/* * Copyright (C) 2007-2009 Gabest * http://www.gabest.org * * This Program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This Program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. * http://www.gnu.org/copyleft/gpl.html * */ #include "stdafx.h" #include "GSDrawScanlineCodeGenerator.h" #include "GSVertexSW.h" #if _M_SSE >= 0x500 && !(defined(_M_AMD64) || defined(_WIN64)) static const int _args = 16; static const int _top = _args + 4; static const int _v = _args + 8; void GSDrawScanlineCodeGenerator::Generate() { push(ebx); push(esi); push(edi); push(ebp); Init(); if(!m_sel.edge) { align(16); } L("loop"); // ecx = steps // esi = fzbr // edi = fzbc // xmm0 = z/zi // xmm2 = s/u (tme) // xmm3 = t/v (tme) // xmm4 = q (tme) // xmm5 = rb (!tme) // xmm6 = ga (!tme) // xmm7 = test bool tme = m_sel.tfx != TFX_NONE; TestZ(tme ? xmm5 : xmm2, tme ? xmm6 : xmm3); // ecx = steps // esi = fzbr // edi = fzbc // ebp = za // - xmm0 // xmm2 = s/u (tme) // xmm3 = t/v (tme) // xmm4 = q (tme) // xmm5 = rb (!tme) // xmm6 = ga (!tme) // xmm7 = test if(m_sel.mmin) { SampleTextureLOD(); } else { SampleTexture(); } // ecx = steps // esi = fzbr // edi = fzbc // ebp = za // - xmm2 // - xmm3 // - xmm4 // xmm5 = rb // xmm6 = ga // xmm7 = test AlphaTFX(); // ecx = steps // esi = fzbr // edi = fzbc // ebp = za // xmm2 = gaf (TFX_HIGHLIGHT || TFX_HIGHLIGHT2 && !tcc) // xmm5 = rb // xmm6 = ga // xmm7 = test ReadMask(); // ecx = steps // esi = fzbr // edi = fzbc // ebp = za // xmm2 = gaf (TFX_HIGHLIGHT || TFX_HIGHLIGHT2 && !tcc) // xmm3 = fm // xmm4 = zm // xmm5 = rb // xmm6 = ga // xmm7 = test TestAlpha(); // ecx = steps // esi = fzbr // edi = fzbc // ebp = za // xmm2 = gaf (TFX_HIGHLIGHT || TFX_HIGHLIGHT2 && !tcc) // xmm3 = fm // xmm4 = zm // xmm5 = rb // xmm6 = ga // xmm7 = test ColorTFX(); // ecx = steps // esi = fzbr // edi = fzbc // ebp = za // xmm3 = fm // xmm4 = zm // xmm5 = rb // xmm6 = ga // xmm7 = test Fog(); // ecx = steps // esi = fzbr // edi = fzbc // ebp = za // xmm3 = fm // xmm4 = zm // xmm5 = rb // xmm6 = ga // xmm7 = test ReadFrame(); // ecx = steps // esi = fzbr // edi = fzbc // ebp = za // xmm2 = fd // xmm3 = fm // xmm4 = zm // xmm5 = rb // xmm6 = ga // xmm7 = test TestDestAlpha(); // ecx = steps // esi = fzbr // edi = fzbc // ebp = za // xmm2 = fd // xmm3 = fm // xmm4 = zm // xmm5 = rb // xmm6 = ga // xmm7 = test WriteMask(); // ebx = fa // ecx = steps // edx = fzm // esi = fzbr // edi = fzbc // ebp = za // xmm2 = fd // xmm3 = fm // xmm4 = zm // xmm5 = rb // xmm6 = ga WriteZBuf(); // ebx = fa // ecx = steps // edx = fzm // esi = fzbr // edi = fzbc // - ebp // xmm2 = fd // xmm3 = fm // - xmm4 // xmm5 = rb // xmm6 = ga AlphaBlend(); // ebx = fa // ecx = steps // edx = fzm // esi = fzbr // edi = fzbc // xmm2 = fd // xmm3 = fm // xmm5 = rb // xmm6 = ga WriteFrame(); L("step"); // if(steps <= 0) break; if(!m_sel.edge) { test(ecx, ecx); jle("exit", T_NEAR); Step(); jmp("loop", T_NEAR); } L("exit"); // vzeroupper(); pop(ebp); pop(edi); pop(esi); pop(ebx); ret(8); } void GSDrawScanlineCodeGenerator::Init() { if(!m_sel.notest) { // int skip = left & 3; mov(ebx, edx); and(edx, 3); // int steps = pixels + skip - 4; lea(ecx, ptr[ecx + edx - 4]); // left -= skip; sub(ebx, edx); // GSVector4i test = m_test[skip] | m_test[7 + (steps & (steps >> 31))]; shl(edx, 4); vmovdqa(xmm7, ptr[edx + (size_t)&m_test[0]]); mov(eax, ecx); sar(eax, 31); and(eax, ecx); shl(eax, 4); vpor(xmm7, ptr[eax + (size_t)&m_test[7]]); } else { mov(ebx, edx); // left xor(edx, edx); // skip lea(ecx, ptr[ecx - 4]); // steps } // GSVector2i* fza_base = &m_local.gd->fzbr[top]; mov(esi, ptr[esp + _top]); lea(esi, ptr[esi * 8]); add(esi, ptr[&m_local.gd->fzbr]); // GSVector2i* fza_offset = &m_local.gd->fzbc[left >> 2]; lea(edi, ptr[ebx * 2]); add(edi, ptr[&m_local.gd->fzbc]); if(m_sel.prim != GS_SPRITE_CLASS && (m_sel.fwrite && m_sel.fge || m_sel.zb) || m_sel.fb && (m_sel.edge || m_sel.tfx != TFX_NONE || m_sel.iip)) { // edx = &m_local.d[skip] lea(edx, ptr[edx * 8 + (size_t)m_local.d]); // ebx = &v mov(ebx, ptr[esp + _v]); } if(m_sel.prim != GS_SPRITE_CLASS) { if(m_sel.fwrite && m_sel.fge || m_sel.zb) { vmovaps(xmm0, ptr[ebx + offsetof(GSVertexSW, p)]); // v.p if(m_sel.fwrite && m_sel.fge) { // f = GSVector4i(vp).zzzzh().zzzz().add16(m_local.d[skip].f); vcvttps2dq(xmm1, xmm0); vpshufhw(xmm1, xmm1, _MM_SHUFFLE(2, 2, 2, 2)); vpshufd(xmm1, xmm1, _MM_SHUFFLE(2, 2, 2, 2)); vpaddw(xmm1, ptr[edx + offsetof(GSScanlineLocalData::skip, f)]); vmovdqa(ptr[&m_local.temp.f], xmm1); } if(m_sel.zb) { // z = vp.zzzz() + m_local.d[skip].z; vshufps(xmm0, xmm0, _MM_SHUFFLE(2, 2, 2, 2)); vmovaps(ptr[&m_local.temp.z], xmm0); vmovaps(xmm2, ptr[edx + offsetof(GSScanlineLocalData::skip, z)]); vmovaps(ptr[&m_local.temp.zo], xmm2); vaddps(xmm0, xmm2); } } } else { if(m_sel.ztest) { vmovdqa(xmm0, ptr[&m_local.p.z]); } } if(m_sel.fb) { if(m_sel.edge || m_sel.tfx != TFX_NONE) { vmovaps(xmm4, ptr[ebx + offsetof(GSVertexSW, t)]); // v.t } if(m_sel.edge) { // m_local.temp.cov = GSVector4i::cast(v.t).zzzzh().wwww().srl16(9); vpshufhw(xmm3, xmm4, _MM_SHUFFLE(2, 2, 2, 2)); vpshufd(xmm3, xmm3, _MM_SHUFFLE(3, 3, 3, 3)); vpsrlw(xmm3, 9); vmovdqa(ptr[&m_local.temp.cov], xmm3); } if(m_sel.tfx != TFX_NONE) { if(m_sel.fst) { // GSVector4i vti(vt); vcvttps2dq(xmm6, xmm4); // s = vti.xxxx() + m_local.d[skip].s; // t = vti.yyyy(); if(!sprite) t += m_local.d[skip].t; vpshufd(xmm2, xmm6, _MM_SHUFFLE(0, 0, 0, 0)); vpshufd(xmm3, xmm6, _MM_SHUFFLE(1, 1, 1, 1)); vpaddd(xmm2, ptr[edx + offsetof(GSScanlineLocalData::skip, s)]); if(m_sel.prim != GS_SPRITE_CLASS || m_sel.mmin) { vpaddd(xmm3, ptr[edx + offsetof(GSScanlineLocalData::skip, t)]); } else { if(m_sel.ltf) { vpshuflw(xmm6, xmm3, _MM_SHUFFLE(2, 2, 0, 0)); vpshufhw(xmm6, xmm6, _MM_SHUFFLE(2, 2, 0, 0)); vpsrlw(xmm6, 12); vmovdqa(ptr[&m_local.temp.vf], xmm6); } } vmovdqa(ptr[&m_local.temp.s], xmm2); vmovdqa(ptr[&m_local.temp.t], xmm3); } else { // s = vt.xxxx() + m_local.d[skip].s; // t = vt.yyyy() + m_local.d[skip].t; // q = vt.zzzz() + m_local.d[skip].q; vshufps(xmm2, xmm4, xmm4, _MM_SHUFFLE(0, 0, 0, 0)); vshufps(xmm3, xmm4, xmm4, _MM_SHUFFLE(1, 1, 1, 1)); vshufps(xmm4, xmm4, xmm4, _MM_SHUFFLE(2, 2, 2, 2)); vaddps(xmm2, ptr[edx + offsetof(GSScanlineLocalData::skip, s)]); vaddps(xmm3, ptr[edx + offsetof(GSScanlineLocalData::skip, t)]); vaddps(xmm4, ptr[edx + offsetof(GSScanlineLocalData::skip, q)]); vmovaps(ptr[&m_local.temp.s], xmm2); vmovaps(ptr[&m_local.temp.t], xmm3); vmovaps(ptr[&m_local.temp.q], xmm4); } } if(!(m_sel.tfx == TFX_DECAL && m_sel.tcc)) { if(m_sel.iip) { // GSVector4i vc = GSVector4i(v.c); vcvttps2dq(xmm6, ptr[ebx + offsetof(GSVertexSW, c)]); // v.c // vc = vc.upl16(vc.zwxy()); vpshufd(xmm5, xmm6, _MM_SHUFFLE(1, 0, 3, 2)); vpunpcklwd(xmm6, xmm5); // rb = vc.xxxx().add16(m_local.d[skip].rb); // ga = vc.zzzz().add16(m_local.d[skip].ga); vpshufd(xmm5, xmm6, _MM_SHUFFLE(0, 0, 0, 0)); vpshufd(xmm6, xmm6, _MM_SHUFFLE(2, 2, 2, 2)); vpaddw(xmm5, ptr[edx + offsetof(GSScanlineLocalData::skip, rb)]); vpaddw(xmm6, ptr[edx + offsetof(GSScanlineLocalData::skip, ga)]); vmovdqa(ptr[&m_local.temp.rb], xmm5); vmovdqa(ptr[&m_local.temp.ga], xmm6); } else { if(m_sel.tfx == TFX_NONE) { vmovdqa(xmm5, ptr[&m_local.c.rb]); vmovdqa(xmm6, ptr[&m_local.c.ga]); } } } } } void GSDrawScanlineCodeGenerator::Step() { // steps -= 4; sub(ecx, 4); // fza_offset++; add(edi, 8); if(m_sel.prim != GS_SPRITE_CLASS) { // z += m_local.d4.z; if(m_sel.zb) { vmovaps(xmm0, ptr[&m_local.temp.zo]); vaddps(xmm0, ptr[&m_local.d4.z]); vmovaps(ptr[&m_local.temp.zo], xmm0); vaddps(xmm0, ptr[&m_local.temp.z]); } // f = f.add16(m_local.d4.f); if(m_sel.fwrite && m_sel.fge) { vmovdqa(xmm1, ptr[&m_local.temp.f]); vpaddw(xmm1, ptr[&m_local.d4.f]); vmovdqa(ptr[&m_local.temp.f], xmm1); } } else { if(m_sel.ztest) { vmovdqa(xmm0, ptr[&m_local.p.z]); } } if(m_sel.fb) { if(m_sel.tfx != TFX_NONE) { if(m_sel.fst) { // GSVector4i stq = m_local.d4.stq; // s += stq.xxxx(); // if(!sprite) t += stq.yyyy(); vmovdqa(xmm4, ptr[&m_local.d4.stq]); vpshufd(xmm2, xmm4, _MM_SHUFFLE(0, 0, 0, 0)); vpaddd(xmm2, ptr[&m_local.temp.s]); vmovdqa(ptr[&m_local.temp.s], xmm2); if(m_sel.prim != GS_SPRITE_CLASS || m_sel.mmin) { vpshufd(xmm3, xmm4, _MM_SHUFFLE(1, 1, 1, 1)); vpaddd(xmm3, ptr[&m_local.temp.t]); vmovdqa(ptr[&m_local.temp.t], xmm3); } else { vmovdqa(xmm3, ptr[&m_local.temp.t]); } } else { // GSVector4 stq = m_local.d4.stq; // s += stq.xxxx(); // t += stq.yyyy(); // q += stq.zzzz(); vmovaps(xmm4, ptr[&m_local.d4.stq]); vshufps(xmm2, xmm4, xmm4, _MM_SHUFFLE(0, 0, 0, 0)); vshufps(xmm3, xmm4, xmm4, _MM_SHUFFLE(1, 1, 1, 1)); vshufps(xmm4, xmm4, xmm4, _MM_SHUFFLE(2, 2, 2, 2)); vaddps(xmm2, ptr[&m_local.temp.s]); vaddps(xmm3, ptr[&m_local.temp.t]); vaddps(xmm4, ptr[&m_local.temp.q]); vmovaps(ptr[&m_local.temp.s], xmm2); vmovaps(ptr[&m_local.temp.t], xmm3); vmovaps(ptr[&m_local.temp.q], xmm4); } } if(!(m_sel.tfx == TFX_DECAL && m_sel.tcc)) { if(m_sel.iip) { // GSVector4i c = m_local.d4.c; // rb = rb.add16(c.xxxx()); // ga = ga.add16(c.yyyy()); vmovdqa(xmm7, ptr[&m_local.d4.c]); vpshufd(xmm5, xmm7, _MM_SHUFFLE(0, 0, 0, 0)); vpshufd(xmm6, xmm7, _MM_SHUFFLE(1, 1, 1, 1)); vpaddw(xmm5, ptr[&m_local.temp.rb]); vpaddw(xmm6, ptr[&m_local.temp.ga]); // FIXME: color may underflow and roll over at the end of the line, if decreasing vpxor(xmm7, xmm7); vpmaxsw(xmm5, xmm7); vpmaxsw(xmm6, xmm7); vmovdqa(ptr[&m_local.temp.rb], xmm5); vmovdqa(ptr[&m_local.temp.ga], xmm6); } else { if(m_sel.tfx == TFX_NONE) { vmovdqa(xmm5, ptr[&m_local.c.rb]); vmovdqa(xmm6, ptr[&m_local.c.ga]); } } } } if(!m_sel.notest) { // test = m_test[7 + (steps & (steps >> 31))]; mov(edx, ecx); sar(edx, 31); and(edx, ecx); shl(edx, 4); vmovdqa(xmm7, ptr[edx + (size_t)&m_test[7]]); } } void GSDrawScanlineCodeGenerator::TestZ(const Xmm& temp1, const Xmm& temp2) { if(!m_sel.zb) { return; } // int za = fza_base.y + fza_offset->y; mov(ebp, ptr[esi + 4]); add(ebp, ptr[edi + 4]); // GSVector4i zs = zi; if(m_sel.prim != GS_SPRITE_CLASS) { if(m_sel.zoverflow) { // zs = (GSVector4i(z * 0.5f) << 1) | (GSVector4i(z) & GSVector4i::x00000001()); vbroadcastss(temp1, ptr[&GSVector4::m_half]); vmulps(temp1, xmm0); vcvttps2dq(temp1, temp1); vpslld(temp1, 1); vcvttps2dq(xmm0, xmm0); vpcmpeqd(temp2, temp2); vpsrld(temp2, 31); vpand(xmm0, temp2); vpor(xmm0, temp1); } else { // zs = GSVector4i(z); vcvttps2dq(xmm0, xmm0); } if(m_sel.zwrite) { vmovdqa(ptr[&m_local.temp.zs], xmm0); } } if(m_sel.ztest) { ReadPixel(xmm1, ebp); if(m_sel.zwrite && m_sel.zpsm < 2) { vmovdqa(ptr[&m_local.temp.zd], xmm1); } // zd &= 0xffffffff >> m_sel.zpsm * 8; if(m_sel.zpsm) { vpslld(xmm1, m_sel.zpsm * 8); vpsrld(xmm1, m_sel.zpsm * 8); } if(m_sel.zoverflow || m_sel.zpsm == 0) { // GSVector4i o = GSVector4i::x80000000(); vpcmpeqd(temp1, temp1); vpslld(temp1, 31); // GSVector4i zso = zs - o; // GSVector4i zdo = zd - o; vpsubd(xmm0, temp1); vpsubd(xmm1, temp1); } switch(m_sel.ztst) { case ZTST_GEQUAL: // test |= zso < zdo; // ~(zso >= zdo) vpcmpgtd(xmm1, xmm0); vpor(xmm7, xmm1); break; case ZTST_GREATER: // TODO: tidus hair and chocobo wings only appear fully when this is tested as ZTST_GEQUAL // test |= zso <= zdo; // ~(zso > zdo) vpcmpgtd(xmm0, xmm1); vpcmpeqd(temp1, temp1); vpxor(xmm0, temp1); vpor(xmm7, xmm0); break; } alltrue(); } } void GSDrawScanlineCodeGenerator::SampleTexture() { if(!m_sel.fb || m_sel.tfx == TFX_NONE) { return; } mov(ebx, ptr[&m_local.gd->tex[0]]); if(m_sel.tlu) { mov(edx, ptr[&m_local.gd->clut]); } // ebx = tex // edx = clut if(!m_sel.fst) { vrcpps(xmm0, xmm4); vmulps(xmm2, xmm0); vmulps(xmm3, xmm0); vcvttps2dq(xmm2, xmm2); vcvttps2dq(xmm3, xmm3); if(m_sel.ltf) { // u -= 0x8000; // v -= 0x8000; mov(eax, 0x8000); vmovd(xmm4, eax); vpshufd(xmm4, xmm4, _MM_SHUFFLE(0, 0, 0, 0)); vpsubd(xmm2, xmm4); vpsubd(xmm3, xmm4); } } // xmm2 = u // xmm3 = v if(m_sel.ltf) { // GSVector4i uf = u.xxzzlh().srl16(1); vpshuflw(xmm0, xmm2, _MM_SHUFFLE(2, 2, 0, 0)); vpshufhw(xmm0, xmm0, _MM_SHUFFLE(2, 2, 0, 0)); vpsrlw(xmm0, 12); vmovdqa(ptr[&m_local.temp.uf], xmm0); if(m_sel.prim != GS_SPRITE_CLASS) { // GSVector4i vf = v.xxzzlh().srl16(1); vpshuflw(xmm0, xmm3, _MM_SHUFFLE(2, 2, 0, 0)); vpshufhw(xmm0, xmm0, _MM_SHUFFLE(2, 2, 0, 0)); vpsrlw(xmm0, 12); vmovdqa(ptr[&m_local.temp.vf], xmm0); } } // GSVector4i uv0 = u.sra32(16).ps32(v.sra32(16)); vpsrad(xmm2, 16); vpsrad(xmm3, 16); vpackssdw(xmm2, xmm3); if(m_sel.ltf) { // GSVector4i uv1 = uv0.add16(GSVector4i::x0001()); vpcmpeqd(xmm1, xmm1); vpsrlw(xmm1, 15); vpaddw(xmm3, xmm2, xmm1); // uv0 = Wrap(uv0); // uv1 = Wrap(uv1); Wrap(xmm2, xmm3); } else { // uv0 = Wrap(uv0); Wrap(xmm2); } // xmm2 = uv0 // xmm3 = uv1 (ltf) // xmm0, xmm1, xmm4, xmm5, xmm6 = free // xmm7 = used // GSVector4i y0 = uv0.uph16() << tw; // GSVector4i x0 = uv0.upl16(); vpxor(xmm0, xmm0); vpunpcklwd(xmm4, xmm2, xmm0); vpunpckhwd(xmm2, xmm2, xmm0); vpslld(xmm2, m_sel.tw + 3); // xmm0 = 0 // xmm2 = y0 // xmm3 = uv1 (ltf) // xmm4 = x0 // xmm1, xmm5, xmm6 = free // xmm7 = used if(m_sel.ltf) { // GSVector4i y1 = uv1.uph16() << tw; // GSVector4i x1 = uv1.upl16(); vpunpcklwd(xmm6, xmm3, xmm0); vpunpckhwd(xmm3, xmm3, xmm0); vpslld(xmm3, m_sel.tw + 3); // xmm2 = y0 // xmm3 = y1 // xmm4 = x0 // xmm6 = x1 // xmm0, xmm5, xmm6 = free // xmm7 = used // GSVector4i addr00 = y0 + x0; // GSVector4i addr01 = y0 + x1; // GSVector4i addr10 = y1 + x0; // GSVector4i addr11 = y1 + x1; vpaddd(xmm5, xmm2, xmm4); vpaddd(xmm2, xmm2, xmm6); vpaddd(xmm0, xmm3, xmm4); vpaddd(xmm3, xmm3, xmm6); // xmm5 = addr00 // xmm2 = addr01 // xmm0 = addr10 // xmm3 = addr11 // xmm1, xmm4, xmm6 = free // xmm7 = used // c00 = addr00.gather32_32((const uint32/uint8*)tex[, clut]); // c01 = addr01.gather32_32((const uint32/uint8*)tex[, clut]); // c10 = addr10.gather32_32((const uint32/uint8*)tex[, clut]); // c11 = addr11.gather32_32((const uint32/uint8*)tex[, clut]); ReadTexel(4, 0); // xmm6 = c00 // xmm4 = c01 // xmm1 = c10 // xmm5 = c11 // xmm0, xmm2, xmm3 = free // xmm7 = used vmovdqa(xmm0, ptr[&m_local.temp.uf]); // GSVector4i rb00 = c00 & mask; // GSVector4i ga00 = (c00 >> 8) & mask; vpsllw(xmm2, xmm6, 8); vpsrlw(xmm2, 8); vpsrlw(xmm6, 8); // GSVector4i rb01 = c01 & mask; // GSVector4i ga01 = (c01 >> 8) & mask; vpsllw(xmm3, xmm4, 8); vpsrlw(xmm3, 8); vpsrlw(xmm4, 8); // xmm0 = uf // xmm2 = rb00 // xmm3 = rb01 // xmm6 = ga00 // xmm4 = ga01 // xmm1 = c10 // xmm5 = c11 // xmm7 = used // rb00 = rb00.lerp16_4(rb01, uf); // ga00 = ga00.lerp16_4(ga01, uf); lerp16_4(xmm3, xmm2, xmm0); lerp16_4(xmm4, xmm6, xmm0); // xmm0 = uf // xmm3 = rb00 // xmm4 = ga00 // xmm1 = c10 // xmm5 = c11 // xmm2, xmm6 = free // xmm7 = used // GSVector4i rb10 = c10 & mask; // GSVector4i ga10 = (c10 >> 8) & mask; vpsrlw(xmm2, xmm1, 8); vpsllw(xmm1, 8); vpsrlw(xmm1, 8); // GSVector4i rb11 = c11 & mask; // GSVector4i ga11 = (c11 >> 8) & mask; vpsrlw(xmm6, xmm5, 8); vpsllw(xmm5, 8); vpsrlw(xmm5, 8); // xmm0 = uf // xmm3 = rb00 // xmm4 = ga00 // xmm1 = rb10 // xmm5 = rb11 // xmm2 = ga10 // xmm6 = ga11 // xmm7 = used // rb10 = rb10.lerp16_4(rb11, uf); // ga10 = ga10.lerp16_4(ga11, uf); lerp16_4(xmm5, xmm1, xmm0); lerp16_4(xmm6, xmm2, xmm0); // xmm3 = rb00 // xmm4 = ga00 // xmm5 = rb10 // xmm6 = ga10 // xmm0, xmm1, xmm2 = free // xmm7 = used // rb00 = rb00.lerp16_4(rb10, vf); // ga00 = ga00.lerp16_4(ga10, vf); vmovdqa(xmm0, ptr[&m_local.temp.vf]); lerp16_4(xmm5, xmm3, xmm0); lerp16_4(xmm6, xmm4, xmm0); } else { // GSVector4i addr00 = y0 + x0; vpaddd(xmm5, xmm2, xmm4); // c00 = addr00.gather32_32((const uint32/uint8*)tex[, clut]); ReadTexel(1, 0); // GSVector4i mask = GSVector4i::x00ff(); // c[0] = c00 & mask; // c[1] = (c00 >> 8) & mask; vpsllw(xmm5, xmm6, 8); vpsrlw(xmm5, 8); vpsrlw(xmm6, 8); } } void GSDrawScanlineCodeGenerator::Wrap(const Xmm& uv) { // xmm0, xmm1, xmm4, xmm5, xmm6 = free int wms_clamp = ((m_sel.wms + 1) >> 1) & 1; int wmt_clamp = ((m_sel.wmt + 1) >> 1) & 1; int region = ((m_sel.wms | m_sel.wmt) >> 1) & 1; if(wms_clamp == wmt_clamp) { if(wms_clamp) { if(region) { vpmaxsw(uv, ptr[&m_local.gd->t.min]); } else { vpxor(xmm0, xmm0); vpmaxsw(uv, xmm0); } vpminsw(uv, ptr[&m_local.gd->t.max]); } else { vpand(uv, ptr[&m_local.gd->t.min]); if(region) { vpor(uv, ptr[&m_local.gd->t.max]); } } } else { vmovdqa(xmm4, ptr[&m_local.gd->t.min]); vmovdqa(xmm5, ptr[&m_local.gd->t.max]); vmovdqa(xmm0, ptr[&m_local.gd->t.mask]); // GSVector4i repeat = (t & m_local.gd->t.min) | m_local.gd->t.max; vpand(xmm1, uv, xmm4); if(region) { vpor(xmm1, xmm5); } // GSVector4i clamp = t.sat_i16(m_local.gd->t.min, m_local.gd->t.max); vpmaxsw(uv, xmm4); vpminsw(uv, xmm5); // clamp.blend8(repeat, m_local.gd->t.mask); vpblendvb(uv, xmm1, xmm0); } } void GSDrawScanlineCodeGenerator::Wrap(const Xmm& uv0, const Xmm& uv1) { // xmm0, xmm1, xmm4, xmm5, xmm6 = free int wms_clamp = ((m_sel.wms + 1) >> 1) & 1; int wmt_clamp = ((m_sel.wmt + 1) >> 1) & 1; int region = ((m_sel.wms | m_sel.wmt) >> 1) & 1; if(wms_clamp == wmt_clamp) { if(wms_clamp) { if(region) { vmovdqa(xmm4, ptr[&m_local.gd->t.min]); vpmaxsw(uv0, xmm4); vpmaxsw(uv1, xmm4); } else { vpxor(xmm0, xmm0); vpmaxsw(uv0, xmm0); vpmaxsw(uv1, xmm0); } vmovdqa(xmm5, ptr[&m_local.gd->t.max]); vpminsw(uv0, xmm5); vpminsw(uv1, xmm5); } else { vmovdqa(xmm4, ptr[&m_local.gd->t.min]); vpand(uv0, xmm4); vpand(uv1, xmm4); if(region) { vmovdqa(xmm5, ptr[&m_local.gd->t.max]); vpor(uv0, xmm5); vpor(uv1, xmm5); } } } else { vmovdqa(xmm4, ptr[&m_local.gd->t.min]); vmovdqa(xmm5, ptr[&m_local.gd->t.max]); vmovdqa(xmm0, ptr[&m_local.gd->t.mask]); // uv0 // GSVector4i repeat = (t & m_local.gd->t.min) | m_local.gd->t.max; vpand(xmm1, uv0, xmm4); if(region) { vpor(xmm1, xmm5); } // GSVector4i clamp = t.sat_i16(m_local.gd->t.min, m_local.gd->t.max); vpmaxsw(uv0, xmm4); vpminsw(uv0, xmm5); // clamp.blend8(repeat, m_local.gd->t.mask); vpblendvb(uv0, xmm1, xmm0); // uv1 // GSVector4i repeat = (t & m_local.gd->t.min) | m_local.gd->t.max; vpand(xmm1, uv1, xmm4); if(region) { vpor(xmm1, xmm5); } // GSVector4i clamp = t.sat_i16(m_local.gd->t.min, m_local.gd->t.max); vpmaxsw(uv1, xmm4); vpminsw(uv1, xmm5); // clamp.blend8(repeat, m_local.gd->t.mask); vpblendvb(uv1, xmm1, xmm0); } } void GSDrawScanlineCodeGenerator::SampleTextureLOD() { if(!m_sel.fb || m_sel.tfx == TFX_NONE) { return; } push(ebp); mov(ebp, (size_t)m_local.gd->tex); if(m_sel.tlu) { mov(edx, ptr[&m_local.gd->clut]); } if(!m_sel.fst) { vrcpps(xmm0, xmm4); vmulps(xmm2, xmm0); vmulps(xmm3, xmm0); vcvttps2dq(xmm2, xmm2); vcvttps2dq(xmm3, xmm3); } // xmm2 = u // xmm3 = v // xmm4 = q // xmm0 = xmm1 = xmm5 = xmm6 = free // TODO: if the fractional part is not needed in round-off mode then there is a faster integer log2 (just take the exp) (but can we round it?) if(!m_sel.lcm) { // store u/v vpunpckldq(xmm0, xmm2, xmm3); vmovdqa(ptr[&m_local.temp.uv[0]], xmm0); vpunpckhdq(xmm0, xmm2, xmm3); vmovdqa(ptr[&m_local.temp.uv[1]], xmm0); // lod = -log2(Q) * (1 << L) + K vpcmpeqd(xmm1, xmm1); vpsrld(xmm1, xmm1, 25); vpslld(xmm0, xmm4, 1); vpsrld(xmm0, xmm0, 24); vpsubd(xmm0, xmm1); vcvtdq2ps(xmm0, xmm0); // xmm0 = (float)(exp(q) - 127) vpslld(xmm4, xmm4, 9); vpsrld(xmm4, xmm4, 9); vorps(xmm4, ptr[&GSDrawScanlineCodeGenerator::m_log2_coef[3]]); // xmm4 = mant(q) | 1.0f vmulps(xmm5, xmm4, ptr[&GSDrawScanlineCodeGenerator::m_log2_coef[0]]); vaddps(xmm5, ptr[&GSDrawScanlineCodeGenerator::m_log2_coef[1]]); vmulps(xmm5, xmm4); vsubps(xmm4, ptr[&GSDrawScanlineCodeGenerator::m_log2_coef[3]]); vaddps(xmm5, ptr[&GSDrawScanlineCodeGenerator::m_log2_coef[2]]); vmulps(xmm4, xmm5); vaddps(xmm4, xmm0); // xmm4 = log2(Q) = ((((c0 * xmm4) + c1) * xmm4) + c2) * (xmm4 - 1.0f) + xmm0 vmulps(xmm4, ptr[&m_local.gd->l]); vaddps(xmm4, ptr[&m_local.gd->k]); // xmm4 = (-log2(Q) * (1 << L) + K) * 0x10000 vxorps(xmm0, xmm0); vminps(xmm4, ptr[&m_local.gd->mxl]); vmaxps(xmm4, xmm0); vcvtps2dq(xmm4, xmm4); if(m_sel.mmin == 1) // round-off mode { mov(eax, 0x8000); vmovd(xmm0, eax); vpshufd(xmm0, xmm0, _MM_SHUFFLE(0, 0, 0, 0)); vpaddd(xmm4, xmm0); } vpsrld(xmm0, xmm4, 16); vmovdqa(ptr[&m_local.temp.lod.i], xmm0); /* vpslld(xmm5, xmm0, 6); vpslld(xmm6, xmm4, 16); vpsrld(xmm6, xmm6, 24); return; */ if(m_sel.mmin == 2) // trilinear mode { vpshuflw(xmm0, xmm4, _MM_SHUFFLE(2, 2, 0, 0)); vpshufhw(xmm0, xmm0, _MM_SHUFFLE(2, 2, 0, 0)); vmovdqa(ptr[&m_local.temp.lod.f], xmm0); } // shift u/v by (int)lod vmovq(xmm4, ptr[&m_local.gd->t.minmax]); vmovdqa(xmm2, ptr[&m_local.temp.uv[0]]); vmovdqa(xmm5, xmm2); vmovdqa(xmm3, ptr[&m_local.temp.uv[1]]); vmovdqa(xmm6, xmm3); vmovd(xmm0, ptr[&m_local.temp.lod.i.u32[0]]); vpsrad(xmm2, xmm0); vpsrlw(xmm1, xmm4, xmm0); vmovq(ptr[&m_local.temp.uv_minmax[0].u32[0]], xmm1); vmovd(xmm0, ptr[&m_local.temp.lod.i.u32[1]]); vpsrad(xmm5, xmm0); vpsrlw(xmm1, xmm4, xmm0); vmovq(ptr[&m_local.temp.uv_minmax[1].u32[0]], xmm1); vmovd(xmm0, ptr[&m_local.temp.lod.i.u32[2]]); vpsrad(xmm3, xmm0); vpsrlw(xmm1, xmm4, xmm0); vmovq(ptr[&m_local.temp.uv_minmax[0].u32[2]], xmm1); vmovd(xmm0, ptr[&m_local.temp.lod.i.u32[3]]); vpsrad(xmm6, xmm0); vpsrlw(xmm1, xmm4, xmm0); vmovq(ptr[&m_local.temp.uv_minmax[1].u32[2]], xmm1); vpunpckldq(xmm2, xmm3); vpunpckhdq(xmm5, xmm6); vpunpckhdq(xmm3, xmm2, xmm5); vpunpckldq(xmm2, xmm5); vmovdqa(ptr[&m_local.temp.uv[0]], xmm2); vmovdqa(ptr[&m_local.temp.uv[1]], xmm3); vmovdqa(xmm5, ptr[&m_local.temp.uv_minmax[0]]); vmovdqa(xmm6, ptr[&m_local.temp.uv_minmax[1]]); vpunpcklwd(xmm0, xmm5, xmm6); vpunpckhwd(xmm1, xmm5, xmm6); vpunpckldq(xmm5, xmm0, xmm1); vpunpckhdq(xmm6, xmm0, xmm1); vmovdqa(ptr[&m_local.temp.uv_minmax[0]], xmm5); vmovdqa(ptr[&m_local.temp.uv_minmax[1]], xmm6); } else { // lod = K vmovd(xmm0, ptr[&m_local.gd->lod.i.u32[0]]); vpsrad(xmm2, xmm0); vpsrad(xmm3, xmm0); vmovdqa(ptr[&m_local.temp.uv[0]], xmm2); vmovdqa(ptr[&m_local.temp.uv[1]], xmm3); vmovdqa(xmm5, ptr[&m_local.temp.uv_minmax[0]]); vmovdqa(xmm6, ptr[&m_local.temp.uv_minmax[1]]); } // xmm2 = m_local.temp.uv[0] = u (level m) // xmm3 = m_local.temp.uv[1] = v (level m) // xmm5 = minuv // xmm6 = maxuv if(m_sel.ltf) { // u -= 0x8000; // v -= 0x8000; mov(eax, 0x8000); vmovd(xmm4, eax); vpshufd(xmm4, xmm4, _MM_SHUFFLE(0, 0, 0, 0)); vpsubd(xmm2, xmm4); vpsubd(xmm3, xmm4); // GSVector4i uf = u.xxzzlh().srl16(1); vpshuflw(xmm0, xmm2, _MM_SHUFFLE(2, 2, 0, 0)); vpshufhw(xmm0, xmm0, _MM_SHUFFLE(2, 2, 0, 0)); vpsrlw(xmm0, 12); vmovdqa(ptr[&m_local.temp.uf], xmm0); // GSVector4i vf = v.xxzzlh().srl16(1); vpshuflw(xmm0, xmm3, _MM_SHUFFLE(2, 2, 0, 0)); vpshufhw(xmm0, xmm0, _MM_SHUFFLE(2, 2, 0, 0)); vpsrlw(xmm0, 12); vmovdqa(ptr[&m_local.temp.vf], xmm0); } // GSVector4i uv0 = u.sra32(16).ps32(v.sra32(16)); vpsrad(xmm2, 16); vpsrad(xmm3, 16); vpackssdw(xmm2, xmm3); if(m_sel.ltf) { // GSVector4i uv1 = uv0.add16(GSVector4i::x0001()); vpcmpeqd(xmm1, xmm1); vpsrlw(xmm1, 15); vpaddw(xmm3, xmm2, xmm1); // uv0 = Wrap(uv0); // uv1 = Wrap(uv1); WrapLOD(xmm2, xmm3); } else { // uv0 = Wrap(uv0); WrapLOD(xmm2); } // xmm2 = uv0 // xmm3 = uv1 (ltf) // xmm0, xmm1, xmm4, xmm5, xmm6 = free // xmm7 = used // GSVector4i x0 = uv0.upl16(); // GSVector4i y0 = uv0.uph16() << tw; vpxor(xmm0, xmm0); vpunpcklwd(xmm4, xmm2, xmm0); vpunpckhwd(xmm2, xmm2, xmm0); vpslld(xmm2, m_sel.tw + 3); // xmm0 = 0 // xmm2 = y0 // xmm3 = uv1 (ltf) // xmm4 = x0 // xmm1, xmm5, xmm6 = free // xmm7 = used if(m_sel.ltf) { // GSVector4i x1 = uv1.upl16(); // GSVector4i y1 = uv1.uph16() << tw; vpunpcklwd(xmm6, xmm3, xmm0); vpunpckhwd(xmm3, xmm3, xmm0); vpslld(xmm3, m_sel.tw + 3); // xmm2 = y0 // xmm3 = y1 // xmm4 = x0 // xmm6 = x1 // xmm0, xmm5, xmm6 = free // xmm7 = used // GSVector4i addr00 = y0 + x0; // GSVector4i addr01 = y0 + x1; // GSVector4i addr10 = y1 + x0; // GSVector4i addr11 = y1 + x1; vpaddd(xmm5, xmm2, xmm4); vpaddd(xmm2, xmm2, xmm6); vpaddd(xmm0, xmm3, xmm4); vpaddd(xmm3, xmm3, xmm6); // xmm5 = addr00 // xmm2 = addr01 // xmm0 = addr10 // xmm3 = addr11 // xmm1, xmm4, xmm6 = free // xmm7 = used // c00 = addr00.gather32_32((const uint32/uint8*)tex[, clut]); // c01 = addr01.gather32_32((const uint32/uint8*)tex[, clut]); // c10 = addr10.gather32_32((const uint32/uint8*)tex[, clut]); // c11 = addr11.gather32_32((const uint32/uint8*)tex[, clut]); ReadTexel(4, 0); // xmm6 = c00 // xmm4 = c01 // xmm1 = c10 // xmm5 = c11 // xmm0, xmm2, xmm3 = free // xmm7 = used vmovdqa(xmm0, ptr[&m_local.temp.uf]); // GSVector4i rb00 = c00 & mask; // GSVector4i ga00 = (c00 >> 8) & mask; vpsllw(xmm2, xmm6, 8); vpsrlw(xmm2, 8); vpsrlw(xmm6, 8); // GSVector4i rb01 = c01 & mask; // GSVector4i ga01 = (c01 >> 8) & mask; vpsllw(xmm3, xmm4, 8); vpsrlw(xmm3, 8); vpsrlw(xmm4, 8); // xmm0 = uf // xmm2 = rb00 // xmm3 = rb01 // xmm6 = ga00 // xmm4 = ga01 // xmm1 = c10 // xmm5 = c11 // xmm7 = used // rb00 = rb00.lerp16_4(rb01, uf); // ga00 = ga00.lerp16_4(ga01, uf); lerp16_4(xmm3, xmm2, xmm0); lerp16_4(xmm4, xmm6, xmm0); // xmm0 = uf // xmm3 = rb00 // xmm4 = ga00 // xmm1 = c10 // xmm5 = c11 // xmm2, xmm6 = free // xmm7 = used // GSVector4i rb10 = c10 & mask; // GSVector4i ga10 = (c10 >> 8) & mask; vpsrlw(xmm2, xmm1, 8); vpsllw(xmm1, 8); vpsrlw(xmm1, 8); // GSVector4i rb11 = c11 & mask; // GSVector4i ga11 = (c11 >> 8) & mask; vpsrlw(xmm6, xmm5, 8); vpsllw(xmm5, 8); vpsrlw(xmm5, 8); // xmm0 = uf // xmm3 = rb00 // xmm4 = ga00 // xmm1 = rb10 // xmm5 = rb11 // xmm2 = ga10 // xmm6 = ga11 // xmm7 = used // rb10 = rb10.lerp16_4(rb11, uf); // ga10 = ga10.lerp16_4(ga11, uf); lerp16_4(xmm5, xmm1, xmm0); lerp16_4(xmm6, xmm2, xmm0); // xmm3 = rb00 // xmm4 = ga00 // xmm5 = rb10 // xmm6 = ga10 // xmm0, xmm1, xmm2 = free // xmm7 = used // rb00 = rb00.lerp16_4(rb10, vf); // ga00 = ga00.lerp16_4(ga10, vf); vmovdqa(xmm0, ptr[&m_local.temp.vf]); lerp16_4(xmm5, xmm3, xmm0); lerp16_4(xmm6, xmm4, xmm0); } else { // GSVector4i addr00 = y0 + x0; vpaddd(xmm5, xmm2, xmm4); // c00 = addr00.gather32_32((const uint32/uint8*)tex[, clut]); ReadTexel(1, 0); // GSVector4i mask = GSVector4i::x00ff(); // c[0] = c00 & mask; // c[1] = (c00 >> 8) & mask; vpsllw(xmm5, xmm6, 8); vpsrlw(xmm5, 8); vpsrlw(xmm6, 8); } if(m_sel.mmin != 1) // !round-off mode { vmovdqa(ptr[&m_local.temp.trb], xmm5); vmovdqa(ptr[&m_local.temp.tga], xmm6); vmovdqa(xmm2, ptr[&m_local.temp.uv[0]]); vmovdqa(xmm3, ptr[&m_local.temp.uv[1]]); vpsrad(xmm2, 1); vpsrad(xmm3, 1); vmovdqa(xmm5, ptr[&m_local.temp.uv_minmax[0]]); vmovdqa(xmm6, ptr[&m_local.temp.uv_minmax[1]]); vpsrlw(xmm5, 1); vpsrlw(xmm6, 1); if(m_sel.ltf) { // u -= 0x8000; // v -= 0x8000; mov(eax, 0x8000); vmovd(xmm4, eax); vpshufd(xmm4, xmm4, _MM_SHUFFLE(0, 0, 0, 0)); vpsubd(xmm2, xmm4); vpsubd(xmm3, xmm4); // GSVector4i uf = u.xxzzlh().srl16(1); vpshuflw(xmm0, xmm2, _MM_SHUFFLE(2, 2, 0, 0)); vpshufhw(xmm0, xmm0, _MM_SHUFFLE(2, 2, 0, 0)); vpsrlw(xmm0, 12); vmovdqa(ptr[&m_local.temp.uf], xmm0); // GSVector4i vf = v.xxzzlh().srl16(1); vpshuflw(xmm0, xmm3, _MM_SHUFFLE(2, 2, 0, 0)); vpshufhw(xmm0, xmm0, _MM_SHUFFLE(2, 2, 0, 0)); vpsrlw(xmm0, 12); vmovdqa(ptr[&m_local.temp.vf], xmm0); } // GSVector4i uv0 = u.sra32(16).ps32(v.sra32(16)); vpsrad(xmm2, 16); vpsrad(xmm3, 16); vpackssdw(xmm2, xmm3); if(m_sel.ltf) { // GSVector4i uv1 = uv0.add16(GSVector4i::x0001()); vpcmpeqd(xmm1, xmm1); vpsrlw(xmm1, 15); vpaddw(xmm3, xmm2, xmm1); // uv0 = Wrap(uv0); // uv1 = Wrap(uv1); WrapLOD(xmm2, xmm3); } else { // uv0 = Wrap(uv0); WrapLOD(xmm2); } // xmm2 = uv0 // xmm3 = uv1 (ltf) // xmm0, xmm1, xmm4, xmm5, xmm6 = free // xmm7 = used // GSVector4i x0 = uv0.upl16(); // GSVector4i y0 = uv0.uph16() << tw; vpxor(xmm0, xmm0); vpunpcklwd(xmm4, xmm2, xmm0); vpunpckhwd(xmm2, xmm2, xmm0); vpslld(xmm2, m_sel.tw + 3); // xmm0 = 0 // xmm2 = y0 // xmm3 = uv1 (ltf) // xmm4 = x0 // xmm1, xmm5, xmm6 = free // xmm7 = used if(m_sel.ltf) { // GSVector4i x1 = uv1.upl16(); // GSVector4i y1 = uv1.uph16() << tw; vpunpcklwd(xmm6, xmm3, xmm0); vpunpckhwd(xmm3, xmm3, xmm0); vpslld(xmm3, m_sel.tw + 3); // xmm2 = y0 // xmm3 = y1 // xmm4 = x0 // xmm6 = x1 // xmm0, xmm5, xmm6 = free // xmm7 = used // GSVector4i addr00 = y0 + x0; // GSVector4i addr01 = y0 + x1; // GSVector4i addr10 = y1 + x0; // GSVector4i addr11 = y1 + x1; vpaddd(xmm5, xmm2, xmm4); vpaddd(xmm2, xmm2, xmm6); vpaddd(xmm0, xmm3, xmm4); vpaddd(xmm3, xmm3, xmm6); // xmm5 = addr00 // xmm2 = addr01 // xmm0 = addr10 // xmm3 = addr11 // xmm1, xmm4, xmm6 = free // xmm7 = used // c00 = addr00.gather32_32((const uint32/uint8*)tex[, clut]); // c01 = addr01.gather32_32((const uint32/uint8*)tex[, clut]); // c10 = addr10.gather32_32((const uint32/uint8*)tex[, clut]); // c11 = addr11.gather32_32((const uint32/uint8*)tex[, clut]); ReadTexel(4, 1); // xmm6 = c00 // xmm4 = c01 // xmm1 = c10 // xmm5 = c11 // xmm0, xmm2, xmm3 = free // xmm7 = used vmovdqa(xmm0, ptr[&m_local.temp.uf]); // GSVector4i rb00 = c00 & mask; // GSVector4i ga00 = (c00 >> 8) & mask; vpsllw(xmm2, xmm6, 8); vpsrlw(xmm2, 8); vpsrlw(xmm6, 8); // GSVector4i rb01 = c01 & mask; // GSVector4i ga01 = (c01 >> 8) & mask; vpsllw(xmm3, xmm4, 8); vpsrlw(xmm3, 8); vpsrlw(xmm4, 8); // xmm0 = uf // xmm2 = rb00 // xmm3 = rb01 // xmm6 = ga00 // xmm4 = ga01 // xmm1 = c10 // xmm5 = c11 // xmm7 = used // rb00 = rb00.lerp16_4(rb01, uf); // ga00 = ga00.lerp16_4(ga01, uf); lerp16_4(xmm3, xmm2, xmm0); lerp16_4(xmm4, xmm6, xmm0); // xmm0 = uf // xmm3 = rb00 // xmm4 = ga00 // xmm1 = c10 // xmm5 = c11 // xmm2, xmm6 = free // xmm7 = used // GSVector4i rb10 = c10 & mask; // GSVector4i ga10 = (c10 >> 8) & mask; vpsrlw(xmm2, xmm1, 8); vpsllw(xmm1, 8); vpsrlw(xmm1, 8); // GSVector4i rb11 = c11 & mask; // GSVector4i ga11 = (c11 >> 8) & mask; vpsrlw(xmm6, xmm5, 8); vpsllw(xmm5, 8); vpsrlw(xmm5, 8); // xmm0 = uf // xmm3 = rb00 // xmm4 = ga00 // xmm1 = rb10 // xmm5 = rb11 // xmm2 = ga10 // xmm6 = ga11 // xmm7 = used // rb10 = rb10.lerp16_4(rb11, uf); // ga10 = ga10.lerp16_4(ga11, uf); lerp16_4(xmm5, xmm1, xmm0); lerp16_4(xmm6, xmm2, xmm0); // xmm3 = rb00 // xmm4 = ga00 // xmm5 = rb10 // xmm6 = ga10 // xmm0, xmm1, xmm2 = free // xmm7 = used // rb00 = rb00.lerp16_4(rb10, vf); // ga00 = ga00.lerp16_4(ga10, vf); vmovdqa(xmm0, ptr[&m_local.temp.vf]); lerp16_4(xmm5, xmm3, xmm0); lerp16_4(xmm6, xmm4, xmm0); } else { // GSVector4i addr00 = y0 + x0; vpaddd(xmm5, xmm2, xmm4); // c00 = addr00.gather32_32((const uint32/uint8*)tex[, clut]); ReadTexel(1, 1); // GSVector4i mask = GSVector4i::x00ff(); // c[0] = c00 & mask; // c[1] = (c00 >> 8) & mask; vpsllw(xmm5, xmm6, 8); vpsrlw(xmm5, 8); vpsrlw(xmm6, 8); } vmovdqa(xmm0, ptr[m_sel.lcm ? &m_local.gd->lod.f : &m_local.temp.lod.f]); vpsrlw(xmm0, xmm0, 1); vmovdqa(xmm2, ptr[&m_local.temp.trb]); vmovdqa(xmm3, ptr[&m_local.temp.tga]); lerp16(xmm5, xmm2, xmm0, 0); lerp16(xmm6, xmm3, xmm0, 0); } pop(ebp); } void GSDrawScanlineCodeGenerator::WrapLOD(const Xmm& uv) { // xmm5 = minuv // xmm6 = maxuv // xmm0, xmm1, xmm4 = free int wms_clamp = ((m_sel.wms + 1) >> 1) & 1; int wmt_clamp = ((m_sel.wmt + 1) >> 1) & 1; int region = ((m_sel.wms | m_sel.wmt) >> 1) & 1; if(wms_clamp == wmt_clamp) { if(wms_clamp) { if(region) { vpmaxsw(uv, xmm5); } else { vpxor(xmm0, xmm0); vpmaxsw(uv, xmm0); } vpminsw(uv, xmm6); } else { vpand(uv, xmm5); if(region) { vpor(uv, xmm6); } } } else { vmovdqa(xmm0, ptr[&m_local.gd->t.mask]); // GSVector4i repeat = (t & m_local.gd->t.min) | m_local.gd->t.max; vpand(xmm1, uv, xmm5); if(region) { vpor(xmm1, xmm6); } // GSVector4i clamp = t.sat_i16(m_local.gd->t.min, m_local.gd->t.max); vpmaxsw(uv, xmm5); vpminsw(uv, xmm6); // clamp.blend8(repeat, m_local.gd->t.mask); vpblendvb(uv, xmm1, xmm0); } } void GSDrawScanlineCodeGenerator::WrapLOD(const Xmm& uv0, const Xmm& uv1) { // xmm5 = minuv // xmm6 = maxuv // xmm0, xmm1, xmm4 = free int wms_clamp = ((m_sel.wms + 1) >> 1) & 1; int wmt_clamp = ((m_sel.wmt + 1) >> 1) & 1; int region = ((m_sel.wms | m_sel.wmt) >> 1) & 1; if(wms_clamp == wmt_clamp) { if(wms_clamp) { if(region) { vpmaxsw(uv0, xmm5); vpmaxsw(uv1, xmm5); } else { vpxor(xmm0, xmm0); vpmaxsw(uv0, xmm0); vpmaxsw(uv1, xmm0); } vpminsw(uv0, xmm6); vpminsw(uv1, xmm6); } else { vpand(uv0, xmm5); vpand(uv1, xmm5); if(region) { vpor(uv0, xmm6); vpor(uv1, xmm6); } } } else { vmovdqa(xmm0, ptr[&m_local.gd->t.mask]); // uv0 // GSVector4i repeat = (t & m_local.gd->t.min) | m_local.gd->t.max; vpand(xmm1, uv0, xmm5); if(region) { vpor(xmm1, xmm6); } // GSVector4i clamp = t.sat_i16(m_local.gd->t.min, m_local.gd->t.max); vpmaxsw(uv0, xmm5); vpminsw(uv0, xmm6); // clamp.blend8(repeat, m_local.gd->t.mask); vpblendvb(uv0, xmm1, xmm0); // uv1 // GSVector4i repeat = (t & m_local.gd->t.min) | m_local.gd->t.max; vpand(xmm1, uv1, xmm5); if(region) { vpor(xmm1, xmm6); } // GSVector4i clamp = t.sat_i16(m_local.gd->t.min, m_local.gd->t.max); vpmaxsw(uv1, xmm5); vpminsw(uv1, xmm6); // clamp.blend8(repeat, m_local.gd->t.mask); vpblendvb(uv1, xmm1, xmm0); } } void GSDrawScanlineCodeGenerator::AlphaTFX() { if(!m_sel.fb) { return; } switch(m_sel.tfx) { case TFX_MODULATE: // GSVector4i ga = iip ? gaf : m_local.c.ga; vmovdqa(xmm4, ptr[m_sel.iip ? &m_local.temp.ga : &m_local.c.ga]); // gat = gat.modulate16<1>(ga).clamp8(); modulate16(xmm6, xmm4, 1); clamp16(xmm6, xmm3); // if(!tcc) gat = gat.mix16(ga.srl16(7)); if(!m_sel.tcc) { vpsrlw(xmm4, 7); mix16(xmm6, xmm4, xmm3); } break; case TFX_DECAL: // if(!tcc) gat = gat.mix16(ga.srl16(7)); if(!m_sel.tcc) { // GSVector4i ga = iip ? gaf : m_local.c.ga; vmovdqa(xmm4, ptr[m_sel.iip ? &m_local.temp.ga : &m_local.c.ga]); vpsrlw(xmm4, 7); mix16(xmm6, xmm4, xmm3); } break; case TFX_HIGHLIGHT: // GSVector4i ga = iip ? gaf : m_local.c.ga; vmovdqa(xmm4, ptr[m_sel.iip ? &m_local.temp.ga : &m_local.c.ga]); vmovdqa(xmm2, xmm4); // gat = gat.mix16(!tcc ? ga.srl16(7) : gat.addus8(ga.srl16(7))); vpsrlw(xmm4, 7); if(m_sel.tcc) { vpaddusb(xmm4, xmm6); } mix16(xmm6, xmm4, xmm3); break; case TFX_HIGHLIGHT2: // if(!tcc) gat = gat.mix16(ga.srl16(7)); if(!m_sel.tcc) { // GSVector4i ga = iip ? gaf : m_local.c.ga; vmovdqa(xmm4, ptr[m_sel.iip ? &m_local.temp.ga : &m_local.c.ga]); vmovdqa(xmm2, xmm4); vpsrlw(xmm4, 7); mix16(xmm6, xmm4, xmm3); } break; case TFX_NONE: // gat = iip ? ga.srl16(7) : ga; if(m_sel.iip) { vpsrlw(xmm6, 7); } break; } if(m_sel.aa1) { // gs_user figure 3-2: anti-aliasing after tfx, before tests, modifies alpha // FIXME: bios config screen cubes if(!m_sel.abe) { // a = cov if(m_sel.edge) { vmovdqa(xmm0, ptr[&m_local.temp.cov]); } else { vpcmpeqd(xmm0, xmm0); vpsllw(xmm0, 15); vpsrlw(xmm0, 8); } mix16(xmm6, xmm0, xmm1); } else { // a = a == 0x80 ? cov : a vpcmpeqd(xmm0, xmm0); vpsllw(xmm0, 15); vpsrlw(xmm0, 8); if(m_sel.edge) { vmovdqa(xmm1, ptr[&m_local.temp.cov]); } else { vmovdqa(xmm1, xmm0); } vpcmpeqw(xmm0, xmm6); vpsrld(xmm0, 16); vpslld(xmm0, 16); vpblendvb(xmm6, xmm1, xmm0); } } } void GSDrawScanlineCodeGenerator::ReadMask() { if(m_sel.fwrite) { vmovdqa(xmm3, ptr[&m_local.gd->fm]); } if(m_sel.zwrite) { vmovdqa(xmm4, ptr[&m_local.gd->zm]); } } void GSDrawScanlineCodeGenerator::TestAlpha() { switch(m_sel.afail) { case AFAIL_FB_ONLY: if(!m_sel.zwrite) return; break; case AFAIL_ZB_ONLY: if(!m_sel.fwrite) return; break; case AFAIL_RGB_ONLY: if(!m_sel.zwrite && m_sel.fpsm == 1) return; break; } switch(m_sel.atst) { case ATST_NEVER: // t = GSVector4i::xffffffff(); vpcmpeqd(xmm1, xmm1); break; case ATST_ALWAYS: return; case ATST_LESS: case ATST_LEQUAL: // t = (ga >> 16) > m_local.gd->aref; vpsrld(xmm1, xmm6, 16); vpcmpgtd(xmm1, ptr[&m_local.gd->aref]); break; case ATST_EQUAL: // t = (ga >> 16) != m_local.gd->aref; vpsrld(xmm1, xmm6, 16); vpcmpeqd(xmm1, ptr[&m_local.gd->aref]); vpcmpeqd(xmm0, xmm0); vpxor(xmm1, xmm0); break; case ATST_GEQUAL: case ATST_GREATER: // t = (ga >> 16) < m_local.gd->aref; vpsrld(xmm0, xmm6, 16); vmovdqa(xmm1, ptr[&m_local.gd->aref]); vpcmpgtd(xmm1, xmm0); break; case ATST_NOTEQUAL: // t = (ga >> 16) == m_local.gd->aref; vpsrld(xmm1, xmm6, 16); vpcmpeqd(xmm1, ptr[&m_local.gd->aref]); break; } switch(m_sel.afail) { case AFAIL_KEEP: // test |= t; vpor(xmm7, xmm1); alltrue(); break; case AFAIL_FB_ONLY: // zm |= t; vpor(xmm4, xmm1); break; case AFAIL_ZB_ONLY: // fm |= t; vpor(xmm3, xmm1); break; case AFAIL_RGB_ONLY: // zm |= t; vpor(xmm4, xmm1); // fm |= t & GSVector4i::xff000000(); vpsrld(xmm1, 24); vpslld(xmm1, 24); vpor(xmm3, xmm1); break; } } void GSDrawScanlineCodeGenerator::ColorTFX() { if(!m_sel.fwrite) { return; } switch(m_sel.tfx) { case TFX_MODULATE: // GSVector4i rb = iip ? rbf : m_local.c.rb; // rbt = rbt.modulate16<1>(rb).clamp8(); modulate16(xmm5, ptr[m_sel.iip ? &m_local.temp.rb : &m_local.c.rb], 1); clamp16(xmm5, xmm1); break; case TFX_DECAL: break; case TFX_HIGHLIGHT: case TFX_HIGHLIGHT2: if(m_sel.tfx == TFX_HIGHLIGHT2 && m_sel.tcc) { // GSVector4i ga = iip ? gaf : m_local.c.ga; vmovdqa(xmm2, ptr[m_sel.iip ? &m_local.temp.ga : &m_local.c.ga]); } // gat = gat.modulate16<1>(ga).add16(af).clamp8().mix16(gat); vmovdqa(xmm1, xmm6); modulate16(xmm6, xmm2, 1); vpshuflw(xmm2, xmm2, _MM_SHUFFLE(3, 3, 1, 1)); vpshufhw(xmm2, xmm2, _MM_SHUFFLE(3, 3, 1, 1)); vpsrlw(xmm2, 7); vpaddw(xmm6, xmm2); clamp16(xmm6, xmm0); mix16(xmm6, xmm1, xmm0); // GSVector4i rb = iip ? rbf : m_local.c.rb; // rbt = rbt.modulate16<1>(rb).add16(af).clamp8(); modulate16(xmm5, ptr[m_sel.iip ? &m_local.temp.rb : &m_local.c.rb], 1); vpaddw(xmm5, xmm2); clamp16(xmm5, xmm0); break; case TFX_NONE: // rbt = iip ? rb.srl16(7) : rb; if(m_sel.iip) { vpsrlw(xmm5, 7); } break; } } void GSDrawScanlineCodeGenerator::Fog() { if(!m_sel.fwrite || !m_sel.fge) { return; } // rb = m_local.gd->frb.lerp16<0>(rb, f); // ga = m_local.gd->fga.lerp16<0>(ga, f).mix16(ga); vmovdqa(xmm0, ptr[m_sel.prim != GS_SPRITE_CLASS ? &m_local.temp.f : &m_local.p.f]); vmovdqa(xmm1, xmm6); vmovdqa(xmm2, ptr[&m_local.gd->frb]); lerp16(xmm5, xmm2, xmm0, 0); vmovdqa(xmm2, ptr[&m_local.gd->fga]); lerp16(xmm6, xmm2, xmm0, 0); mix16(xmm6, xmm1, xmm0); } void GSDrawScanlineCodeGenerator::ReadFrame() { if(!m_sel.fb) { return; } // int fa = fza_base.x + fza_offset->x; mov(ebx, ptr[esi]); add(ebx, ptr[edi]); if(!m_sel.rfb) { return; } ReadPixel(xmm2, ebx); } void GSDrawScanlineCodeGenerator::TestDestAlpha() { if(!m_sel.date || m_sel.fpsm != 0 && m_sel.fpsm != 2) { return; } // test |= ((fd [<< 16]) ^ m_local.gd->datm).sra32(31); if(m_sel.datm) { if(m_sel.fpsm == 2) { vpxor(xmm0, xmm0); vpsrld(xmm1, xmm2, 15); vpcmpeqd(xmm1, xmm0); } else { vpcmpeqd(xmm0, xmm0); vpxor(xmm1, xmm2, xmm0); vpsrad(xmm1, 31); } } else { if(m_sel.fpsm == 2) { vpslld(xmm1, xmm2, 16); vpsrad(xmm1, 31); } else { vpsrad(xmm1, xmm2, 31); } } vpor(xmm7, xmm1); alltrue(); } void GSDrawScanlineCodeGenerator::WriteMask() { if(m_sel.notest) { return; } // fm |= test; // zm |= test; if(m_sel.fwrite) { vpor(xmm3, xmm7); } if(m_sel.zwrite) { vpor(xmm4, xmm7); } // int fzm = ~(fm == GSVector4i::xffffffff()).ps32(zm == GSVector4i::xffffffff()).mask(); vpcmpeqd(xmm1, xmm1); if(m_sel.fwrite && m_sel.zwrite) { vpcmpeqd(xmm0, xmm1, xmm4); vpcmpeqd(xmm1, xmm3); vpackssdw(xmm1, xmm0); } else if(m_sel.fwrite) { vpcmpeqd(xmm1, xmm3); vpackssdw(xmm1, xmm1); } else if(m_sel.zwrite) { vpcmpeqd(xmm1, xmm4); vpackssdw(xmm1, xmm1); } vpmovmskb(edx, xmm1); not(edx); } void GSDrawScanlineCodeGenerator::WriteZBuf() { if(!m_sel.zwrite) { return; } vmovdqa(xmm1, ptr[m_sel.prim != GS_SPRITE_CLASS ? &m_local.temp.zs : &m_local.p.z]); if(m_sel.ztest && m_sel.zpsm < 2) { // zs = zs.blend8(zd, zm); vpblendvb(xmm1, ptr[&m_local.temp.zd], xmm4); } bool fast = m_sel.ztest ? m_sel.zpsm < 2 : m_sel.zpsm == 0 && m_sel.notest; WritePixel(xmm1, ebp, dh, fast, m_sel.zpsm, 1); } void GSDrawScanlineCodeGenerator::AlphaBlend() { if(!m_sel.fwrite) { return; } if(m_sel.abe == 0 && m_sel.aa1 == 0) { return; } if((m_sel.aba != m_sel.abb) && (m_sel.aba == 1 || m_sel.abb == 1 || m_sel.abc == 1) || m_sel.abd == 1) { switch(m_sel.fpsm) { case 0: case 1: // c[2] = fd & mask; // c[3] = (fd >> 8) & mask; vpsllw(xmm0, xmm2, 8); vpsrlw(xmm0, 8); vpsrlw(xmm1, xmm2, 8); break; case 2: // c[2] = ((fd & 0x7c00) << 9) | ((fd & 0x001f) << 3); // c[3] = ((fd & 0x8000) << 8) | ((fd & 0x03e0) >> 2); vpcmpeqd(xmm7, xmm7); vpsrld(xmm7, 27); // 0x0000001f vpand(xmm0, xmm2, xmm7); vpslld(xmm0, 3); vpslld(xmm7, 10); // 0x00007c00 vpand(xmm4, xmm2, xmm7); vpslld(xmm4, 9); vpor(xmm0, xmm4); vpsrld(xmm7, 5); // 0x000003e0 vpand(xmm1, xmm2, xmm7); vpsrld(xmm1, 2); vpsllw(xmm7, 10); // 0x00008000 vpand(xmm4, xmm2, xmm7); vpslld(xmm4, 8); vpor(xmm1, xmm4); break; } } // xmm5, xmm6 = src rb, ga // xmm0, xmm1 = dst rb, ga // xmm2, xmm3 = used // xmm4, xmm7 = free if(m_sel.pabe || (m_sel.aba != m_sel.abb) && (m_sel.abb == 0 || m_sel.abd == 0)) { vmovdqa(xmm4, xmm5); } if(m_sel.aba != m_sel.abb) { // rb = c[aba * 2 + 0]; switch(m_sel.aba) { case 0: break; case 1: vmovdqa(xmm5, xmm0); break; case 2: vpxor(xmm5, xmm5); break; } // rb = rb.sub16(c[abb * 2 + 0]); switch(m_sel.abb) { case 0: vpsubw(xmm5, xmm4); break; case 1: vpsubw(xmm5, xmm0); break; case 2: break; } if(!(m_sel.fpsm == 1 && m_sel.abc == 1)) { // GSVector4i a = abc < 2 ? c[abc * 2 + 1].yywwlh().sll16(7) : m_local.gd->afix; switch(m_sel.abc) { case 0: case 1: vpshuflw(xmm7, m_sel.abc ? xmm1 : xmm6, _MM_SHUFFLE(3, 3, 1, 1)); vpshufhw(xmm7, xmm7, _MM_SHUFFLE(3, 3, 1, 1)); vpsllw(xmm7, 7); break; case 2: vmovdqa(xmm7, ptr[&m_local.gd->afix]); break; } // rb = rb.modulate16<1>(a); modulate16(xmm5, xmm7, 1); } // rb = rb.add16(c[abd * 2 + 0]); switch(m_sel.abd) { case 0: vpaddw(xmm5, xmm4); break; case 1: vpaddw(xmm5, xmm0); break; case 2: break; } } else { // rb = c[abd * 2 + 0]; switch(m_sel.abd) { case 0: break; case 1: vmovdqa(xmm5, xmm0); break; case 2: vpxor(xmm5, xmm5); break; } } if(m_sel.pabe) { // mask = (c[1] << 8).sra32(31); vpslld(xmm0, xmm6, 8); vpsrad(xmm0, 31); // rb = c[0].blend8(rb, mask); vpblendvb(xmm5, xmm4, xmm5, xmm0); } // xmm6 = src ga // xmm1 = dst ga // xmm5 = rb // xmm7 = a // xmm2, xmm3 = used // xmm0, xmm4 = free vmovdqa(xmm4, xmm6); if(m_sel.aba != m_sel.abb) { // ga = c[aba * 2 + 1]; switch(m_sel.aba) { case 0: break; case 1: vmovdqa(xmm6, xmm1); break; case 2: vpxor(xmm6, xmm6); break; } // ga = ga.sub16(c[abeb * 2 + 1]); switch(m_sel.abb) { case 0: vpsubw(xmm6, xmm4); break; case 1: vpsubw(xmm6, xmm1); break; case 2: break; } if(!(m_sel.fpsm == 1 && m_sel.abc == 1)) { // ga = ga.modulate16<1>(a); modulate16(xmm6, xmm7, 1); } // ga = ga.add16(c[abd * 2 + 1]); switch(m_sel.abd) { case 0: vpaddw(xmm6, xmm4); break; case 1: vpaddw(xmm6, xmm1); break; case 2: break; } } else { // ga = c[abd * 2 + 1]; switch(m_sel.abd) { case 0: break; case 1: vmovdqa(xmm6, xmm1); break; case 2: vpxor(xmm6, xmm6); break; } } // xmm4 = src ga // xmm5 = rb // xmm6 = ga // xmm2, xmm3 = used // xmm0, xmm1, xmm7 = free if(m_sel.pabe) { vpsrld(xmm0, 16); // zero out high words to select the source alpha in blend (so it also does mix16) // ga = c[1].blend8(ga, mask).mix16(c[1]); vpblendvb(xmm6, xmm4, xmm6, xmm0); } else { if(m_sel.fpsm != 1) // TODO: fm == 0xffxxxxxx { mix16(xmm6, xmm4, xmm7); } } } void GSDrawScanlineCodeGenerator::WriteFrame() { if(!m_sel.fwrite) { return; } if(m_sel.colclamp == 0) { // c[0] &= 0x00ff00ff; // c[1] &= 0x00ff00ff; vpcmpeqd(xmm7, xmm7); vpsrlw(xmm7, 8); vpand(xmm5, xmm7); vpand(xmm6, xmm7); } if(m_sel.fpsm == 2 && m_sel.dthe) { mov(eax, ptr[esp + _top]); and(eax, 3); shl(eax, 5); mov(ebp, ptr[&m_local.gd->dimx]); vpaddw(xmm5, ptr[ebp + eax + sizeof(GSVector4i) * 0]); vpaddw(xmm6, ptr[ebp + eax + sizeof(GSVector4i) * 1]); } // GSVector4i fs = c[0].upl16(c[1]).pu16(c[0].uph16(c[1])); vpunpckhwd(xmm7, xmm5, xmm6); vpunpcklwd(xmm5, xmm6); vpackuswb(xmm5, xmm7); if(m_sel.fba && m_sel.fpsm != 1) { // fs |= 0x80000000; vpcmpeqd(xmm7, xmm7); vpslld(xmm7, 31); vpor(xmm5, xmm7); } if(m_sel.fpsm == 2) { // GSVector4i rb = fs & 0x00f800f8; // GSVector4i ga = fs & 0x8000f800; mov(eax, 0x00f800f8); vmovd(xmm6, eax); vpshufd(xmm6, xmm6, _MM_SHUFFLE(0, 0, 0, 0)); mov(eax, 0x8000f800); vmovd(xmm7, eax); vpshufd(xmm7, xmm7, _MM_SHUFFLE(0, 0, 0, 0)); vpand(xmm4, xmm5, xmm6); vpand(xmm5, xmm7); // fs = (ga >> 16) | (rb >> 9) | (ga >> 6) | (rb >> 3); vpsrld(xmm6, xmm4, 9); vpsrld(xmm4, 3); vpsrld(xmm7, xmm5, 16); vpsrld(xmm5, 6); vpor(xmm5, xmm4); vpor(xmm7, xmm6); vpor(xmm5, xmm7); } if(m_sel.rfb) { // fs = fs.blend(fd, fm); blend(xmm5, xmm2, xmm3); // TODO: could be skipped in certain cases, depending on fpsm and fm } bool fast = m_sel.rfb ? m_sel.fpsm < 2 : m_sel.fpsm == 0 && m_sel.notest; WritePixel(xmm5, ebx, dl, fast, m_sel.fpsm, 0); } void GSDrawScanlineCodeGenerator::ReadPixel(const Xmm& dst, const Reg32& addr) { vmovq(dst, qword[addr * 2 + (size_t)m_local.gd->vm]); vmovhps(dst, qword[addr * 2 + (size_t)m_local.gd->vm + 8 * 2]); } void GSDrawScanlineCodeGenerator::WritePixel(const Xmm& src, const Reg32& addr, const Reg8& mask, bool fast, int psm, int fz) { if(m_sel.notest) { if(fast) { vmovq(qword[addr * 2 + (size_t)m_local.gd->vm], src); vmovhps(qword[addr * 2 + (size_t)m_local.gd->vm + 8 * 2], src); } else { WritePixel(src, addr, 0, psm); WritePixel(src, addr, 1, psm); WritePixel(src, addr, 2, psm); WritePixel(src, addr, 3, psm); } } else { if(fast) { // if(fzm & 0x0f) GSVector4i::storel(&vm16[addr + 0], fs); // if(fzm & 0xf0) GSVector4i::storeh(&vm16[addr + 8], fs); test(mask, 0x0f); je("@f"); vmovq(qword[addr * 2 + (size_t)m_local.gd->vm], src); L("@@"); test(mask, 0xf0); je("@f"); vmovhps(qword[addr * 2 + (size_t)m_local.gd->vm + 8 * 2], src); L("@@"); // vmaskmovps? } else { // if(fzm & 0x03) WritePixel(fpsm, &vm16[addr + 0], fs.extract32<0>()); // if(fzm & 0x0c) WritePixel(fpsm, &vm16[addr + 2], fs.extract32<1>()); // if(fzm & 0x30) WritePixel(fpsm, &vm16[addr + 8], fs.extract32<2>()); // if(fzm & 0xc0) WritePixel(fpsm, &vm16[addr + 10], fs.extract32<3>()); test(mask, 0x03); je("@f"); WritePixel(src, addr, 0, psm); L("@@"); test(mask, 0x0c); je("@f"); WritePixel(src, addr, 1, psm); L("@@"); test(mask, 0x30); je("@f"); WritePixel(src, addr, 2, psm); L("@@"); test(mask, 0xc0); je("@f"); WritePixel(src, addr, 3, psm); L("@@"); } } } static const int s_offsets[4] = {0, 2, 8, 10}; void GSDrawScanlineCodeGenerator::WritePixel(const Xmm& src, const Reg32& addr, uint8 i, int psm) { Address dst = ptr[addr * 2 + (size_t)m_local.gd->vm + s_offsets[i] * 2]; switch(psm) { case 0: if(i == 0) vmovd(dst, src); else vpextrd(dst, src, i); break; case 1: if(i == 0) vmovd(eax, src); else vpextrd(eax, src, i); xor(eax, dst); and(eax, 0xffffff); xor(dst, eax); break; case 2: vpextrw(eax, src, i * 2); mov(dst, ax); break; } } void GSDrawScanlineCodeGenerator::ReadTexel(int pixels, int mip_offset) { // in // xmm5 = addr00 // xmm2 = addr01 // xmm0 = addr10 // xmm3 = addr11 // ebx = m_local.tex[0] (!m_sel.mmin) // ebp = m_local.tex (m_sel.mmin) // edx = m_local.clut (m_sel.tlu) // out // xmm6 = c00 // xmm4 = c01 // xmm1 = c10 // xmm5 = c11 ASSERT(pixels == 1 || pixels == 4); mip_offset *= sizeof(void*); const GSVector4i* lod_i = m_sel.lcm ? &m_local.gd->lod.i : &m_local.temp.lod.i; if(m_sel.mmin && !m_sel.lcm) { const int r[] = {5, 6, 2, 4, 0, 1, 3, 7}; if(pixels == 4) { vmovdqa(ptr[&m_local.temp.test], xmm7); } for(int j = 0; j < 4; j++) { mov(ebx, ptr[&lod_i->u32[j]]); mov(ebx, ptr[ebp + ebx * sizeof(void*) + mip_offset]); for(int i = 0; i < pixels; i++) { ReadTexel(Xmm(r[i * 2 + 1]), Xmm(r[i * 2 + 0]), j); } } if(pixels == 4) { vmovdqa(xmm5, xmm7); vmovdqa(xmm7, ptr[&m_local.temp.test]); } } else { if(m_sel.mmin && m_sel.lcm) { mov(ebx, ptr[&lod_i->u32[0]]); mov(ebx, ptr[ebp + ebx * sizeof(void*) + mip_offset]); } const int r[] = {5, 6, 2, 4, 0, 1, 3, 5}; for(int i = 0; i < pixels; i++) { for(int j = 0; j < 4; j++) { ReadTexel(Xmm(r[i * 2 + 1]), Xmm(r[i * 2 + 0]), j); } } } } void GSDrawScanlineCodeGenerator::ReadTexel(const Xmm& dst, const Xmm& addr, uint8 i) { const Address& src = m_sel.tlu ? ptr[edx + eax * 4] : ptr[ebx + eax * 4]; if(i == 0) vmovd(eax, addr); else vpextrd(eax, addr, i); if(m_sel.tlu) movzx(eax, byte[ebx + eax]); if(i == 0) vmovd(dst, src); else vpinsrd(dst, src, i); } #endif