/* ZeroGS KOSMOS * * Zerofrog's ZeroGS KOSMOS (c)2005-2008 * * Zerofrog forgot to write any copyright notice after release the plugin into GPLv2 * If someone can contact him successfully to clarify this matter that would be great. */ #ifndef ZEROGS_MATH_H #define ZEROGS_MATH_H #ifndef _WIN32 #include #endif #include #include #include #ifndef PI #define PI ((dReal)3.141592654) #endif #define rswap(x, y) *(int*)&(x) ^= *(int*)&(y) ^= *(int*)&(x) ^= *(int*)&(y); template inline T RAD_2_DEG(T radians) { return (radians * (T)57.29577951); } class Transform; class TransformMatrix; typedef float dReal; typedef dReal dMatrix3[3*4]; inline dReal* normalize3(dReal* pfout, const dReal* pf); inline dReal* normalize4(dReal* pfout, const dReal* pf); inline dReal* cross3(dReal* pfout, const dReal* pf1, const dReal* pf2); // multiplies 3x3 matrices inline dReal* mult3(dReal* pfres, const dReal* pf1, const dReal* pf2); inline double* mult3(double* pfres, const double* pf1, const double* pf2); inline dReal* inv3(const dReal* pf, dReal* pfres, int stride); inline dReal* inv4(const dReal* pf, dReal* pfres); // class used for 3 and 4 dim vectors and quaternions // It is better to use this for a 3 dim vector because it is 16byte aligned and SIMD instructions can be used class Vector { public: dReal x, y, z, w; Vector() : x(0), y(0), z(0), w(0) {} Vector(dReal x, dReal y, dReal z) : x(x), y(y), z(z), w(0) {} Vector(dReal x, dReal y, dReal z, dReal w) : x(x), y(y), z(z), w(w) {} Vector(const Vector &vec) : x(vec.x), y(vec.y), z(vec.z), w(vec.w) {} Vector(const dReal* pf) { assert(pf != NULL); x = pf[0]; y = pf[1]; z = pf[2]; w = 0; } dReal operator[](int i) const { return (&x)[i]; } dReal& operator[](int i) { return (&x)[i]; } // casting operators operator dReal*() { return &x; } operator const dReal*() const { return (const dReal*)&x; } // SCALAR FUNCTIONS inline dReal dot(const Vector &v) const { return x*v.x + y*v.y + z*v.z + w*v.w; } inline void normalize() { normalize4(&x, &x); } inline void Set3(const float* pvals) { x = pvals[0]; y = pvals[1]; z = pvals[2]; } inline void Set4(const float* pvals) { x = pvals[0]; y = pvals[1]; z = pvals[2]; w = pvals[3]; } inline void SetColor(u32 color) { x = (color & 0xff) / 255.0f; y = ((color >> 8) & 0xff) / 255.0f; z = ((color >> 16) & 0xff) / 255.0f; } // 3 dim cross product, w is not touched /// this = this x v inline void Cross(const Vector &v) { cross3(&x, &x, v); } /// this = u x v inline void Cross(const Vector &u, const Vector &v) { cross3(&x, u, v); } inline Vector operator-() const { Vector v; v.x = -x; v.y = -y; v.z = -z; v.w = -w; return v; } inline Vector operator+(const Vector &r) const { Vector v; v.x = x + r.x; v.y = y + r.y; v.z = z + r.z; v.w = w + r.w; return v; } inline Vector operator-(const Vector &r) const { Vector v; v.x = x - r.x; v.y = y - r.y; v.z = z - r.z; v.w = w - r.w; return v; } inline Vector operator*(const Vector &r) const { Vector v; v.x = r.x * x; v.y = r.y * y; v.z = r.z * z; v.w = r.w * w; return v; } inline Vector operator*(dReal k) const { Vector v; v.x = k * x; v.y = k * y; v.z = k * z; v.w = k * w; return v; } inline Vector& operator += (const Vector& r) { x += r.x; y += r.y; z += r.z; w += r.w; return *this; } inline Vector& operator -= (const Vector& r) { x -= r.x; y -= r.y; z -= r.z; w -= r.w; return *this; } inline Vector& operator *= (const Vector& r) { x *= r.x; y *= r.y; z *= r.z; w *= r.w; return *this; } inline Vector& operator *= (const dReal k) { x *= k; y *= k; z *= k; w *= k; return *this; } inline Vector& operator /= (const dReal _k) { dReal k = 1 / _k; x *= k; y *= k; z *= k; w *= k; return *this; } friend Vector operator*(float f, const Vector& v); //friend ostream& operator<<(ostream& O, const Vector& v); //friend istream& operator>>(istream& I, Vector& v); }; inline Vector operator*(float f, const Vector& left) { Vector v; v.x = f * left.x; v.y = f * left.y; v.z = f * left.z; return v; } struct AABB { Vector pos, extents; }; struct OBB { Vector right, up, dir, pos, extents; }; struct TRIANGLE { TRIANGLE() {} TRIANGLE(const Vector& v1, const Vector& v2, const Vector& v3) : v1(v1), v2(v2), v3(v3) {} ~TRIANGLE() {} Vector v1, v2, v3; //!< the vertices of the triangle const Vector& operator[](int i) const { return (&v1)[i]; } Vector& operator[](int i) { return (&v1)[i]; } /// assumes CCW ordering of vertices inline Vector ComputeNormal() { Vector normal; cross3(normal, v2 - v1, v3 - v1); return normal; } }; // Routines made for 3D graphics that deal with 3 or 4 dim algebra structures // Functions with postfix 3 are for 3x3 operations, etc // all fns return pfout on success or NULL on failure // results and arguments can share pointers // multiplies 4x4 matrices inline dReal* mult4(dReal* pfres, const dReal* pf1, const dReal* pf2); inline double* mult4(double* pfres, const double* pf1, const double* pf2); // pf1^T * pf2 inline dReal* multtrans3(dReal* pfres, const dReal* pf1, const dReal* pf2); inline double* multtrans3(double* pfres, const double* pf1, const double* pf2); inline dReal* multtrans4(dReal* pfres, const dReal* pf1, const dReal* pf2); inline double* multtrans4(double* pfres, const double* pf1, const double* pf2); inline dReal* transpose3(const dReal* pf, dReal* pfres); inline double* transpose3(const double* pf, double* pfres); inline dReal* transpose4(const dReal* pf, dReal* pfres); inline double* transpose4(const double* pf, double* pfres); inline dReal dot2(const dReal* pf1, const dReal* pf2); inline dReal dot3(const dReal* pf1, const dReal* pf2); inline dReal dot4(const dReal* pf1, const dReal* pf2); inline dReal lengthsqr2(const dReal* pf); inline dReal lengthsqr3(const dReal* pf); inline dReal lengthsqr4(const dReal* pf); inline dReal* normalize2(dReal* pfout, const dReal* pf); inline dReal* normalize3(dReal* pfout, const dReal* pf); inline dReal* normalize4(dReal* pfout, const dReal* pf); //// // More complex ops that deal with arbitrary matrices // //// // extract eigen values and vectors from a 2x2 matrix and returns true if all values are real // returned eigen vectors are normalized inline bool eig2(const dReal* pfmat, dReal* peigs, dReal& fv1x, dReal& fv1y, dReal& fv2x, dReal& fv2y); // Simple routines for linear algebra algorithms // int CubicRoots(double c0, double c1, double c2, double *r0, double *r1, double *r2); bool QLAlgorithm3(dReal* m_aafEntry, dReal* afDiag, dReal* afSubDiag); void EigenSymmetric3(dReal* fCovariance, dReal* eval, dReal* fAxes); void GetCovarBasisVectors(dReal fCovariance[3][3], Vector* vRight, Vector* vUp, Vector* vDir); // first root returned is always >= second, roots are defined if the quadratic doesn't have real solutions void QuadraticSolver(dReal* pfQuadratic, dReal* pfRoots); int insideQuadrilateral(const Vector* p0, const Vector* p1, const Vector* p2, const Vector* p3); int insideTriangle(const Vector* p0, const Vector* p1, const Vector* p2); // multiplies a matrix by a scalar template inline void mult(T* pf, T fa, int r); // multiplies a r1xc1 by c1xc2 matrix into pfres, if badd is true adds the result to pfres // does not handle cases where pfres is equal to pf1 or pf2, use multtox for those cases template inline T* mult(T* pf1, R* pf2, int r1, int c1, int c2, S* pfres, bool badd = false); // pf1 is transposed before mult // rows of pf2 must equal rows of pf1 // pfres will be c1xc2 matrix template inline T* multtrans(T* pf1, R* pf2, int r1, int c1, int c2, S* pfres, bool badd = false); // pf2 is transposed before mult // the columns of both matrices must be the same and equal to c1 // r2 is the number of rows in pf2 // pfres must be an r1xr2 matrix template inline T* multtrans_to2(T* pf1, R* pf2, int r1, int c1, int r2, S* pfres, bool badd = false); // multiplies rxc matrix pf1 and cxc matrix pf2 and stores the result in pf1, // the function needs a temporary buffer the size of c doubles, if pftemp == NULL, // the function will allocate the necessary memory, otherwise pftemp should be big // enough to store all the entries template inline T* multto1(T* pf1, T* pf2, int r1, int c1, T* pftemp = NULL); // same as multto1 except stores the result in pf2, pf1 has to be an r2xr2 matrix // pftemp must be of size r2 if not NULL template inline T* multto2(T* pf1, S* pf2, int r2, int c2, S* pftemp = NULL); // add pf1 + pf2 and store in pf1 template inline void sub(T* pf1, T* pf2, int r); template inline T normsqr(T* pf1, int r); template inline T lengthsqr(T* pf1, T* pf2, int length); template inline T dot(T* pf1, T* pf2, int length); template inline T sum(T* pf, int length); // takes the inverse of the 3x3 matrix pf and stores it into pfres, returns true if matrix is invertible template inline bool inv2(T* pf, T* pfres); /////////////////////// // Function Definitions /////////////////////// bool eig2(const dReal* pfmat, dReal* peigs, dReal& fv1x, dReal& fv1y, dReal& fv2x, dReal& fv2y) { // x^2 + bx + c dReal a, b, c, d; b = -(pfmat[0] + pfmat[3]); c = pfmat[0] * pfmat[3] - pfmat[1] * pfmat[2]; d = b * b - 4.0f * c + 1e-16f; if (d < 0) return false; if (d < 1e-16f) { a = -0.5f * b; peigs[0] = a; peigs[1] = a; fv1x = pfmat[1]; fv1y = a - pfmat[0]; c = 1 / sqrtf(fv1x * fv1x + fv1y * fv1y); fv1x *= c; fv1y *= c; fv2x = -fv1y; fv2y = fv1x; return true; } // two roots d = sqrtf(d); a = -0.5f * (b + d); peigs[0] = a; fv1x = pfmat[1]; fv1y = a - pfmat[0]; c = 1 / sqrtf(fv1x * fv1x + fv1y * fv1y); fv1x *= c; fv1y *= c; a += d; peigs[1] = a; fv2x = pfmat[1]; fv2y = a - pfmat[0]; c = 1 / sqrtf(fv2x * fv2x + fv2y * fv2y); fv2x *= c; fv2y *= c; return true; } //#ifndef TI_USING_IPP // Functions that are replacable by ipp library funcs template inline T* _mult3(T* pfres, const T* pf1, const T* pf2) { assert(pf1 != NULL && pf2 != NULL && pfres != NULL); T* pfres2; if (pfres == pf1 || pfres == pf2) pfres2 = (T*)alloca(9 * sizeof(T)); else pfres2 = pfres; pfres2[0*4+0] = pf1[0*4+0] * pf2[0*4+0] + pf1[0*4+1] * pf2[1*4+0] + pf1[0*4+2] * pf2[2*4+0]; pfres2[0*4+1] = pf1[0*4+0] * pf2[0*4+1] + pf1[0*4+1] * pf2[1*4+1] + pf1[0*4+2] * pf2[2*4+1]; pfres2[0*4+2] = pf1[0*4+0] * pf2[0*4+2] + pf1[0*4+1] * pf2[1*4+2] + pf1[0*4+2] * pf2[2*4+2]; pfres2[1*4+0] = pf1[1*4+0] * pf2[0*4+0] + pf1[1*4+1] * pf2[1*4+0] + pf1[1*4+2] * pf2[2*4+0]; pfres2[1*4+1] = pf1[1*4+0] * pf2[0*4+1] + pf1[1*4+1] * pf2[1*4+1] + pf1[1*4+2] * pf2[2*4+1]; pfres2[1*4+2] = pf1[1*4+0] * pf2[0*4+2] + pf1[1*4+1] * pf2[1*4+2] + pf1[1*4+2] * pf2[2*4+2]; pfres2[2*4+0] = pf1[2*4+0] * pf2[0*4+0] + pf1[2*4+1] * pf2[1*4+0] + pf1[2*4+2] * pf2[2*4+0]; pfres2[2*4+1] = pf1[2*4+0] * pf2[0*4+1] + pf1[2*4+1] * pf2[1*4+1] + pf1[2*4+2] * pf2[2*4+1]; pfres2[2*4+2] = pf1[2*4+0] * pf2[0*4+2] + pf1[2*4+1] * pf2[1*4+2] + pf1[2*4+2] * pf2[2*4+2]; if (pfres2 != pfres) memcpy(pfres, pfres2, 9*sizeof(T)); return pfres; } inline dReal* mult3(dReal* pfres, const dReal* pf1, const dReal* pf2) { return _mult3(pfres, pf1, pf2); } inline double* mult3(double* pfres, const double* pf1, const double* pf2) { return _mult3(pfres, pf1, pf2); } template inline T* _mult4(T* pfres, const T* p1, const T* p2) { assert(pfres != NULL && p1 != NULL && p2 != NULL); T* pfres2; if (pfres == p1 || pfres == p2) pfres2 = (T*)alloca(16 * sizeof(T)); else pfres2 = pfres; pfres2[0*4+0] = p1[0*4+0] * p2[0*4+0] + p1[0*4+1] * p2[1*4+0] + p1[0*4+2] * p2[2*4+0] + p1[0*4+3] * p2[3*4+0]; pfres2[0*4+1] = p1[0*4+0] * p2[0*4+1] + p1[0*4+1] * p2[1*4+1] + p1[0*4+2] * p2[2*4+1] + p1[0*4+3] * p2[3*4+1]; pfres2[0*4+2] = p1[0*4+0] * p2[0*4+2] + p1[0*4+1] * p2[1*4+2] + p1[0*4+2] * p2[2*4+2] + p1[0*4+3] * p2[3*4+2]; pfres2[0*4+3] = p1[0*4+0] * p2[0*4+3] + p1[0*4+1] * p2[1*4+3] + p1[0*4+2] * p2[2*4+3] + p1[0*4+3] * p2[3*4+3]; pfres2[1*4+0] = p1[1*4+0] * p2[0*4+0] + p1[1*4+1] * p2[1*4+0] + p1[1*4+2] * p2[2*4+0] + p1[1*4+3] * p2[3*4+0]; pfres2[1*4+1] = p1[1*4+0] * p2[0*4+1] + p1[1*4+1] * p2[1*4+1] + p1[1*4+2] * p2[2*4+1] + p1[1*4+3] * p2[3*4+1]; pfres2[1*4+2] = p1[1*4+0] * p2[0*4+2] + p1[1*4+1] * p2[1*4+2] + p1[1*4+2] * p2[2*4+2] + p1[1*4+3] * p2[3*4+2]; pfres2[1*4+3] = p1[1*4+0] * p2[0*4+3] + p1[1*4+1] * p2[1*4+3] + p1[1*4+2] * p2[2*4+3] + p1[1*4+3] * p2[3*4+3]; pfres2[2*4+0] = p1[2*4+0] * p2[0*4+0] + p1[2*4+1] * p2[1*4+0] + p1[2*4+2] * p2[2*4+0] + p1[2*4+3] * p2[3*4+0]; pfres2[2*4+1] = p1[2*4+0] * p2[0*4+1] + p1[2*4+1] * p2[1*4+1] + p1[2*4+2] * p2[2*4+1] + p1[2*4+3] * p2[3*4+1]; pfres2[2*4+2] = p1[2*4+0] * p2[0*4+2] + p1[2*4+1] * p2[1*4+2] + p1[2*4+2] * p2[2*4+2] + p1[2*4+3] * p2[3*4+2]; pfres2[2*4+3] = p1[2*4+0] * p2[0*4+3] + p1[2*4+1] * p2[1*4+3] + p1[2*4+2] * p2[2*4+3] + p1[2*4+3] * p2[3*4+3]; pfres2[3*4+0] = p1[3*4+0] * p2[0*4+0] + p1[3*4+1] * p2[1*4+0] + p1[3*4+2] * p2[2*4+0] + p1[3*4+3] * p2[3*4+0]; pfres2[3*4+1] = p1[3*4+0] * p2[0*4+1] + p1[3*4+1] * p2[1*4+1] + p1[3*4+2] * p2[2*4+1] + p1[3*4+3] * p2[3*4+1]; pfres2[3*4+2] = p1[3*4+0] * p2[0*4+2] + p1[3*4+1] * p2[1*4+2] + p1[3*4+2] * p2[2*4+2] + p1[3*4+3] * p2[3*4+2]; pfres2[3*4+3] = p1[3*4+0] * p2[0*4+3] + p1[3*4+1] * p2[1*4+3] + p1[3*4+2] * p2[2*4+3] + p1[3*4+3] * p2[3*4+3]; if (pfres != pfres2) memcpy(pfres, pfres2, sizeof(T)*16); return pfres; } inline dReal* mult4(dReal* pfres, const dReal* pf1, const dReal* pf2) { return _mult4(pfres, pf1, pf2); } inline double* mult4(double* pfres, const double* pf1, const double* pf2) { return _mult4(pfres, pf1, pf2); } template inline T* _multtrans3(T* pfres, const T* pf1, const T* pf2) { T* pfres2; if (pfres == pf1) pfres2 = (T*)alloca(9 * sizeof(T)); else pfres2 = pfres; pfres2[0] = pf1[0] * pf2[0] + pf1[3] * pf2[3] + pf1[6] * pf2[6]; pfres2[1] = pf1[0] * pf2[1] + pf1[3] * pf2[4] + pf1[6] * pf2[7]; pfres2[2] = pf1[0] * pf2[2] + pf1[3] * pf2[5] + pf1[6] * pf2[8]; pfres2[3] = pf1[1] * pf2[0] + pf1[4] * pf2[3] + pf1[7] * pf2[6]; pfres2[4] = pf1[1] * pf2[1] + pf1[4] * pf2[4] + pf1[7] * pf2[7]; pfres2[5] = pf1[1] * pf2[2] + pf1[4] * pf2[5] + pf1[7] * pf2[8]; pfres2[6] = pf1[2] * pf2[0] + pf1[5] * pf2[3] + pf1[8] * pf2[6]; pfres2[7] = pf1[2] * pf2[1] + pf1[5] * pf2[4] + pf1[8] * pf2[7]; pfres2[8] = pf1[2] * pf2[2] + pf1[5] * pf2[5] + pf1[8] * pf2[8]; if (pfres2 != pfres) memcpy(pfres, pfres2, 9*sizeof(T)); return pfres; } template inline T* _multtrans4(T* pfres, const T* pf1, const T* pf2) { T* pfres2; if (pfres == pf1) pfres2 = (T*)alloca(16 * sizeof(T)); else pfres2 = pfres; for (int i = 0; i < 4; ++i) { for (int j = 0; j < 4; ++j) { pfres[4*i+j] = pf1[i] * pf2[j] + pf1[i+4] * pf2[j+4] + pf1[i+8] * pf2[j+8] + pf1[i+12] * pf2[j+12]; } } return pfres; } inline dReal* multtrans3(dReal* pfres, const dReal* pf1, const dReal* pf2) { return _multtrans3(pfres, pf1, pf2); } inline double* multtrans3(double* pfres, const double* pf1, const double* pf2) { return _multtrans3(pfres, pf1, pf2); } inline dReal* multtrans4(dReal* pfres, const dReal* pf1, const dReal* pf2) { return _multtrans4(pfres, pf1, pf2); } inline double* multtrans4(double* pfres, const double* pf1, const double* pf2) { return _multtrans4(pfres, pf1, pf2); } // stride is in T template inline T* _inv3(const T* pf, T* pfres, int stride) { T* pfres2; if (pfres == pf) pfres2 = (T*)alloca(3 * stride * sizeof(T)); else pfres2 = pfres; // inverse = C^t / det(pf) where C is the matrix of coefficients // calc C^t pfres2[0*stride + 0] = pf[1*stride + 1] * pf[2*stride + 2] - pf[1*stride + 2] * pf[2*stride + 1]; pfres2[0*stride + 1] = pf[0*stride + 2] * pf[2*stride + 1] - pf[0*stride + 1] * pf[2*stride + 2]; pfres2[0*stride + 2] = pf[0*stride + 1] * pf[1*stride + 2] - pf[0*stride + 2] * pf[1*stride + 1]; pfres2[1*stride + 0] = pf[1*stride + 2] * pf[2*stride + 0] - pf[1*stride + 0] * pf[2*stride + 2]; pfres2[1*stride + 1] = pf[0*stride + 0] * pf[2*stride + 2] - pf[0*stride + 2] * pf[2*stride + 0]; pfres2[1*stride + 2] = pf[0*stride + 2] * pf[1*stride + 0] - pf[0*stride + 0] * pf[1*stride + 2]; pfres2[2*stride + 0] = pf[1*stride + 0] * pf[2*stride + 1] - pf[1*stride + 1] * pf[2*stride + 0]; pfres2[2*stride + 1] = pf[0*stride + 1] * pf[2*stride + 0] - pf[0*stride + 0] * pf[2*stride + 1]; pfres2[2*stride + 2] = pf[0*stride + 0] * pf[1*stride + 1] - pf[0*stride + 1] * pf[1*stride + 0]; T fdet = pf[0*stride + 2] * pfres2[2*stride + 0] + pf[1*stride + 2] * pfres2[2*stride + 1] + pf[2*stride + 2] * pfres2[2*stride + 2]; if (fabs(fdet) < 1e-6) return NULL; fdet = 1 / fdet; //if( pfdet != NULL ) *pfdet = fdet; if (pfres != pf) { pfres[0*stride+0] *= fdet; pfres[0*stride+1] *= fdet; pfres[0*stride+2] *= fdet; pfres[1*stride+0] *= fdet; pfres[1*stride+1] *= fdet; pfres[1*stride+2] *= fdet; pfres[2*stride+0] *= fdet; pfres[2*stride+1] *= fdet; pfres[2*stride+2] *= fdet; return pfres; } pfres[0*stride+0] = pfres2[0*stride+0] * fdet; pfres[0*stride+1] = pfres2[0*stride+1] * fdet; pfres[0*stride+2] = pfres2[0*stride+2] * fdet; pfres[1*stride+0] = pfres2[1*stride+0] * fdet; pfres[1*stride+1] = pfres2[1*stride+1] * fdet; pfres[1*stride+2] = pfres2[1*stride+2] * fdet; pfres[2*stride+0] = pfres2[2*stride+0] * fdet; pfres[2*stride+1] = pfres2[2*stride+1] * fdet; pfres[2*stride+2] = pfres2[2*stride+2] * fdet; return pfres; } inline dReal* inv3(const dReal* pf, dReal* pfres, int stride) { return _inv3(pf, pfres, stride); } // inverse if 92 mults and 39 adds template inline T* _inv4(const T* pf, T* pfres) { T* pfres2; if (pfres == pf) pfres2 = (T*)alloca(16 * sizeof(T)); else pfres2 = pfres; // inverse = C^t / det(pf) where C is the matrix of coefficients // calc C^t // determinants of all possibel 2x2 submatrices formed by last two rows T fd0, fd1, fd2; T f1, f2, f3; fd0 = pf[2*4 + 0] * pf[3*4 + 1] - pf[2*4 + 1] * pf[3*4 + 0]; fd1 = pf[2*4 + 1] * pf[3*4 + 2] - pf[2*4 + 2] * pf[3*4 + 1]; fd2 = pf[2*4 + 2] * pf[3*4 + 3] - pf[2*4 + 3] * pf[3*4 + 2]; f1 = pf[2*4 + 1] * pf[3*4 + 3] - pf[2*4 + 3] * pf[3*4 + 1]; f2 = pf[2*4 + 0] * pf[3*4 + 3] - pf[2*4 + 3] * pf[3*4 + 0]; f3 = pf[2*4 + 0] * pf[3*4 + 2] - pf[2*4 + 2] * pf[3*4 + 0]; pfres2[0*4 + 0] = pf[1*4 + 1] * fd2 - pf[1*4 + 2] * f1 + pf[1*4 + 3] * fd1; pfres2[0*4 + 1] = -(pf[0*4 + 1] * fd2 - pf[0*4 + 2] * f1 + pf[0*4 + 3] * fd1); pfres2[1*4 + 0] = -(pf[1*4 + 0] * fd2 - pf[1*4 + 2] * f2 + pf[1*4 + 3] * f3); pfres2[1*4 + 1] = pf[0*4 + 0] * fd2 - pf[0*4 + 2] * f2 + pf[0*4 + 3] * f3; pfres2[2*4 + 0] = pf[1*4 + 0] * f1 - pf[1*4 + 1] * f2 + pf[1*4 + 3] * fd0; pfres2[2*4 + 1] = -(pf[0*4 + 0] * f1 - pf[0*4 + 1] * f2 + pf[0*4 + 3] * fd0); pfres2[3*4 + 0] = -(pf[1*4 + 0] * fd1 - pf[1*4 + 1] * f3 + pf[1*4 + 2] * fd0); pfres2[3*4 + 1] = pf[0*4 + 0] * fd1 - pf[0*4 + 1] * f3 + pf[0*4 + 2] * fd0; // determinants of first 2 rows of 4x4 matrix fd0 = pf[0*4 + 0] * pf[1*4 + 1] - pf[0*4 + 1] * pf[1*4 + 0]; fd1 = pf[0*4 + 1] * pf[1*4 + 2] - pf[0*4 + 2] * pf[1*4 + 1]; fd2 = pf[0*4 + 2] * pf[1*4 + 3] - pf[0*4 + 3] * pf[1*4 + 2]; f1 = pf[0*4 + 1] * pf[1*4 + 3] - pf[0*4 + 3] * pf[1*4 + 1]; f2 = pf[0*4 + 0] * pf[1*4 + 3] - pf[0*4 + 3] * pf[1*4 + 0]; f3 = pf[0*4 + 0] * pf[1*4 + 2] - pf[0*4 + 2] * pf[1*4 + 0]; pfres2[0*4 + 2] = pf[3*4 + 1] * fd2 - pf[3*4 + 2] * f1 + pf[3*4 + 3] * fd1; pfres2[0*4 + 3] = -(pf[2*4 + 1] * fd2 - pf[2*4 + 2] * f1 + pf[2*4 + 3] * fd1); pfres2[1*4 + 2] = -(pf[3*4 + 0] * fd2 - pf[3*4 + 2] * f2 + pf[3*4 + 3] * f3); pfres2[1*4 + 3] = pf[2*4 + 0] * fd2 - pf[2*4 + 2] * f2 + pf[2*4 + 3] * f3; pfres2[2*4 + 2] = pf[3*4 + 0] * f1 - pf[3*4 + 1] * f2 + pf[3*4 + 3] * fd0; pfres2[2*4 + 3] = -(pf[2*4 + 0] * f1 - pf[2*4 + 1] * f2 + pf[2*4 + 3] * fd0); pfres2[3*4 + 2] = -(pf[3*4 + 0] * fd1 - pf[3*4 + 1] * f3 + pf[3*4 + 2] * fd0); pfres2[3*4 + 3] = pf[2*4 + 0] * fd1 - pf[2*4 + 1] * f3 + pf[2*4 + 2] * fd0; T fdet = pf[0*4 + 3] * pfres2[3*4 + 0] + pf[1*4 + 3] * pfres2[3*4 + 1] + pf[2*4 + 3] * pfres2[3*4 + 2] + pf[3*4 + 3] * pfres2[3*4 + 3]; if (fabs(fdet) < 1e-6) return NULL; fdet = 1 / fdet; //if( pfdet != NULL ) *pfdet = fdet; if (pfres2 == pfres) { mult(pfres, fdet, 16); return pfres; } int i = 0; while (i < 16) { pfres[i] = pfres2[i] * fdet; ++i; } return pfres; } inline dReal* inv4(const dReal* pf, dReal* pfres) { return _inv4(pf, pfres); } template inline T* _transpose3(const T* pf, T* pfres) { assert(pf != NULL && pfres != NULL); if (pf == pfres) { rswap(pfres[1], pfres[3]); rswap(pfres[2], pfres[6]); rswap(pfres[5], pfres[7]); return pfres; } pfres[0] = pf[0]; pfres[1] = pf[3]; pfres[2] = pf[6]; pfres[3] = pf[1]; pfres[4] = pf[4]; pfres[5] = pf[7]; pfres[6] = pf[2]; pfres[7] = pf[5]; pfres[8] = pf[8]; return pfres; } inline dReal* transpose3(const dReal* pf, dReal* pfres) { return _transpose3(pf, pfres); } inline double* transpose3(const double* pf, double* pfres) { return _transpose3(pf, pfres); } template inline T* _transpose4(const T* pf, T* pfres) { assert(pf != NULL && pfres != NULL); if (pf == pfres) { rswap(pfres[1], pfres[4]); rswap(pfres[2], pfres[8]); rswap(pfres[3], pfres[12]); rswap(pfres[6], pfres[9]); rswap(pfres[7], pfres[13]); rswap(pfres[11], pfres[15]); return pfres; } pfres[0] = pf[0]; pfres[1] = pf[4]; pfres[2] = pf[8]; pfres[3] = pf[12]; pfres[4] = pf[1]; pfres[5] = pf[5]; pfres[6] = pf[9]; pfres[7] = pf[13]; pfres[8] = pf[2]; pfres[9] = pf[6]; pfres[10] = pf[10]; pfres[11] = pf[14]; pfres[12] = pf[3]; pfres[13] = pf[7]; pfres[14] = pf[11]; pfres[15] = pf[15]; return pfres; } inline dReal* transpose4(const dReal* pf, dReal* pfres) { return _transpose4(pf, pfres); } inline double* transpose4(const double* pf, double* pfres) { return _transpose4(pf, pfres); } inline dReal dot2(const dReal* pf1, const dReal* pf2) { assert(pf1 != NULL && pf2 != NULL); return pf1[0]*pf2[0] + pf1[1]*pf2[1]; } inline dReal dot3(const dReal* pf1, const dReal* pf2) { assert(pf1 != NULL && pf2 != NULL); return pf1[0]*pf2[0] + pf1[1]*pf2[1] + pf1[2]*pf2[2]; } inline dReal dot4(const dReal* pf1, const dReal* pf2) { assert(pf1 != NULL && pf2 != NULL); return pf1[0]*pf2[0] + pf1[1]*pf2[1] + pf1[2]*pf2[2] + pf1[3] * pf2[3]; } inline dReal lengthsqr2(const dReal* pf) { assert(pf != NULL); return pf[0] * pf[0] + pf[1] * pf[1]; } inline dReal lengthsqr3(const dReal* pf) { assert(pf != NULL); return pf[0] * pf[0] + pf[1] * pf[1] + pf[2] * pf[2]; } inline dReal lengthsqr4(const dReal* pf) { assert(pf != NULL); return pf[0] * pf[0] + pf[1] * pf[1] + pf[2] * pf[2] + pf[3] * pf[3]; } inline dReal* normalize2(dReal* pfout, const dReal* pf) { assert(pf != NULL); dReal f = pf[0] * pf[0] + pf[1] * pf[1]; f = 1.0f / sqrtf(f); pfout[0] = pf[0] * f; pfout[1] = pf[1] * f; return pfout; } inline dReal* normalize3(dReal* pfout, const dReal* pf) { assert(pf != NULL); dReal f = pf[0] * pf[0] + pf[1] * pf[1] + pf[2] * pf[2]; f = 1.0f / sqrtf(f); pfout[0] = pf[0] * f; pfout[1] = pf[1] * f; pfout[2] = pf[2] * f; return pfout; } inline dReal* normalize4(dReal* pfout, const dReal* pf) { assert(pf != NULL); dReal f = pf[0] * pf[0] + pf[1] * pf[1] + pf[2] * pf[2] + pf[3] * pf[3]; f = 1.0f / sqrtf(f); pfout[0] = pf[0] * f; pfout[1] = pf[1] * f; pfout[2] = pf[2] * f; pfout[3] = pf[3] * f; return pfout; } inline dReal* cross3(dReal* pfout, const dReal* pf1, const dReal* pf2) { assert(pfout != NULL && pf1 != NULL && pf2 != NULL); dReal temp[3]; temp[0] = pf1[1] * pf2[2] - pf1[2] * pf2[1]; temp[1] = pf1[2] * pf2[0] - pf1[0] * pf2[2]; temp[2] = pf1[0] * pf2[1] - pf1[1] * pf2[0]; pfout[0] = temp[0]; pfout[1] = temp[1]; pfout[2] = temp[2]; return pfout; } template inline void mult(T* pf, T fa, int r) { assert(pf != NULL); while (r > 0) { --r; pf[r] *= fa; } } template inline T* mult(T* pf1, R* pf2, int r1, int c1, int c2, S* pfres, bool badd) { assert(pf1 != NULL && pf2 != NULL && pfres != NULL); int j, k; if (!badd) memset(pfres, 0, sizeof(S) * r1 * c2); while (r1 > 0) { --r1; j = 0; while (j < c2) { k = 0; while (k < c1) { pfres[j] += pf1[k] * pf2[k*c2 + j]; ++k; } ++j; } pf1 += c1; pfres += c2; } return pfres; } template inline T* multtrans(T* pf1, R* pf2, int r1, int c1, int c2, S* pfres, bool badd) { assert(pf1 != NULL && pf2 != NULL && pfres != NULL); int i, j, k; if (!badd) memset(pfres, 0, sizeof(S) * c1 * c2); i = 0; while (i < c1) { j = 0; while (j < c2) { k = 0; while (k < r1) { pfres[j] += pf1[k*c1] * pf2[k*c2 + j]; ++k; } ++j; } pfres += c2; ++pf1; ++i; } return pfres; } template inline T* multtrans_to2(T* pf1, R* pf2, int r1, int c1, int r2, S* pfres, bool badd) { assert(pf1 != NULL && pf2 != NULL && pfres != NULL); int j, k; if (!badd) memset(pfres, 0, sizeof(S) * r1 * r2); while (r1 > 0) { --r1; j = 0; while (j < r2) { k = 0; while (k < c1) { pfres[j] += pf1[k] * pf2[j*c1 + k]; ++k; } ++j; } pf1 += c1; pfres += r2; } return pfres; } template inline T* multto1(T* pf1, T* pf2, int r, int c, T* pftemp) { assert(pf1 != NULL && pf2 != NULL); int j, k; bool bdel = false; if (pftemp == NULL) { pftemp = new T[c]; bdel = true; } while (r > 0) { --r; j = 0; while (j < c) { pftemp[j] = 0.0; k = 0; while (k < c) { pftemp[j] += pf1[k] * pf2[k*c + j]; ++k; } ++j; } memcpy(pf1, pftemp, c * sizeof(T)); pf1 += c; } if (bdel) delete[] pftemp; return pf1; } template inline T* multto2(T* pf1, S* pf2, int r2, int c2, S* pftemp) { assert(pf1 != NULL && pf2 != NULL); int i, j, k; bool bdel = false; if (pftemp == NULL) { pftemp = new S[r2]; bdel = true; } // do columns first j = 0; while (j < c2) { i = 0; while (i < r2) { pftemp[i] = 0.0; k = 0; while (k < r2) { pftemp[i] += pf1[i*r2 + k] * pf2[k*c2 + j]; ++k; } ++i; } i = 0; while (i < r2) { *(pf2 + i*c2 + j) = pftemp[i]; ++i; } ++j; } if (bdel) delete[] pftemp; return pf1; } template inline void add(T* pf1, T* pf2, int r) { assert(pf1 != NULL && pf2 != NULL); while (r > 0) { --r; pf1[r] += pf2[r]; } } template inline void sub(T* pf1, T* pf2, int r) { assert(pf1 != NULL && pf2 != NULL); while (r > 0) { --r; pf1[r] -= pf2[r]; } } template inline T normsqr(T* pf1, int r) { assert(pf1 != NULL); T d = 0.0; while (r > 0) { --r; d += pf1[r] * pf1[r]; } return d; } template inline T lengthsqr(T* pf1, T* pf2, int length) { T d = 0; while (length > 0) { --length; d += sqr(pf1[length] - pf2[length]); } return d; } template inline T dot(T* pf1, T* pf2, int length) { T d = 0; while (length > 0) { --length; d += pf1[length] * pf2[length]; } return d; } template inline T sum(T* pf, int length) { T d = 0; while (length > 0) { --length; d += pf[length]; } return d; } template inline bool inv2(T* pf, T* pfres) { T fdet = pf[0] * pf[3] - pf[1] * pf[2]; if (fabs(fdet) < 1e-16) return false; fdet = 1 / fdet; //if( pfdet != NULL ) *pfdet = fdet; if (pfres != pf) { pfres[0] = fdet * pf[3]; pfres[1] = -fdet * pf[1]; pfres[2] = -fdet * pf[2]; pfres[3] = fdet * pf[0]; return true; } dReal ftemp = pf[0]; pfres[0] = pf[3] * fdet; pfres[1] *= -fdet; pfres[2] *= -fdet; pfres[3] = ftemp * pf[0]; return true; } #endif