// SPDX-FileCopyrightText: 2002-2023 PCSX2 Dev Team // SPDX-License-Identifier: LGPL-3.0+ #if !defined(_WIN32) && !defined(__APPLE__) #ifndef _GNU_SOURCE #define _GNU_SOURCE #endif #include #include #include #if defined(__linux__) #include #include #include // glibc < v2.30 doesn't define gettid... #if __GLIBC__ == 2 && __GLIBC_MINOR__ < 30 #include #define gettid() syscall(SYS_gettid) #endif #elif defined(__unix__) #include #endif #include "common/Threading.h" #include "common/Assertions.h" #if !defined(__unix__) #pragma message("LnxThreads.cpp should only be compiled by projects or makefiles targeted at Linux/BSD distros.") #else // Note: assuming multicore is safer because it forces the interlocked routines to use // the LOCK prefix. The prefix works on single core CPUs fine (but is slow), but not // having the LOCK prefix is very bad indeed. __forceinline void Threading::Timeslice() { sched_yield(); } // For use in spin/wait loops, Acts as a hint to Intel CPUs and should, in theory // improve performance and reduce cpu power consumption. __forceinline void Threading::SpinWait() { // If this doesn't compile you can just comment it out (it only serves as a // performance hint and isn't required). #if defined(_M_X86) __asm__("pause"); #elif defined(_M_ARM64) __asm__ __volatile__("isb"); #endif } __forceinline void Threading::EnableHiresScheduler() { // Don't know if linux has a customizable scheduler resolution like Windows (doubtful) } __forceinline void Threading::DisableHiresScheduler() { } // Unit of time of GetThreadCpuTime/GetCpuTime u64 Threading::GetThreadTicksPerSecond() { return 1000000; } // Helper function to get either either the current cpu usage // in called thread or in id thread static u64 get_thread_time(uptr id = 0) { clockid_t cid; if (id) { int err = pthread_getcpuclockid((pthread_t)id, &cid); if (err) return 0; } else { cid = CLOCK_THREAD_CPUTIME_ID; } struct timespec ts; int err = clock_gettime(cid, &ts); if (err) return 0; return (u64)ts.tv_sec * (u64)1e6 + (u64)ts.tv_nsec / (u64)1e3; } // Returns the current timestamp (not relative to a real world clock) u64 Threading::GetThreadCpuTime() { return get_thread_time(); } Threading::ThreadHandle::ThreadHandle() = default; Threading::ThreadHandle::ThreadHandle(const ThreadHandle& handle) : m_native_handle(handle.m_native_handle) #ifdef __linux__ , m_native_id(handle.m_native_id) #endif { } Threading::ThreadHandle::ThreadHandle(ThreadHandle&& handle) : m_native_handle(handle.m_native_handle) #ifdef __linux__ , m_native_id(handle.m_native_id) #endif { handle.m_native_handle = nullptr; #ifdef __linux__ handle.m_native_id = 0; #endif } Threading::ThreadHandle::~ThreadHandle() = default; Threading::ThreadHandle Threading::ThreadHandle::GetForCallingThread() { ThreadHandle ret; ret.m_native_handle = (void*)pthread_self(); #ifdef __linux__ ret.m_native_id = gettid(); #endif return ret; } Threading::ThreadHandle& Threading::ThreadHandle::operator=(ThreadHandle&& handle) { m_native_handle = handle.m_native_handle; handle.m_native_handle = nullptr; #ifdef __linux__ m_native_id = handle.m_native_id; handle.m_native_id = 0; #endif return *this; } Threading::ThreadHandle& Threading::ThreadHandle::operator=(const ThreadHandle& handle) { m_native_handle = handle.m_native_handle; #ifdef __linux__ m_native_id = handle.m_native_id; #endif return *this; } u64 Threading::ThreadHandle::GetCPUTime() const { return m_native_handle ? get_thread_time((uptr)m_native_handle) : 0; } bool Threading::ThreadHandle::SetAffinity(u64 processor_mask) const { #if defined(__linux__) cpu_set_t set; CPU_ZERO(&set); if (processor_mask != 0) { for (u32 i = 0; i < 64; i++) { if (processor_mask & (static_cast(1) << i)) { CPU_SET(i, &set); } } } else { long num_processors = sysconf(_SC_NPROCESSORS_CONF); for (long i = 0; i < num_processors; i++) { CPU_SET(i, &set); } } return sched_setaffinity((pid_t)m_native_id, sizeof(set), &set) >= 0; #else return false; #endif } Threading::Thread::Thread() = default; Threading::Thread::Thread(Thread&& thread) : ThreadHandle(thread) , m_stack_size(thread.m_stack_size) { thread.m_stack_size = 0; } Threading::Thread::Thread(EntryPoint func) : ThreadHandle() { if (!Start(std::move(func))) pxFailRel("Failed to start implicitly started thread."); } Threading::Thread::~Thread() { pxAssertRel(!m_native_handle, "Thread should be detached or joined at destruction"); } void Threading::Thread::SetStackSize(u32 size) { pxAssertRel(!m_native_handle, "Can't change the stack size on a started thread"); m_stack_size = size; } #ifdef __linux__ // For Linux, we have to do a bit of trickery here to get the thread's ID back from // the thread itself, because it's not part of pthreads. We use a semaphore to signal // when the thread has started, and filled in thread_id_ptr. struct ThreadProcParameters { Threading::Thread::EntryPoint func; Threading::KernelSemaphore* start_semaphore; unsigned int* thread_id_ptr; }; void* Threading::Thread::ThreadProc(void* param) { std::unique_ptr entry(static_cast(param)); *entry->thread_id_ptr = gettid(); entry->start_semaphore->Post(); entry->func(); return nullptr; } bool Threading::Thread::Start(EntryPoint func) { pxAssertRel(!m_native_handle, "Can't start an already-started thread"); KernelSemaphore start_semaphore; std::unique_ptr params(std::make_unique()); params->func = std::move(func); params->start_semaphore = &start_semaphore; params->thread_id_ptr = &m_native_id; pthread_attr_t attrs; bool has_attributes = false; if (m_stack_size != 0) { has_attributes = true; pthread_attr_init(&attrs); } if (m_stack_size != 0) pthread_attr_setstacksize(&attrs, m_stack_size); pthread_t handle; const int res = pthread_create(&handle, has_attributes ? &attrs : nullptr, ThreadProc, params.get()); if (res != 0) return false; // wait until it sets our native id start_semaphore.Wait(); // thread started, it'll release the memory m_native_handle = (void*)handle; params.release(); return true; } #else void* Threading::Thread::ThreadProc(void* param) { std::unique_ptr entry(static_cast(param)); (*entry.get())(); return nullptr; } bool Threading::Thread::Start(EntryPoint func) { pxAssertRel(!m_native_handle, "Can't start an already-started thread"); std::unique_ptr func_clone(std::make_unique(std::move(func))); pthread_attr_t attrs; bool has_attributes = false; if (m_stack_size != 0) { has_attributes = true; pthread_attr_init(&attrs); } if (m_stack_size != 0) pthread_attr_setstacksize(&attrs, m_stack_size); pthread_t handle; const int res = pthread_create(&handle, has_attributes ? &attrs : nullptr, ThreadProc, func_clone.get()); if (res != 0) return false; // thread started, it'll release the memory m_native_handle = (void*)handle; func_clone.release(); return true; } #endif void Threading::Thread::Detach() { pxAssertRel(m_native_handle, "Can't detach without a thread"); pthread_detach((pthread_t)m_native_handle); m_native_handle = nullptr; #ifdef __linux__ m_native_id = 0; #endif } void Threading::Thread::Join() { pxAssertRel(m_native_handle, "Can't join without a thread"); void* retval; const int res = pthread_join((pthread_t)m_native_handle, &retval); if (res != 0) pxFailRel("pthread_join() for thread join failed"); m_native_handle = nullptr; #ifdef __linux__ m_native_id = 0; #endif } Threading::ThreadHandle& Threading::Thread::operator=(Thread&& thread) { ThreadHandle::operator=(thread); m_stack_size = thread.m_stack_size; thread.m_stack_size = 0; return *this; } void Threading::SetNameOfCurrentThread(const char* name) { #if defined(__linux__) // Extract of manpage: "The name can be up to 16 bytes long, and should be // null-terminated if it contains fewer bytes." prctl(PR_SET_NAME, name, 0, 0, 0); #elif defined(__unix__) pthread_set_name_np(pthread_self(), name); #endif } #endif #endif