm3", "xm4", "xm5", "xm6", "xm7", "xm8", "xm9", "xm10", "xm11", "xm12", "xm13", "xm14", "xm15" }; return tbl[idx_]; } throw ERR_INTERNAL; } }; class Reg : public Operand { void operator=(const Reg&); public: Reg() { } Reg(int idx, Kind kind, int bit = 0, int ext8bit = 0) : Operand(idx, kind, bit, ext8bit) { } // reg = this uint8 getRex(const Reg& index = Reg(), const Reg& base = Reg()) const { if ((!isExt8bit() && !index.isExt8bit() && !base.isExt8bit()) && (getIdx() | index.getIdx() | base.getIdx()) < 8) return 0; return uint8(0x40 | ((getIdx() >> 3) << 2)| ((index.getIdx() >> 3) << 1) | (base.getIdx() >> 3)); } }; class Reg8 : public Reg { void operator=(const Reg8&); public: explicit Reg8(int idx, int ext8bit = 0) : Reg(idx, Operand::REG, 8, ext8bit) { } }; class Reg16 : public Reg { void operator=(const Reg16&); public: explicit Reg16(int idx) : Reg(idx, Operand::REG, 16) { } }; class Mmx : public Reg { void operator=(const Mmx&); public: explicit Mmx(int idx, Kind kind = Operand::MMX, int bit = 64) : Reg(idx, kind, bit) { } }; class Xmm : public Mmx { void operator=(const Xmm&); public: explicit Xmm(int idx) : Mmx(idx, Operand::XMM, 128) { } }; // register for addressing(32bit or 64bit) class Reg32e : public Reg { public: // [base_(this) + index_ * scale_ + disp_] const Reg index_; const int scale_; // 0(index is none), 1, 2, 4, 8 const uint32 disp_; private: friend class Address; friend Reg32e operator+(const Reg32e& a, const Reg32e& b) { if (a.scale_ == 0) { if (b.scale_ == 0) { // base + base if (b.getIdx() == Operand::ESP) { // [reg + esp] => [esp + reg] return Reg32e(b, a, 1, a.disp_ + b.disp_); } else { return Reg32e(a, b, 1, a.disp_ + b.disp_); } } else if (b.isNone()) { // base + index return Reg32e(a, b.index_, b.scale_, a.disp_ + b.disp_); } } throw ERR_BAD_ADDRESSING; } friend Reg32e operator*(const Reg32e& r, int scale) { if (r.scale_ == 0) { if (scale == 1) { return r; } else if (scale == 2 || scale == 4 || scale == 8) { return Reg32e(Reg(), r, scale, r.disp_); } } throw ERR_BAD_SCALE; } friend Reg32e operator+(const Reg32e& r, unsigned int disp) { return Reg32e(r, r.index_, r.scale_, r.disp_ + disp); } friend Reg32e operator-(const Reg32e& r, unsigned int disp) { return operator+(r, -static_cast(disp)); } void operator=(const Reg32e&); // don't call public: explicit Reg32e(int idx, int bit) : Reg(idx, REG, bit) , index_() , scale_(0) , disp_(0) { } Reg32e(const Reg& base, const Reg& index, int scale, unsigned int disp) : Reg(base) , index_(index) , scale_(scale) , disp_(disp) { if (scale != 0 && scale != 1 && scale != 2 && scale != 4 && scale != 8) throw ERR_BAD_SCALE; if (!base.isNone() && !index.isNone() && base.getBit() != index.getBit()) throw ERR_BAD_COMBINATION; if (index.getIdx() == Operand::ESP) throw ERR_ESP_CANT_BE_INDEX; } Reg32e optimize() const // select smaller size { // [reg * 2] => [reg + reg] if (isNone() && !index_.isNone() && scale_ == 2) { const Reg index(index_.getIdx(), Operand::REG, index_.getBit()); return Reg32e(index, index, 1, disp_); } return *this; } }; struct Reg32 : public Reg32e { explicit Reg32(int idx) : Reg32e(idx, 32) {} private: void operator=(const Reg32&); }; #ifdef XBYAK64 struct Reg64 : public Reg32e { explicit Reg64(int idx) : Reg32e(idx, 64) {} private: void operator=(const Reg64&); }; struct RegRip { uint32 disp_; RegRip(unsigned int disp = 0) : disp_(disp) {} friend const RegRip operator+(const RegRip& r, unsigned int disp) { return RegRip(r.disp_ + disp); } friend const RegRip operator-(const RegRip& r, unsigned int disp) { return RegRip(r.disp_ - disp); } }; #endif class CodeArray { enum { ALIGN_SIZE = 16, MAX_FIXED_BUF_SIZE = 8 }; enum Type { FIXED_BUF, // use buf_(non alignment, non protect) USER_BUF, // use userPtr(non alignment, non protect) ALLOC_BUF // use new(alignment, protect) }; void operator=(const CodeArray&); Type type_; uint8 *const allocPtr_; // for ALLOC_BUF uint8 buf_[MAX_FIXED_BUF_SIZE]; // for FIXED_BUF protected: const size_t maxSize_; uint8 *const top_; size_t size_; public: CodeArray(size_t maxSize = MAX_FIXED_BUF_SIZE, void *userPtr = 0) : type_(userPtr ? USER_BUF : maxSize <= MAX_FIXED_BUF_SIZE ? FIXED_BUF : ALLOC_BUF) , allocPtr_(type_ == ALLOC_BUF ? new uint8[maxSize + ALIGN_SIZE] : 0) , maxSize_(maxSize) , top_(type_ == ALLOC_BUF ? getAlignedAddress(allocPtr_) : type_ == USER_BUF ? reinterpret_cast(userPtr) : buf_) , size_(0) { if (type_ == ALLOC_BUF && !protect(top_, maxSize, true)) { // fprintf(stderr, "can't protect (addr=%p, size=%u, canExec=%d)\n", addr, size, canExec); throw ERR_CANT_PROTECT; } } virtual ~CodeArray() { if (type_ == ALLOC_BUF) { protect(top_, maxSize_, false); delete[] allocPtr_; } } CodeArray(const CodeArray& rhs) : type_(rhs.type_) , allocPtr_(0) , maxSize_(rhs.maxSize_) , top_(buf_) , size_(rhs.size_) { if (type_ != FIXED_BUF) throw ERR_CODE_ISNOT_COPYABLE; for (size_t i = 0; i < size_; i++) top_[i] = rhs.top_[i]; } void db(int code) { if (size_ >= maxSize_) throw ERR_CODE_IS_TOO_BIG; top_[size_++] = static_cast(code); } void db(const uint8 *code, int codeSize) { for (int i = 0; i < codeSize; i++) db(code[i]); } void db(uint64 code, int codeSize) { if (codeSize > 8) throw ERR_BAD_PARAMETER; for (int i = 0; i < codeSize; i++) db(static_cast(code >> (i * 8))); } void dw(uint32 code) { db(code, 2); } void dd(uint32 code) { db(code, 4); } const uint8 *getCode() const { return top_; } const uint8 *getCurr() const { return &top_[size_]; } size_t getSize() const { return size_; } void dump() const { const uint8 *p = getCode(); size_t bufSize = getSize(); size_t remain = bufSize; for (int i = 0; i < 4; i++) { size_t disp = 16; if (remain < 16) { disp = remain; } for (size_t j = 0; j < 16; j++) { if (j < disp) { printf("%02X", p[i * 16 + j]); } } putchar('\n'); remain -= disp; if (remain <= 0) { break; } } } /* @param data [in] address of jmp data @param disp [in] offset from the next of jmp @param isShort [in] true if short jmp */ void rewrite(uint8 *data, uint32 disp, bool isShort) { if (isShort) { data[0] = static_cast(disp); } else { data[0] = static_cast(disp); data[1] = static_cast(disp >> 8); data[2] = static_cast(disp >> 16); data[3] = static_cast(disp >> 24); } } /** change exec permission of memory @param addr [in] buffer address @param size [in] buffer size @param canExec [in] true(enable to exec), false(disable to exec) @return true(success), false(failure) */ static inline bool protect(const void *addr, size_t size, bool canExec) { #ifdef __GNUC__ size_t pageSize = sysconf(_SC_PAGESIZE); size_t iaddr = reinterpret_cast(addr); size_t roundAddr = iaddr & ~(pageSize - static_cast(1)); int mode = PROT_READ | PROT_WRITE | (canExec ? PROT_EXEC : 0); return mprotect(reinterpret_cast(roundAddr), size + (iaddr - roundAddr), mode) == 0; #elif defined(_WIN32) DWORD oldProtect; return VirtualProtect(const_cast(addr), size, canExec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE, &oldProtect) != 0; #else return true; #endif } /** get aligned memory pointer @param addr [in] address @param alingedSize [in] power of two @return aligned addr by alingedSize */ static inline uint8 *getAlignedAddress(uint8 *addr, size_t alignedSize = ALIGN_SIZE) { return reinterpret_cast((reinterpret_cast(addr) + alignedSize - 1) & ~(alignedSize - static_cast(1))); } }; class Address : public Operand, public CodeArray { void operator=(const Address&); uint64 disp_; bool isOnlyDisp_; bool is64bitDisp_; uint8 rex_; public: const bool is32bit_; Address(uint32 sizeBit, bool isOnlyDisp, uint64 disp, bool is32bit, bool is64bitDisp = false) : Operand(0, MEM, sizeBit) , CodeArray(6) // 6 = 1(ModRM) + 1(SIB) + 4(disp) , disp_(disp) , isOnlyDisp_(isOnlyDisp) , is64bitDisp_(is64bitDisp) , rex_(0) , is32bit_(is32bit) { } bool isOnlyDisp() const { return isOnlyDisp_; } // for mov eax uint64 getDisp() const { return disp_; } uint8 getRex() const { return rex_; } bool is64bitDisp() const { return is64bitDisp_; } // for moffset #ifdef XBYAK64 void setRex(uint8 rex) { rex_ = rex; } #else void setRex(uint8) { } #endif }; class AddressFrame { private: void operator=(const AddressFrame&); public: const uint32 bit_; explicit AddressFrame(uint32 bit) : bit_(bit) { } Address operator[](const void *disp) const { Reg32e r(Reg(), Reg(), 0, inner::GetPtrDist(disp)); return operator[](r); } #ifdef XBYAK64 Address operator[](uint64 disp) const { return Address(64, true, disp, false, true); } Address operator[](const RegRip& addr) const { Address frame(64, true, addr.disp_, false); frame.db(B00000101); frame.dd(addr.disp_); return frame; } #endif Address operator[](const Reg32e& in) const { const Reg32e& r = in.optimize(); Address frame(bit_, (r.isNone() && r.index_.isNone()), r.disp_, r.isBit(32) || r.index_.isBit(32)); enum { mod00 = 0, mod01 = 1, mod10 = 2 }; int mod; if (r.isNone() || ((r.getIdx() & 7) != Operand::EBP && r.disp_ == 0)) { mod = mod00; } else if (inner::IsInDisp8(r.disp_)) { mod = mod01; } else { mod = mod10; } const int base = r.isNone() ? Operand::EBP : (r.getIdx() & 7); /* ModR/M = [2:3:3] = [Mod:reg/code:R/M] */ bool hasSIB = !r.index_.isNone() || (r.getIdx() & 7) == Operand::ESP; #ifdef XBYAK64 if (r.isNone() && r.index_.isNone()) hasSIB = true; #endif if (!hasSIB) { frame.db((mod << 6) | base); } else { frame.db((mod << 6) | Operand::ESP); /* SIB = [2:3:3] = [SS:index:base(=rm)] */ int index = r.index_.isNone() ? Operand::ESP : (r.index_.getIdx() & 7); int ss = (r.scale_ == 8) ? 3 : (r.scale_ == 4) ? 2 : (r.scale_ == 2) ? 1 : 0; frame.db((ss << 6) | (index << 3) | base); } if (mod == mod01) { frame.db(r.disp_); } else if (mod == mod10 || (mod == mod00 && r.isNone())) { frame.dd(r.disp_); } frame.setRex(Reg().getRex(r.index_, r)); return frame; } }; struct JmpLabel { uint8 *endOfJmp; /* end address of jmp */ bool isShort; }; class Label { CodeArray *base_; int anonymousCount_; // for @@, @f, @b int localCount_; // for .*** typedef std::map DefinedList; typedef std::multimap UndefinedList; DefinedList definedList_; UndefinedList undefinedList_; /* @@ --> @@. @b --> @@. @f --> @@. .*** -> .***. */ std::string convertLabel(const char *label) const { std::string newLabel(label); if (newLabel == "@f" || newLabel == "@F") { newLabel = std::string("@@") + toStr(anonymousCount_ + 1); } else if (newLabel == "@b" || newLabel == "@B") { newLabel = std::string("@@") + toStr(anonymousCount_); } else if (*label == '.') { newLabel += toStr(localCount_); } return newLabel; } public: Label() : base_(0) , anonymousCount_(0) , localCount_(0) { } void incLocalCount() { localCount_++; } void decLocalCount() { localCount_--; } void set(CodeArray *base) { base_ = base; } void define(const char *label, const uint8 *address) { std::string newLabel(label); if (newLabel == "@@") { newLabel += toStr(++anonymousCount_); } else if (*label == '.') { newLabel += toStr(localCount_); } label = newLabel.c_str(); // add label DefinedList::value_type item(label, address); std::pair ret = definedList_.insert(item); if (!ret.second) throw ERR_LABEL_IS_REDEFINED; // search undefined label for (;;) { UndefinedList::iterator itr = undefinedList_.find(label); if (itr == undefinedList_.end()) break; const JmpLabel *jmp = &itr->second; uint32 disp = inner::GetPtrDist(address, jmp->endOfJmp); if (jmp->isShort && !inner::IsInDisp8(disp)) throw ERR_LABEL_IS_TOO_FAR; uint8 *data = jmp->endOfJmp - (jmp->isShort ? 1 : 4); base_->rewrite(data, disp, jmp->isShort); undefinedList_.erase(itr); } } const uint8 *getAddress(const char *label) const { std::string newLabel = convertLabel(label); DefinedList::const_iterator itr = definedList_.find(newLabel); if (itr != definedList_.end()) { return itr->second; } else { return 0; } } void addUndefinedLabel(const char *label, const JmpLabel& jmp) { std::string newLabel = convertLabel(label); undefinedList_.insert(UndefinedList::value_type(newLabel, jmp)); } bool hasUndefinedLabel() const { if (inner::debug) { for (UndefinedList::const_iterator i = undefinedList_.begin(); i != undefinedList_.end(); ++i) { fprintf(stderr, "undefined label:%s\n", i->first.c_str()); } } return !undefinedList_.empty(); } static inline std::string toStr(int num) { char buf[16]; static const char fmt[] = ".%08x"; #ifdef _WIN32 #if _MSC_VER < 1400 _snprintf(buf, sizeof(buf), fmt, num); #else _snprintf_s(buf, sizeof(buf), fmt, num); #endif #else snprintf(buf, sizeof(buf), fmt, num); #endif return buf; } }; class CodeGenerator : public CodeArray { protected: enum LabelType { T_SHORT, T_NEAR, T_AUTO // T_SHORT if possible }; private: CodeGenerator operator=(const CodeGenerator&); // don't call #ifdef XBYAK64 enum { i32e = 32 | 64, BIT = 64 }; #else enum { i32e = 32, BIT = 32 }; #endif // (XMM, XMM|MEM) static inline bool isXMM_XMMorMEM(const Operand& op1, const Operand& op2) { return op1.isXMM() && (op2.isXMM() || op2.isMEM()); } // (MMX, MMX|MEM) or (XMM, XMM|MEM) static inline bool isXMMorMMX_MEM(const Operand& op1, const Operand& op2) { return (op1.isMMX() && (op2.isMMX() || op2.isMEM())) || isXMM_XMMorMEM(op1, op2); } // (XMM, MMX|MEM) static inline bool isXMM_MMXorMEM(const Operand& op1, const Operand& op2) { return op1.isXMM() && (op2.isMMX() || op2.isMEM()); } // (MMX, XMM|MEM) static inline bool isMMX_XMMorMEM(const Operand& op1, const Operand& op2) { return op1.isMMX() && (op2.isXMM() || op2.isMEM()); } // (XMM, REG32|MEM) static inline bool isXMM_REG32orMEM(const Operand& op1, const Operand& op2) { return op1.isXMM() && (op2.isREG(i32e) || op2.isMEM()); } // (REG32, XMM|MEM) static inline bool isREG32_XMMorMEM(const Operand& op1, const Operand& op2) { return op1.isREG(i32e) && (op2.isXMM() || op2.isMEM()); } void if16bit(const Operand& reg1, const Operand& reg2) { // except movsx(16bit, 32/64bit) if ((reg1.isBit(16) && !reg2.isBit(i32e)) || (reg2.isBit(16) && !reg1.isBit(i32e))) db(0x66); } void rexAddr(const Address& addr, const Reg& reg = Reg()) { #ifdef XBYAK64 if (addr.is32bit_) db(0x67); #endif if16bit(reg, addr); uint32 rex = addr.getRex() | reg.getRex(); if (reg.isREG(64)) rex |= 0x48; if (rex) db(rex); } void rex(const Operand& op1, const Operand& op2 = Operand()) { if (op1.isMEM()) { rexAddr(static_cast(op1), static_cast(op2)); } else if (op2.isMEM()) { rexAddr(static_cast(op2), static_cast(op1)); } else { const Reg& reg1 = static_cast(op1); const Reg& reg2 = static_cast(op2); // ModRM(reg, base); if16bit(reg1, reg2); uint8 rex = reg2.getRex(Reg(), reg1); if (reg1.isREG(64) || reg2.isREG(64)) rex |= 0x48; if (rex) db(rex); } } Label label_; bool isInDisp16(uint32 x) const { return 0xFFFF8000 <= x || x <= 0x7FFF; } uint8 getModRM(int mod, int r1, int r2) const { return static_cast((mod << 6) | ((r1 & 7) << 3) | (r2 & 7)); } void opModR(const Reg& reg1, const Reg& reg2, int code0, int code1 = NONE, int code2 = NONE) { rex(reg2, reg1); db(code0 | (reg1.isBit(8) ? 0 : 1)); if (code1 != NONE) db(code1); if (code2 != NONE) db(code2); db(getModRM(3, reg1.getIdx(), reg2.getIdx())); } void opModM(const Address& addr, const Reg& reg, int code0, int code1 = NONE, int code2 = NONE) { if (addr.is64bitDisp()) throw ERR_CANT_USE_64BIT_DISP; rex(addr, reg); db(code0 | (reg.isBit(8) ? 0 : 1)); if (code1 != NONE) db(code1); if (code2 != NONE) db(code2); uint8 t = *addr.getCode(); assert((t & ~0xC7) == 0); /* 0b11000111 */ db(t | ((reg.getIdx() & 7) << 3)); // update reg field db(addr.getCode() + 1, static_cast(addr.getSize()) - 1); } void opJmp(const char *label, LabelType type, uint8 shortCode, uint8 longCode, uint8 longPref) { const uint8 *address = label_.getAddress(label); if (address) { /* label exists */ opJmp(address, type, shortCode, longCode, longPref); } else { const int shortHeaderSize = 1; const int shortJmpSize = shortHeaderSize + 1; /* +1 means 8-bit displacement */ const int longHeaderSize = longPref ? 2 : 1; const int longJmpSize = longHeaderSize + 4; /* +4 means 32-bit displacement */ uint8 *top = const_cast(getCurr()); bool isShort = (type != T_NEAR); JmpLabel jmp; jmp.endOfJmp = top + (isShort ? shortJmpSize : longJmpSize); jmp.isShort = isShort; if (isShort) { db(shortCode); db(0); } else { if (longPref) db(longPref); db(longCode); dd(0); } label_.addUndefinedLabel(label, jmp); } } void opJmp(const void *addr, LabelType type, uint8 shortCode, uint8 longCode, uint8 longPref) { const int shortHeaderSize = 1; const int shortJmpSize = shortHeaderSize + 1; /* +1 means 8-bit displacement */ const int longHeaderSize = longPref ? 2 : 1; const int longJmpSize = longHeaderSize + 4; /* +4 means 32-bit displacement */ uint8 *top = const_cast(getCurr()); uint32 disp = inner::GetPtrDist(addr, top); if (type != T_NEAR && inner::IsInDisp8(disp - shortJmpSize)) { db(shortCode); db(0); rewrite(top + shortHeaderSize, disp - shortJmpSize, true); } else { if (type == T_SHORT) throw ERR_LABEL_IS_TOO_FAR; if (longPref) db(longPref); db(longCode); dd(0); rewrite(top + longHeaderSize, disp - longJmpSize, false); } } /* preCode is for SSSE3/SSE4 */ void opGen(const Operand& reg, const Operand& op, int code, int pref, bool isValid(const Operand&, const Operand&), int imm8 = NONE, int preCode = NONE) { if (isValid && !isValid(reg, op)) throw ERR_BAD_COMBINATION; if (pref != NONE) db(pref); if (op.isMEM()) { opModM(static_cast(op), static_cast(reg), 0x0F, preCode, code); } else { opModR(static_cast(reg), static_cast(op), 0x0F, preCode, code); } if (imm8 != NONE) db(imm8); } void opMMX_IMM(const Mmx& mmx, int imm8, int code, int ext) { if (mmx.isXMM()) db(0x66); opModR(Reg32(ext), mmx, 0x0F, code); db(imm8); } void opMMX(const Mmx& mmx, const Operand& op, int code, int pref = 0x66, int imm8 = NONE, int preCode = NONE) { pref = mmx.isXMM() ? pref : NONE; opGen(mmx, op, code, pref, isXMMorMMX_MEM, imm8, preCode); } void opMovXMM(const Operand& op1, const Operand& op2, int code, int pref) { if (pref != NONE) db(pref); if (op1.isXMM() && op2.isMEM()) { opModM(static_cast(op2), static_cast(op1), 0x0F, code); } else if (op1.isMEM() && op2.isXMM()) { opModM(static_cast(op1), static_cast(op2), 0x0F, code | 1); } else { throw ERR_BAD_COMBINATION; } } void opExt(const Operand& op, const Mmx& mmx, int code, int imm, bool hasMMX2 = false) { if (hasMMX2 && op.isREG(i32e)) { /* pextrw is special */ if (mmx.isXMM()) db(0x66); opModR(static_cast(op), mmx, 0x0F, B11000101); db(imm); } else { opGen(mmx, op, code, 0x66, isXMM_REG32orMEM, imm, B00111010); } } void opR_ModM(const Operand& op, int bit, uint8 mod, int ext, int code0, int code1 = NONE, int code2 = NONE) { if (op.isREG(bit)) { rex(op); db(code0 | (op.isBit(8) ? 0 : 1)); if (code1 != NONE) db(code1); if (code2 != NONE) db(code2); db(getModRM(mod, ext, op.getIdx())); } else if (op.isMEM()) { opModM(static_cast(op), Reg(ext, Operand::REG, op.getBit()), code0, code1, code2); } else { throw ERR_BAD_COMBINATION; } } void opShift(const Operand& op, int imm, int ext) { verifyMemHasSize(op); opR_ModM(op, 0, 3, ext, (B11000000 | ((imm == 1 ? 1 : 0) << 4))); if (imm != 1) db(imm); } void opShift(const Operand& op, const Reg8& cl, int ext) { if (cl.getIdx() != Operand::CL) throw ERR_BAD_COMBINATION; opR_ModM(op, 0, 3, ext, B11010010); } void opModRM(const Operand& op1, const Operand& op2, bool condR, bool condM, int code0, int code1 = NONE, int code2 = NONE) { if (condR) { opModR(static_cast(op1), static_cast(op2), code0, code1, code2); } else if (condM) { opModM(static_cast(op2), static_cast(op1), code0, code1, code2); } else { throw ERR_BAD_COMBINATION; } } void opShxd(const Operand& op, const Reg& reg, uint8 imm, int code, const Reg8 *cl = 0) { if (cl && cl->getIdx() != Operand::CL) throw ERR_BAD_COMBINATION; opModRM(reg, op, (op.isREG(16 | i32e) && op.getBit() == reg.getBit()), op.isMEM() && (reg.isREG(16 | i32e)), 0x0F, code | (cl ? 1 : 0)); if (!cl) db(imm); } // (REG, REG|MEM), (MEM, REG) void opRM_RM(const Operand& op1, const Operand& op2, int code) { if (op1.isREG() && op2.isMEM()) { opModM(static_cast(op2), static_cast(op1), code | 2); } else { opModRM(op2, op1, op1.isREG() && op1.getKind() == op2.getKind(), op1.isMEM() && op2.isREG(), code); } } // (REG|MEM, IMM) void opRM_I(const Operand& op, uint32 imm, int code, int ext) { verifyMemHasSize(op); uint32 immBit = inner::IsInDisp8(imm) ? 8 : isInDisp16(imm) ? 16 : 32; if (op.getBit() < immBit) throw ERR_IMM_IS_TOO_BIG; if (op.isREG()) { if (immBit == 16 && op.isBit(32)) immBit = 32; /* don't use MEM16 if 32bit mode */ } if (op.isREG() && op.getIdx() == 0 && (op.getBit() == immBit || (op.isBit(64) && immBit == 32))) { // rax, eax, ax, al rex(op); db(code | 4 | (immBit == 8 ? 0 : 1)); } else { int tmp = (op.getBit() > immBit && 32 > immBit) ? 2 : 0; opR_ModM(op, 0, 3, ext, B10000000 | tmp); } db(imm, immBit / 8); } void opIncDec(const Operand& op, int code, int ext) { #ifndef XBYAK64 if (op.isREG() && !op.isBit(8)) { rex(op); db(code | op.getIdx()); return; } #endif code = B11111110; if (op.isREG()) { opModR(Reg(ext, Operand::REG, op.getBit()), static_cast(op), code); } else if (op.isMEM() && op.getBit() > 0) { opModM(static_cast(op), Reg(ext, Operand::REG, op.getBit()), code); } else { throw ERR_BAD_COMBINATION; } } void opPushPop(const Operand& op, int code, int ext, int alt) { if (op.isREG()) { #ifdef XBYAK64 if (op.isBit(16)) db(0x66); if (static_cast(op).getIdx() >= 8) db(0x41); #else rex(op); #endif db(alt | (op.getIdx() & 7)); } else if (op.isMEM()) { opModM(static_cast(op), Reg(ext, Operand::REG, op.getBit()), code); } else { throw ERR_BAD_COMBINATION; } } void verifyMemHasSize(const Operand& op) const { if (op.isMEM() && op.getBit() == 0) throw ERR_MEM_SIZE_IS_NOT_SPECIFIED; } protected: unsigned int getVersion() const { return VERSION; } using CodeArray::db; const Mmx mm0, mm1, mm2, mm3, mm4, mm5, mm6, mm7; const Xmm xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7; const Xmm &xm0, &xm1, &xm2, &xm3, &xm4, &xm5, &xm6, &xm7; const Reg32 eax, ecx, edx, ebx, esp, ebp, esi, edi; const Reg16 ax, cx, dx, bx, sp, bp, si, di; const Reg8 al, cl, dl, bl, ah, ch, dh, bh; const AddressFrame ptr, byte, word, dword, qword, xmmword; #ifdef XBYAK64 const Reg64 rax, rcx, rdx, rbx, rsp, rbp, rsi, rdi, r8, r9, r10, r11, r12, r13, r14, r15; const Reg32 r8d, r9d, r10d, r11d, r12d, r13d, r14d, r15d; const Reg16 r8w, r9w, r10w, r11w, r12w, r13w, r14w, r15w; const Reg8 r8b, r9b, r10b, r11b, r12b, r13b, r14b, r15b; const Reg8 spl, bpl, sil, dil; const Xmm xmm8, xmm9, xmm10, xmm11, xmm12, xmm13, xmm14, xmm15; const Xmm &xm8, &xm9, &xm10, &xm11, &xm12, &xm13, &xm14, &xm15; const RegRip rip; #endif void L(const char *label) { label_.define(label, getCurr()); } void inLocalLabel() { label_.incLocalCount(); } void outLocalLabel() { label_.decLocalCount(); } void jmp(const char *label, LabelType type = T_AUTO) { opJmp(label, type, B11101011, B11101001, 0); } void jmp(const void *addr, LabelType type = T_AUTO) { opJmp(addr, type, B11101011, B11101001, 0); } void jmp(const Operand& op) { opR_ModM(op, i32e, 3, 4, 0xFF); } // (REG|MEM, REG) void test(const Operand& op, const Reg& reg) { opModRM(reg, op, op.isREG() && (op.getKind() == reg.getKind()), op.isMEM(), B10000100); } // (REG|MEM, IMM) void test(const Operand& op, uint32 imm) { verifyMemHasSize(op); if (op.isREG() && op.getIdx() == 0) { // al, ax, eax rex(op); db(B10101000 | (op.isBit(8) ? 0 : 1)); } else { opR_ModM(op, 0, 3, 0, B11110110); } int size = op.getBit() / 8; if (size > 4) size = 4; db(imm, size); } void ret(int imm = 0) { if (imm) { db(B11000010); dw(imm); } else { db(B11000011); } } // (REG16|REG32, REG16|REG32|MEM) void imul(const Reg& reg, const Operand& op) { opModRM(reg, op, op.isREG() && (reg.getKind() == op.getKind()), op.isMEM(), 0x0F, B10101111); } void imul(const Reg& reg, const Operand& op, int imm) { int s = inner::IsInDisp8(imm) ? 1 : 0; opModRM(reg, op, op.isREG() && (reg.getKind() == op.getKind()), op.isMEM(), B01101001 | (s << 1)); int size = s ? 1 : reg.isREG(16) ? 2 : 4; db(imm, size); } void pop(const Operand& op) { opPushPop(op, B10001111, 0, B01011000); } void push(const Operand& op) { opPushPop(op, B11111111, 6, B01010000); } void push(const AddressFrame& af, uint32 imm) { if (af.bit_ == 8 && inner::IsInDisp8(imm)) { db(B01101010); db(imm); } else if (af.bit_ == 16 && isInDisp16(imm)) { db(0x66); db(B01101000); dw(imm); } else { db(B01101000); dd(imm); } } /* use "push(word, 4)" if you want "push word 4" */ void push(uint32 imm) { if (inner::IsInDisp8(imm)) { push(byte, imm); } else { push(dword, imm); } } void bswap(const Reg32e& reg) { opModR(Reg32(1), reg, 0x0F); } void mov(const Operand& reg1, const Operand& reg2) { const Reg *reg = 0; const Address *addr = 0; uint8 code = 0; if (reg1.isREG() && reg1.getIdx() == 0 && reg2.isMEM()) { // mov eax|ax|al, [disp] reg = &static_cast(reg1); addr= &static_cast(reg2); code = B10100000; } else if (reg1.isMEM() && reg2.isREG() && reg2.getIdx() == 0) { // mov [disp], eax|ax|al reg = &static_cast(reg2); addr= &static_cast(reg1); code = B10100010; } #ifdef XBYAK64 if (addr && addr->is64bitDisp()) { if (code) { rex(*reg); db(reg1.isREG(8) ? 0xA0 : reg1.isREG() ? 0xA1 : reg2.isREG(8) ? 0xA2 : 0xA3); db(addr->getDisp(), 8); } else { throw ERR_BAD_COMBINATION; } } else #else if (code && addr->isOnlyDisp()) { rex(*reg, *addr); db(code | (reg->isBit(8) ? 0 : 1)); dd(static_cast(addr->getDisp())); } else #endif { opRM_RM(reg1, reg2, B10001000); } } void mov(const Operand& op, uint64 imm) { verifyMemHasSize(op); if (op.isREG()) { int w = op.isBit(8) ? 0 : 1; rex(op); db(B10110000 | (w << 3) | (op.getIdx() & 7)); } else if (op.isMEM()) { opModM(static_cast(op), Reg(0, Operand::REG, op.getBit()), B11000110); } else { throw ERR_BAD_COMBINATION; } db(imm, op.getBit() / 8); } void opMovxx(const Reg& reg, const Operand& op, uint8 code) { int w = op.isBit(16); bool cond = reg.isREG() && (reg.getBit() > op.getBit()); opModRM(reg, op, cond && op.isREG(), cond && op.isMEM(), 0x0F, code | w); } void cmpxchg8b(const Address& addr) { opModM(addr, Reg32(1), 0x0F, B11000111); } #ifdef XBYAK64 void cmpxchg16b(const Address& addr) { opModM(addr, Reg64(1), 0x0F, B11000111); } #endif void xadd(const Operand& op, const Reg& reg) { opModRM(reg, op, (op.isREG() && reg.isREG() && op.getBit() == reg.getBit()), op.isMEM(), 0x0F, B11000000 | (reg.isBit(8) ? 0 : 1)); } void xchg(const Operand& op1, const Operand& op2) { const Operand *p1 = &op1, *p2 = &op2; if (p1->isMEM() || (p2->isREG(16 | i32e) && p2->getIdx() == 0)) { p1 = &op2; p2 = &op1; } if (p1->isMEM()) throw ERR_BAD_COMBINATION; if (p2->isREG() && (p1->isREG(16 | i32e) && p1->getIdx() == 0) #ifdef XBYAK64 && (p2->getIdx() != 0 || !p1->isREG(32)) #endif ) { rex(*p2, *p1); db(0x90 | (p2->getIdx() & 7)); return; } opModRM(*p1, *p2, (p1->isREG() && p2->isREG() && (p1->getBit() == p2->getBit())), p2->isMEM(), B10000110 | (p1->isBit(8) ? 0 : 1)); } void call(const char *label) { opJmp(label, T_NEAR, 0, B10011010, 0); } void call(const void *addr) { opJmp(addr, T_NEAR, 0, B11101000, 0); } void call(const Operand& op) { opR_ModM(op, 16 | i32e, 3, 2, B11111111); } // special case void movd(const Address& addr, const Mmx& mmx) { opModM(addr, Reg(mmx.getIdx(), Operand::REG, mmx.getBit() / 8), 0x0F, B01111110); } void movd(const Reg32& reg, const Mmx& mmx) { if (mmx.isXMM()) db(0x66); opModR(mmx, reg, 0x0F, B01111110); } void movd(const Mmx& mmx, const Address& addr) { ASSERT(!addr.isBit(32)); // don't use dword ptr, bogus, won't output 0x66 for xmm dest op opModM(addr, Reg(mmx.getIdx(), Operand::REG, mmx.getBit() / 8), 0x0F, B01101110); } void movd(const Mmx& mmx, const Reg32& reg) { if (mmx.isXMM()) db(0x66); opModR(mmx, reg, 0x0F, B01101110); } void movq2dq(const Xmm& xmm, const Mmx& mmx) { db(0xF3); opModR(xmm, mmx, 0x0F, B11010110); } void movdq2q(const Mmx& mmx, const Xmm& xmm) { db(0xF2); opModR(mmx, xmm, 0x0F, B11010110); } void movq(const Mmx& mmx, const Operand& op) { if (mmx.isXMM()) db(0xF3); opModRM(mmx, op, (mmx.getKind() == op.getKind()), op.isMEM(), 0x0F, mmx.isXMM() ? B01111110 : B01101111); } void movq(const Address& addr, const Mmx& mmx) { opModM(addr, Reg(mmx.getIdx(), Operand::REG, mmx.getBit() / 8), 0x0F, mmx.isXMM() ? B11010110 : B01111111); } // MMX2 : pextrw : reg, mmx/xmm, imm // SSE4 : pextrw, pextrb, pextrd, extractps : reg/mem, mmx/xmm, imm void pextrw(const Operand& op, const Mmx& xmm, uint8 imm) { opExt(op, xmm, 0x15, imm, true); } void pextrb(const Operand& op, const Xmm& xmm, uint8 imm) { opExt(op, xmm, 0x14, imm); } void pextrd(const Operand& op, const Xmm& xmm, uint8 imm) { opExt(op, xmm, 0x16, imm); } void extractps(const Operand& op, const Xmm& xmm, uint8 imm) { opExt(op, xmm, 0x17, imm); } void pinsrw(const Mmx& mmx, const Operand& op, int imm) { if (!op.isREG(32) && !op.isMEM()) throw ERR_BAD_COMBINATION; opGen(mmx, op, B11000100, mmx.isXMM() ? 0x66 : NONE, 0, imm); } void insertps(const Xmm& xmm, const Operand& op, uint8 imm) { opGen(xmm, op, 0x21, 0x66, isXMM_XMMorMEM, imm, B00111010); } void pinsrb(const Xmm& xmm, const Operand& op, uint8 imm) { opGen(xmm, op, 0x20, 0x66, isXMM_REG32orMEM, imm, B00111010); } void pinsrd(const Xmm& xmm, const Operand& op, uint8 imm) { opGen(xmm, op, 0x22, 0x66, isXMM_REG32orMEM, imm, B00111010); } void pmovmskb(const Reg32e& reg, const Mmx& mmx) { if (mmx.isXMM()) db(0x66); opModR(reg, mmx, 0x0F, B11010111); } void maskmovq(const Mmx& reg1, const Mmx& reg2) { if (!reg1.isMMX() || !reg2.isMMX()) throw ERR_BAD_COMBINATION; opModR(reg1, reg2, 0x0F, B11110111); } void lea(const Reg32e& reg, const Address& addr) { opModM(addr, reg, B10001101); } void movmskps(const Reg32e& reg, const Xmm& xmm) { opModR(reg, xmm, 0x0F, B01010000); } void movmskpd(const Reg32e& reg, const Xmm& xmm) { db(0x66); movmskps(reg, xmm); } void movntps(const Address& addr, const Xmm& xmm) { opModM(addr, Mmx(xmm.getIdx()), 0x0F, B00101011); } void movntdqa(const Xmm& xmm, const Address& addr) { db(0x66); opModM(addr, xmm, 0x0F, 0x38, 0x2A); } void lddqu(const Xmm& xmm, const Address& addr) { db(0xF2); opModM(addr, xmm, 0x0F, B11110000); } void movnti(const Address& addr, const Reg32e& reg) { opModM(addr, reg, 0x0F, B11000011); } void movntq(const Address& addr, const Mmx& mmx) { if (!mmx.isMMX()) throw ERR_BAD_COMBINATION; opModM(addr, mmx, 0x0F, B11100111); } void popcnt(const Reg& reg, const Operand& op) { bool is16bit = reg.isREG(16) && (op.isREG(16) || op.isMEM()); if (!is16bit && !(reg.isREG(i32e) && (op.isREG(i32e) || op.isMEM()))) throw ERR_BAD_COMBINATION; if (is16bit) db(0x66); db(0xF3); opModRM(Reg(reg.getIdx(), Operand::REG, i32e == 32 ? 32 : reg.getBit()), op, op.isREG(), true, 0x0F, 0xB8); } void crc32(const Reg32e& reg, const Operand& op) { if (reg.isBit(32) && op.isBit(16)) db(0x66); db(0xF2); opModRM(reg, op, op.isREG(), op.isMEM(), 0x0F, 0x38, 0xF0 | (op.isBit(8) ? 0 : 1)); } public: enum { NONE = 256 }; CodeGenerator(size_t maxSize = DEFAULT_MAX_CODE_SIZE, void *userPtr = 0) : CodeArray(maxSize, userPtr) , mm0(0), mm1(1), mm2(2), mm3(3), mm4(4), mm5(5), mm6(6), mm7(7) , xmm0(0), xmm1(1), xmm2(2), xmm3(3), xmm4(4), xmm5(5), xmm6(6), xmm7(7) , xm0(xmm0), xm1(xmm1), xm2(xmm2), xm3(xmm3), xm4(xmm4), xm5(xmm5), xm6(xmm6), xm7(xmm7) // for my convenience , eax(Operand::EAX), ecx(Operand::ECX), edx(Operand::EDX), ebx(Operand::EBX), esp(Operand::ESP), ebp(Operand::EBP), esi(Operand::ESI), edi(Operand::EDI) , ax(Operand::EAX), cx(Operand::ECX), dx(Operand::EDX), bx(Operand::EBX), sp(Operand::ESP), bp(Operand::EBP), si(Operand::ESI), di(Operand::EDI) , al(Operand::AL), cl(Operand::CL), dl(Operand::DL), bl(Operand::BL), ah(Operand::AH), ch(Operand::CH), dh(Operand::DH), bh(Operand::BH) , ptr(0), byte(8), word(16), dword(32), qword(64), xmmword(128) #ifdef XBYAK64 , rax(Operand::RAX), rcx(Operand::RCX), rdx(Operand::RDX), rbx(Operand::RBX), rsp(Operand::RSP), rbp(Operand::RBP), rsi(Operand::RSI), rdi(Operand::RDI), r8(Operand::R8), r9(Operand::R9), r10(Operand::R10), r11(Operand::R11), r12(Operand::R12), r13(Operand::R13), r14(Operand::R14), r15(Operand::R15) , r8d(Operand::R8D), r9d(Operand::R9D), r10d(Operand::R10D), r11d(Operand::R11D), r12d(Operand::R12D), r13d(Operand::R13D), r14d(Operand::R14D), r15d(Operand::R15D) , r8w(Operand::R8W), r9w(Operand::R9W), r10w(Operand::R10W), r11w(Operand::R11W), r12w(Operand::R12W), r13w(Operand::R13W), r14w(Operand::R14W), r15w(Operand::R15W) , r8b(Operand::R8B), r9b(Operand::R9B), r10b(Operand::R10B), r11b(Operand::R11B), r12b(Operand::R12B), r13b(Operand::R13B), r14b(Operand::R14B), r15b(Operand::R15B) , spl(Operand::SPL, 1), bpl(Operand::BPL, 1), sil(Operand::SIL, 1), dil(Operand::DIL, 1) , xmm8(8), xmm9(9), xmm10(10), xmm11(11), xmm12(12), xmm13(13), xmm14(14), xmm15(15) , xm8(xmm8), xm9(xmm9), xm10(xmm10), xm11(xmm11), xm12(xmm12), xm13(xmm13), xm14(xmm14), xm15(xmm15) // for my convenience , rip() #endif { label_.set(this); } bool hasUndefinedLabel() const { return label_.hasUndefinedLabel(); } const uint8 *getCode() const { assert(!hasUndefinedLabel()); // if (hasUndefinedLabel()) throw ERR_LABEL_IS_NOT_FOUND; return top_; } #ifdef TEST_NM void dump(bool doClear = true) { CodeArray::dump(); if (doClear) size_ = 0; } #endif #ifndef XBYAK_DONT_READ_LIST #include "xbyak_mnemonic.h" void align(int x = 16) { if (x != 4 && x != 8 && x != 16 && x != 32) throw ERR_BAD_ALIGN; while (inner::GetPtrDist(getCurr()) % x) { nop(); } } #endif }; #ifdef _MSC_VER #pragma warning(pop) #endif } // end of namespace #endif // XBYAK_H_