//------------------------------------------------------------------------------ // File: AMVideo.cpp // // Desc: DirectShow base classes - implements helper functions for // bitmap formats. // // Copyright (c) 1992-2001 Microsoft Corporation. All rights reserved. //------------------------------------------------------------------------------ #include <streams.h> #include <limits.h> // These are bit field masks for true colour devices const DWORD bits555[] = {0x007C00,0x0003E0,0x00001F}; const DWORD bits565[] = {0x00F800,0x0007E0,0x00001F}; const DWORD bits888[] = {0xFF0000,0x00FF00,0x0000FF}; // This maps bitmap subtypes into a bits per pixel value and also a // name. unicode and ansi versions are stored because we have to // return a pointer to a static string. const struct { const GUID *pSubtype; WORD BitCount; CHAR *pName; WCHAR *wszName; } BitCountMap[] = { &MEDIASUBTYPE_RGB1, 1, "RGB Monochrome", L"RGB Monochrome", &MEDIASUBTYPE_RGB4, 4, "RGB VGA", L"RGB VGA", &MEDIASUBTYPE_RGB8, 8, "RGB 8", L"RGB 8", &MEDIASUBTYPE_RGB565, 16, "RGB 565 (16 bit)", L"RGB 565 (16 bit)", &MEDIASUBTYPE_RGB555, 16, "RGB 555 (16 bit)", L"RGB 555 (16 bit)", &MEDIASUBTYPE_RGB24, 24, "RGB 24", L"RGB 24", &MEDIASUBTYPE_RGB32, 32, "RGB 32", L"RGB 32", &MEDIASUBTYPE_ARGB32, 32, "ARGB 32", L"ARGB 32", &MEDIASUBTYPE_Overlay, 0, "Overlay", L"Overlay", &GUID_NULL, 0, "UNKNOWN", L"UNKNOWN" }; // Return the size of the bitmap as defined by this header STDAPI_(DWORD) GetBitmapSize(const BITMAPINFOHEADER *pHeader) { return DIBSIZE(*pHeader); } // This is called if the header has a 16 bit colour depth and needs to work // out the detailed type from the bit fields (either RGB 565 or RGB 555) STDAPI_(const GUID) GetTrueColorType(const BITMAPINFOHEADER *pbmiHeader) { BITMAPINFO *pbmInfo = (BITMAPINFO *) pbmiHeader; ASSERT(pbmiHeader->biBitCount == 16); // If its BI_RGB then it's RGB 555 by default if (pbmiHeader->biCompression == BI_RGB) { return MEDIASUBTYPE_RGB555; } // Compare the bit fields with RGB 555 DWORD *pMask = (DWORD *) pbmInfo->bmiColors; if (pMask[0] == bits555[0]) { if (pMask[1] == bits555[1]) { if (pMask[2] == bits555[2]) { return MEDIASUBTYPE_RGB555; } } } // Compare the bit fields with RGB 565 pMask = (DWORD *) pbmInfo->bmiColors; if (pMask[0] == bits565[0]) { if (pMask[1] == bits565[1]) { if (pMask[2] == bits565[2]) { return MEDIASUBTYPE_RGB565; } } } return GUID_NULL; } // Given a BITMAPINFOHEADER structure this returns the GUID sub type that is // used to describe it in format negotiations. For example a video codec fills // in the format block with a VIDEOINFO structure, it also fills in the major // type with MEDIATYPE_VIDEO and the subtype with a GUID that matches the bit // count, for example if it is an eight bit image then MEDIASUBTYPE_RGB8 STDAPI_(const GUID) GetBitmapSubtype(const BITMAPINFOHEADER *pbmiHeader) { ASSERT(pbmiHeader); // If it's not RGB then create a GUID from the compression type if (pbmiHeader->biCompression != BI_RGB) { if (pbmiHeader->biCompression != BI_BITFIELDS) { FOURCCMap FourCCMap(pbmiHeader->biCompression); return (const GUID) FourCCMap; } } // Map the RGB DIB bit depth to a image GUID switch(pbmiHeader->biBitCount) { case 1 : return MEDIASUBTYPE_RGB1; case 4 : return MEDIASUBTYPE_RGB4; case 8 : return MEDIASUBTYPE_RGB8; case 16 : return GetTrueColorType(pbmiHeader); case 24 : return MEDIASUBTYPE_RGB24; case 32 : return MEDIASUBTYPE_RGB32; } return GUID_NULL; } // Given a video bitmap subtype we return the number of bits per pixel it uses // We return a WORD bit count as thats what the BITMAPINFOHEADER uses. If the // GUID subtype is not found in the table we return an invalid USHRT_MAX STDAPI_(WORD) GetBitCount(const GUID *pSubtype) { ASSERT(pSubtype); const GUID *pMediaSubtype; INT iPosition = 0; // Scan the mapping list seeing if the source GUID matches any known // bitmap subtypes, the list is terminated by a GUID_NULL entry while (TRUE) { pMediaSubtype = BitCountMap[iPosition].pSubtype; if (IsEqualGUID(*pMediaSubtype,GUID_NULL)) { return USHRT_MAX; } if (IsEqualGUID(*pMediaSubtype,*pSubtype)) { return BitCountMap[iPosition].BitCount; } iPosition++; } } // Given a bitmap subtype we return a description name that can be used for // debug purposes. In a retail build this function still returns the names // If the subtype isn't found in the lookup table we return string UNKNOWN int LocateSubtype(const GUID *pSubtype) { ASSERT(pSubtype); const GUID *pMediaSubtype; INT iPosition = 0; // Scan the mapping list seeing if the source GUID matches any known // bitmap subtypes, the list is terminated by a GUID_NULL entry while (TRUE) { pMediaSubtype = BitCountMap[iPosition].pSubtype; if (IsEqualGUID(*pMediaSubtype,*pSubtype) || IsEqualGUID(*pMediaSubtype,GUID_NULL) ) { break; } iPosition++; } return iPosition; } STDAPI_(WCHAR *) GetSubtypeNameW(const GUID *pSubtype) { return BitCountMap[LocateSubtype(pSubtype)].wszName; } STDAPI_(CHAR *) GetSubtypeNameA(const GUID *pSubtype) { return BitCountMap[LocateSubtype(pSubtype)].pName; } #ifndef GetSubtypeName #error wxutil.h should have defined GetSubtypeName #endif #undef GetSubtypeName // this is here for people that linked to it directly; most people // would use the header file that picks the A or W version. STDAPI_(CHAR *) GetSubtypeName(const GUID *pSubtype) { return GetSubtypeNameA(pSubtype); } // The mechanism for describing a bitmap format is with the BITMAPINFOHEADER // This is really messy to deal with because it invariably has fields that // follow it holding bit fields, palettes and the rest. This function gives // the number of bytes required to hold a VIDEOINFO that represents it. This // count includes the prefix information (like the rcSource rectangle) the // BITMAPINFOHEADER field, and any other colour information on the end. // // WARNING If you want to copy a BITMAPINFOHEADER into a VIDEOINFO always make // sure that you use the HEADER macro because the BITMAPINFOHEADER field isn't // right at the start of the VIDEOINFO (there are a number of other fields), // // CopyMemory(HEADER(pVideoInfo),pbmi,sizeof(BITMAPINFOHEADER)); // STDAPI_(LONG) GetBitmapFormatSize(const BITMAPINFOHEADER *pHeader) { // Everyone has this to start with this LONG Size = SIZE_PREHEADER + pHeader->biSize; ASSERT(pHeader->biSize >= sizeof(BITMAPINFOHEADER)); // Does this format use a palette, if the number of colours actually used // is zero then it is set to the maximum that are allowed for that colour // depth (an example is 256 for eight bits). Truecolour formats may also // pass a palette with them in which case the used count is non zero // This would scare me. ASSERT(pHeader->biBitCount <= iPALETTE || pHeader->biClrUsed == 0); if (pHeader->biBitCount <= iPALETTE || pHeader->biClrUsed) { LONG Entries = (DWORD) 1 << pHeader->biBitCount; if (pHeader->biClrUsed) { Entries = pHeader->biClrUsed; } Size += Entries * sizeof(RGBQUAD); } // Truecolour formats may have a BI_BITFIELDS specifier for compression // type which means that room for three DWORDs should be allocated that // specify where in each pixel the RGB colour components may be found if (pHeader->biCompression == BI_BITFIELDS) { Size += SIZE_MASKS; } // A BITMAPINFO for a palettised image may also contain a palette map that // provides the information to map from a source palette to a destination // palette during a BitBlt for example, because this information is only // ever processed during drawing you don't normally store the palette map // nor have any way of knowing if it is present in the data structure return Size; } // Returns TRUE if the VIDEOINFO contains a palette STDAPI_(BOOL) ContainsPalette(const VIDEOINFOHEADER *pVideoInfo) { if (PALETTISED(pVideoInfo) == FALSE) { if (pVideoInfo->bmiHeader.biClrUsed == 0) { return FALSE; } } return TRUE; } // Return a pointer to the first entry in a palette STDAPI_(const RGBQUAD *) GetBitmapPalette(const VIDEOINFOHEADER *pVideoInfo) { if (pVideoInfo->bmiHeader.biCompression == BI_BITFIELDS) { return TRUECOLOR(pVideoInfo)->bmiColors; } return COLORS(pVideoInfo); }