/* * Copyright (C) 2007-2009 Gabest * http://www.gabest.org * * This Program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This Program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA. * http://www.gnu.org/copyleft/gpl.html * */ #include "stdafx.h" #include "GSSetupPrimCodeGenerator.h" #include "GSVertexSW.h" #if _M_SSE < 0x501 && !(defined(_M_AMD64) || defined(_WIN64)) using namespace Xbyak; static const int _args = 0; static const int _vertex = _args + 4; static const int _index = _args + 8; static const int _dscan = _args + 12; void GSSetupPrimCodeGenerator::Generate_SSE() { if((m_en.z || m_en.f) && m_sel.prim != GS_SPRITE_CLASS || m_en.t || m_en.c && m_sel.iip) { mov(edx, dword[esp + _dscan]); for(int i = 0; i < (m_sel.notest ? 2 : 5); i++) { movaps(Xmm(3 + i), ptr[&m_shift[i]]); } } Depth_SSE(); Texture_SSE(); Color_SSE(); ret(); } void GSSetupPrimCodeGenerator::Depth_SSE() { if(!m_en.z && !m_en.f) { return; } if(m_sel.prim != GS_SPRITE_CLASS) { // GSVector4 p = dscan.p; movaps(xmm0, ptr[edx + offsetof(GSVertexSW, p)]); if(m_en.f) { // GSVector4 df = p.wwww(); movaps(xmm1, xmm0); shufps(xmm1, xmm1, _MM_SHUFFLE(3, 3, 3, 3)); // m_local.d4.f = GSVector4i(df * 4.0f).xxzzlh(); movaps(xmm2, xmm1); mulps(xmm2, xmm3); cvttps2dq(xmm2, xmm2); pshuflw(xmm2, xmm2, _MM_SHUFFLE(2, 2, 0, 0)); pshufhw(xmm2, xmm2, _MM_SHUFFLE(2, 2, 0, 0)); movdqa(ptr[&m_local.d4.f], xmm2); for(int i = 0; i < (m_sel.notest ? 1 : 4); i++) { // m_local.d[i].f = GSVector4i(df * m_shift[i]).xxzzlh(); movaps(xmm2, xmm1); mulps(xmm2, Xmm(4 + i)); cvttps2dq(xmm2, xmm2); pshuflw(xmm2, xmm2, _MM_SHUFFLE(2, 2, 0, 0)); pshufhw(xmm2, xmm2, _MM_SHUFFLE(2, 2, 0, 0)); movdqa(ptr[&m_local.d[i].f], xmm2); } } if(m_en.z) { // GSVector4 dz = p.zzzz(); shufps(xmm0, xmm0, _MM_SHUFFLE(2, 2, 2, 2)); // m_local.d4.z = dz * 4.0f; movaps(xmm1, xmm0); mulps(xmm1, xmm3); movdqa(ptr[&m_local.d4.z], xmm1); for(int i = 0; i < (m_sel.notest ? 1 : 4); i++) { // m_local.d[i].z = dz * m_shift[i]; movaps(xmm1, xmm0); mulps(xmm1, Xmm(4 + i)); movdqa(ptr[&m_local.d[i].z], xmm1); } } } else { // GSVector4 p = vertex[index[1]].p; mov(ecx, ptr[esp + _index]); mov(ecx, ptr[ecx + sizeof(uint32) * 1]); shl(ecx, 6); // * sizeof(GSVertexSW) add(ecx, ptr[esp + _vertex]); movaps(xmm0, ptr[ecx + offsetof(GSVertexSW, p)]); if(m_en.f) { // m_local.p.f = GSVector4i(p).zzzzh().zzzz(); cvttps2dq(xmm1, xmm0); pshufhw(xmm1, xmm1, _MM_SHUFFLE(2, 2, 2, 2)); pshufd(xmm1, xmm1, _MM_SHUFFLE(2, 2, 2, 2)); movdqa(ptr[&m_local.p.f], xmm1); } if(m_en.z) { // uint32 z is bypassed in t.w movdqa(xmm0, ptr[ecx + offsetof(GSVertexSW, t)]); pshufd(xmm0, xmm0, _MM_SHUFFLE(3, 3, 3, 3)); movdqa(ptr[&m_local.p.z], xmm0); } } } void GSSetupPrimCodeGenerator::Texture_SSE() { if(!m_en.t) { return; } // GSVector4 t = dscan.t; movaps(xmm0, ptr[edx + offsetof(GSVertexSW, t)]); movaps(xmm1, xmm0); mulps(xmm1, xmm3); if(m_sel.fst) { // m_local.d4.stq = GSVector4i(t * 4.0f); cvttps2dq(xmm1, xmm1); movdqa(ptr[&m_local.d4.stq], xmm1); } else { // m_local.d4.stq = t * 4.0f; movaps(ptr[&m_local.d4.stq], xmm1); } for(int j = 0, k = m_sel.fst ? 2 : 3; j < k; j++) { // GSVector4 ds = t.xxxx(); // GSVector4 dt = t.yyyy(); // GSVector4 dq = t.zzzz(); movaps(xmm1, xmm0); shufps(xmm1, xmm1, (uint8)_MM_SHUFFLE(j, j, j, j)); for(int i = 0; i < (m_sel.notest ? 1 : 4); i++) { // GSVector4 v = ds/dt * m_shift[i]; movaps(xmm2, xmm1); mulps(xmm2, Xmm(4 + i)); if(m_sel.fst) { // m_local.d[i].s/t = GSVector4i(v); cvttps2dq(xmm2, xmm2); switch(j) { case 0: movdqa(ptr[&m_local.d[i].s], xmm2); break; case 1: movdqa(ptr[&m_local.d[i].t], xmm2); break; } } else { // m_local.d[i].s/t/q = v; switch(j) { case 0: movaps(ptr[&m_local.d[i].s], xmm2); break; case 1: movaps(ptr[&m_local.d[i].t], xmm2); break; case 2: movaps(ptr[&m_local.d[i].q], xmm2); break; } } } } } void GSSetupPrimCodeGenerator::Color_SSE() { if(!m_en.c) { return; } if(m_sel.iip) { // GSVector4 c = dscan.c; movaps(xmm0, ptr[edx + offsetof(GSVertexSW, c)]); movaps(xmm1, xmm0); // m_local.d4.c = GSVector4i(c * 4.0f).xzyw().ps32(); movaps(xmm2, xmm0); mulps(xmm2, xmm3); cvttps2dq(xmm2, xmm2); pshufd(xmm2, xmm2, _MM_SHUFFLE(3, 1, 2, 0)); packssdw(xmm2, xmm2); movdqa(ptr[&m_local.d4.c], xmm2); // xmm3 is not needed anymore // GSVector4 dr = c.xxxx(); // GSVector4 db = c.zzzz(); shufps(xmm0, xmm0, _MM_SHUFFLE(0, 0, 0, 0)); shufps(xmm1, xmm1, _MM_SHUFFLE(2, 2, 2, 2)); for(int i = 0; i < (m_sel.notest ? 1 : 4); i++) { // GSVector4i r = GSVector4i(dr * m_shift[i]).ps32(); movaps(xmm2, xmm0); mulps(xmm2, Xmm(4 + i)); cvttps2dq(xmm2, xmm2); packssdw(xmm2, xmm2); // GSVector4i b = GSVector4i(db * m_shift[i]).ps32(); movaps(xmm3, xmm1); mulps(xmm3, Xmm(4 + i)); cvttps2dq(xmm3, xmm3); packssdw(xmm3, xmm3); // m_local.d[i].rb = r.upl16(b); punpcklwd(xmm2, xmm3); movdqa(ptr[&m_local.d[i].rb], xmm2); } // GSVector4 c = dscan.c; movaps(xmm0, ptr[edx + offsetof(GSVertexSW, c)]); // not enough regs, have to reload it movaps(xmm1, xmm0); // GSVector4 dg = c.yyyy(); // GSVector4 da = c.wwww(); shufps(xmm0, xmm0, _MM_SHUFFLE(1, 1, 1, 1)); shufps(xmm1, xmm1, _MM_SHUFFLE(3, 3, 3, 3)); for(int i = 0; i < (m_sel.notest ? 1 : 4); i++) { // GSVector4i g = GSVector4i(dg * m_shift[i]).ps32(); movaps(xmm2, xmm0); mulps(xmm2, Xmm(4 + i)); cvttps2dq(xmm2, xmm2); packssdw(xmm2, xmm2); // GSVector4i a = GSVector4i(da * m_shift[i]).ps32(); movaps(xmm3, xmm1); mulps(xmm3, Xmm(4 + i)); cvttps2dq(xmm3, xmm3); packssdw(xmm3, xmm3); // m_local.d[i].ga = g.upl16(a); punpcklwd(xmm2, xmm3); movdqa(ptr[&m_local.d[i].ga], xmm2); } } else { // GSVector4i c = GSVector4i(vertex[index[last].c); int last = 0; switch(m_sel.prim) { case GS_POINT_CLASS: last = 0; break; case GS_LINE_CLASS: last = 1; break; case GS_TRIANGLE_CLASS: last = 2; break; case GS_SPRITE_CLASS: last = 1; break; } if(!(m_sel.prim == GS_SPRITE_CLASS && (m_en.z || m_en.f))) // if this is a sprite, the last vertex was already loaded in Depth() { mov(ecx, ptr[esp + _index]); mov(ecx, ptr[ecx + sizeof(uint32) * last]); shl(ecx, 6); // * sizeof(GSVertexSW) add(ecx, ptr[esp + _vertex]); } cvttps2dq(xmm0, ptr[ecx + offsetof(GSVertexSW, c)]); // c = c.upl16(c.zwxy()); pshufd(xmm1, xmm0, _MM_SHUFFLE(1, 0, 3, 2)); punpcklwd(xmm0, xmm1); // if(!tme) c = c.srl16(7); if(m_sel.tfx == TFX_NONE) { psrlw(xmm0, 7); } // m_local.c.rb = c.xxxx(); // m_local.c.ga = c.zzzz(); pshufd(xmm1, xmm0, _MM_SHUFFLE(0, 0, 0, 0)); pshufd(xmm2, xmm0, _MM_SHUFFLE(2, 2, 2, 2)); movdqa(ptr[&m_local.c.rb], xmm1); movdqa(ptr[&m_local.c.ga], xmm2); } } #endif