/* PCSX2 - PS2 Emulator for PCs * Copyright (C) 2002-2014 PCSX2 Dev Team * * PCSX2 is free software: you can redistribute it and/or modify it under the terms * of the GNU Lesser General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with PCSX2. * If not, see . */ #if defined(__APPLE__) #include #include #include #include #include "common/PrecompiledHeader.h" #include "common/Threading.h" // Note: assuming multicore is safer because it forces the interlocked routines to use // the LOCK prefix. The prefix works on single core CPUs fine (but is slow), but not // having the LOCK prefix is very bad indeed. __forceinline void Threading::Sleep(int ms) { usleep(1000 * ms); } // For use in spin/wait loops, acts as a hint to Intel CPUs and should, in theory // improve performance and reduce cpu power consumption. __forceinline void Threading::SpinWait() { // If this doesn't compile you can just comment it out (it only serves as a // performance hint and isn't required). __asm__("pause"); } __forceinline void Threading::EnableHiresScheduler() { // Darwin has customizable schedulers, see xnu/osfmk/man. Not // implemented yet though (and not sure if useful for pcsx2). } __forceinline void Threading::DisableHiresScheduler() { // see EnableHiresScheduler() } // Just like on Windows, this is not really the number of ticks per second, // but just a factor by which one has to divide GetThreadCpuTime() or // pxThread::GetCpuTime() if one wants to receive a value in seconds. NOTE: // doing this will of course yield precision loss. u64 Threading::GetThreadTicksPerSecond() { return 1000000; // the *CpuTime() functions return values in microseconds } // gets the CPU time used by the current thread (both system and user), in // microseconds, returns 0 on failure static u64 getthreadtime(thread_port_t thread) { mach_msg_type_number_t count = THREAD_BASIC_INFO_COUNT; thread_basic_info_data_t info; kern_return_t kr = thread_info(thread, THREAD_BASIC_INFO, (thread_info_t)&info, &count); if (kr != KERN_SUCCESS) { return 0; } // add system and user time return (u64)info.user_time.seconds * (u64)1e6 + (u64)info.user_time.microseconds + (u64)info.system_time.seconds * (u64)1e6 + (u64)info.system_time.microseconds; } // Returns the current timestamp (not relative to a real world clock) in microseconds u64 Threading::GetThreadCpuTime() { // we could also use mach_thread_self() and mach_port_deallocate(), but // that calls upon mach traps (kinda like system calls). Unless I missed // something in the COMMPAGE (like Linux vDSO) which makes overrides it // to be user-space instead. In contract, // pthread_mach_thread_np(pthread_self()) is entirely in user-space. u64 us = getthreadtime(pthread_mach_thread_np(pthread_self())); return us; } Threading::ThreadHandle::ThreadHandle() = default; Threading::ThreadHandle::ThreadHandle(const ThreadHandle& handle) : m_native_handle(handle.m_native_handle) { } Threading::ThreadHandle::ThreadHandle(ThreadHandle&& handle) : m_native_handle(handle.m_native_handle) { handle.m_native_handle = nullptr; } Threading::ThreadHandle::~ThreadHandle() = default; Threading::ThreadHandle Threading::ThreadHandle::GetForCallingThread() { ThreadHandle ret; ret.m_native_handle = pthread_self(); return ret; } Threading::ThreadHandle& Threading::ThreadHandle::operator=(ThreadHandle&& handle) { m_native_handle = handle.m_native_handle; handle.m_native_handle = nullptr; return *this; } Threading::ThreadHandle& Threading::ThreadHandle::operator=(const ThreadHandle& handle) { m_native_handle = handle.m_native_handle; return *this; } u64 Threading::ThreadHandle::GetCPUTime() const { return getthreadtime(pthread_mach_thread_np((pthread_t)m_native_handle)); } bool Threading::ThreadHandle::SetAffinity(u64 processor_mask) const { // Doesn't appear to be possible to set affinity. return false; } // name can be up to 16 bytes void Threading::SetNameOfCurrentThread(const char* name) { pthread_setname_np(name); } #endif