//#version 420 // Keep it for editor detection struct vertex_basic { vec4 p; vec2 t; }; #ifdef VERTEX_SHADER out gl_PerVertex { vec4 gl_Position; float gl_PointSize; #if !pGL_ES float gl_ClipDistance[]; #endif }; layout(location = 0) in vec2 POSITION; layout(location = 1) in vec2 TEXCOORD0; // FIXME set the interpolation (don't know what dx do) // flat means that there is no interpolation. The value given to the fragment shader is based on the provoking vertex conventions. // // noperspective means that there will be linear interpolation in window-space. This is usually not what you want, but it can have its uses. // // smooth, the default, means to do perspective-correct interpolation. // // The centroid qualifier only matters when multisampling. If this qualifier is not present, then the value is interpolated to the pixel's center, anywhere in the pixel, or to one of the pixel's samples. This sample may lie outside of the actual primitive being rendered, since a primitive can cover only part of a pixel's area. The centroid qualifier is used to prevent this; the interpolation point must fall within both the pixel's area and the primitive's area. out SHADER { vec4 p; vec2 t; } VSout; #define VSout_p (VSout.p) #define VSout_t (VSout.t) void vs_main() { VSout_p = vec4(POSITION, 0.5f, 1.0f); VSout_t = TEXCOORD0; gl_Position = vec4(POSITION, 0.5f, 1.0f); // NOTE I don't know if it is possible to merge POSITION_OUT and gl_Position } #endif #ifdef FRAGMENT_SHADER in SHADER { vec4 p; vec2 t; } PSin; #define PSin_p (PSin.p) #define PSin_t (PSin.t) // Give a different name so I remember there is a special case! #if defined(ps_main1) || defined(ps_main10) layout(location = 0) out uint SV_Target1; #else layout(location = 0) out vec4 SV_Target0; #endif #ifdef ENABLE_BINDLESS_TEX layout(bindless_sampler, location = 0) uniform sampler2D TextureSampler; #else layout(binding = 0) uniform sampler2D TextureSampler; #endif vec4 sample_c() { return texture(TextureSampler, PSin_t ); } vec4 ps_crt(uint i) { vec4 mask[4] = vec4[4] ( vec4(1, 0, 0, 0), vec4(0, 1, 0, 0), vec4(0, 0, 1, 0), vec4(1, 1, 1, 0) ); return sample_c() * clamp((mask[i] + 0.5f), 0.0f, 1.0f); } vec4 ps_scanlines(uint i) { vec4 mask[2] = { vec4(1, 1, 1, 0), vec4(0, 0, 0, 0) }; return sample_c() * clamp((mask[i] + 0.5f), 0.0f, 1.0f); } #ifdef ps_main0 void ps_main0() { SV_Target0 = sample_c(); } #endif #ifdef ps_main1 void ps_main1() { // Input Color is RGBA8 // We want to output a pixel on the PSMCT16* format // A1-BGR5 #if 0 // Note: dot is a good idea from pseudo. However we must be careful about float accuraccy. // Here a global idea example: // // SV_Target1 = dot(round(sample_c() * vec4(31.f, 31.f, 31.f, 1.f)), vec4(1.f, 32.f, 1024.f, 32768.f)); // // For me this code is more accurate but it will require some tests vec4 c = sample_c() * 255.0f + 0.5f; // Denormalize value to avoid float precision issue // shift Red: -3 // shift Green: -3 + 5 // shift Blue: -3 + 10 // shift Alpha: -7 + 15 highp uvec4 i = uvec4(c * vec4(1/8.0f, 4.0f, 128.0f, 256.0f)); // Shift value SV_Target1 = (i.r & uint(0x001f)) | (i.g & uint(0x03e0)) | (i.b & uint(0x7c00)) | (i.a & uint(0x8000)); #else // Old code which is likely wrong. vec4 c = sample_c(); c.a *= 256.0f / 127.0f; // hm, 0.5 won't give us 1.0 if we just multiply with 2 highp uvec4 i = uvec4(c * vec4(uint(0x001f), uint(0x03e0), uint(0x7c00), uint(0x8000))); SV_Target1 = (i.x & uint(0x001f)) | (i.y & uint(0x03e0)) | (i.z & uint(0x7c00)) | (i.w & uint(0x8000)); #endif } #endif #ifdef ps_main10 void ps_main10() { // Convert a GL_FLOAT32 depth texture into a 32 bits UINT texture vec4 c = sample_c(); const float exp2_32 = exp2(32.0f); SV_Target1 = uint(exp2_32 * c.r); } #endif #ifdef ps_main11 void ps_main11() { const float exp2_32 = exp2(32.0f); const vec4 bitSh = vec4(256.0*256.0*256.0, 256.0*256.0, 256.0, 1.0); const vec4 bitMsk = vec4(0.0, 1.0/256.0, 1.0/256.0, 1.0/256.0); // Convert a GL_FLOAT32 depth texture into a RGBA texture vec4 res = fract(vec4(sample_c().r) * bitSh); SV_Target0 = (res - res.xxyz * bitMsk) * 256.0f/255.0f; } #endif #ifdef ps_main12 out float gl_FragDepth; void ps_main12() { // Convert a RRGBA texture into a float depth texture // FIXME: I'm afraid of the accuracy const vec4 bitSh = vec4(1.0/(256.0*256.0*256.0), 1.0/(256.0*256.0), 1.0/256.0, 1.0) * vec4(255.0/256.0); gl_FragDepth = dot(sample_c(), bitSh); } #endif #ifdef ps_main13 out float gl_FragDepth; void ps_main13() { // Same as above but without the alpha channel // Convert a RRGBA texture into a float depth texture // FIXME: I'm afraid of the accuracy const vec4 bitSh = vec4(1.0/(256.0*256.0*256.0), 1.0/(256.0*256.0), 1.0/256.0, 0.0) * vec4(255.0/256.0); gl_FragDepth = dot(sample_c(), bitSh); } #endif #ifdef ps_main14 void ps_main14() { // Convert a RGBA texture into a 8 bits packed texture // Input column: 8x2 RGBA pixels // 0: 8 RGBA // 1: 8 RGBA // Output column: 16x4 Index pixels // 0: 8 R | 8 B // 1: 8 R | 8 B // 2: 8 G | 8 A // 3: 8 G | 8 A float c; uvec2 sel = uvec2(gl_FragCoord.xy) % uvec2(16u, 16u); ivec2 tb = ((ivec2(gl_FragCoord.xy) & ~ivec2(15, 3)) >> 1u); int ty = tb.y | (int(gl_FragCoord.y) & 1); int txN = tb.x | (int(gl_FragCoord.x) & 7); int txH = tb.x | ((int(gl_FragCoord.x) + 4) & 7); vec4 cN = texelFetch(TextureSampler, ivec2(txN, ty), 0); vec4 cH = texelFetch(TextureSampler, ivec2(txH, ty), 0); // Potential speed optimization. There is a high probability that // game only want to extract a single channel (blue). It will allow // to remove the sel.x condition check if ((sel.y & 4u) == 0u) { // Column 0 and 2 if ((sel.y & 3u) < 2u) { // first 2 lines of the col if (sel.x < 8u) c = cN.r; else c = cN.b; } else { if (sel.x < 8u) c = cH.g; else c = cH.a; } } else { // Column 1 and 3 if ((sel.y & 3u) < 2u) { // first 2 lines of the col if (sel.x < 8u) c = cH.r; else c = cH.b; } else { if (sel.x < 8u) c = cN.g; else c = cN.a; } } SV_Target0 = vec4(c); } #endif #ifdef ps_main7 void ps_main7() { vec4 c = sample_c(); c.a = dot(c.rgb, vec3(0.299, 0.587, 0.114)); SV_Target0 = c; } #endif #ifdef ps_main5 void ps_main5() // scanlines { highp uvec4 p = uvec4(PSin_p); vec4 c = ps_scanlines(p.y % 2u); SV_Target0 = c; } #endif #ifdef ps_main6 void ps_main6() // diagonal { highp uvec4 p = uvec4(PSin_p); vec4 c = ps_crt((p.x + (p.y % 3u)) % 3u); SV_Target0 = c; } #endif #ifdef ps_main8 void ps_main8() // triangular { highp uvec4 p = uvec4(PSin_p); vec4 c = ps_crt(((p.x + ((p.y >> 1u) & 1u) * 3u) >> 1u) % 3u); SV_Target0 = c; } #endif #ifdef ps_main9 void ps_main9() { const float PI = 3.14159265359f; vec2 texdim = vec2(textureSize(TextureSampler, 0)); vec4 c; if (dFdy(PSin_t.y) * PSin_t.y > 0.5f) { c = sample_c(); } else { float factor = (0.9f - 0.4f * cos(2.0f * PI * PSin_t.y * texdim.y)); c = factor * texture(TextureSampler, vec2(PSin_t.x, (floor(PSin_t.y * texdim.y) + 0.5f) / texdim.y)); } SV_Target0 = c; } #endif // Used for DATE (stencil) // DATM == 1 #ifdef ps_main2 void ps_main2() { if(sample_c().a < (127.5f / 255.0f)) // >= 0x80 pass discard; } #endif // Used for DATE (stencil) // DATM == 0 #ifdef ps_main3 void ps_main3() { if((127.5f / 255.0f) < sample_c().a) // < 0x80 pass (== 0x80 should not pass) discard; } #endif #ifdef ps_main4 void ps_main4() { // FIXME mod and fmod are different when value are negative // output.c = fmod(sample_c(input.t) * 255 + 0.5f, 256) / 255; vec4 c = mod(sample_c() * 255.0f + 0.5f, 256.0f) / 255.0f; SV_Target0 = c; } #endif #endif