/** *** Copyright (C) 1985-2007 Intel Corporation. All rights reserved. *** *** The information and source code contained herein is the exclusive *** property of Intel Corporation and may not be disclosed, examined *** or reproduced in whole or in part without explicit written authorization *** from the company. *** **/ /* * smmintrin.h * * Principal header file for Intel(R) Core(TM) 2 Duo processor * SSE4.1 intrinsics */ // Gsdx Note: This header file has been "borrowed" from the MSVC install and bugfixed to // allow for proper code compilation. The original version of the header includes semicolons // after several macros defined below, which causes compiler errors when using them in // inline object construction situations. -- Air #pragma once #ifndef __midl #ifndef _INCLUDED_SMM #define _INCLUDED_SMM #if defined(_M_CEE_PURE) #error ERROR: EMM intrinsics not supported in the pure mode! #else #include /* * Rounding mode macros */ #define _MM_FROUND_TO_NEAREST_INT 0x00 #define _MM_FROUND_TO_NEG_INF 0x01 #define _MM_FROUND_TO_POS_INF 0x02 #define _MM_FROUND_TO_ZERO 0x03 #define _MM_FROUND_CUR_DIRECTION 0x04 #define _MM_FROUND_RAISE_EXC 0x00 #define _MM_FROUND_NO_EXC 0x08 #define _MM_FROUND_NINT _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_RAISE_EXC #define _MM_FROUND_FLOOR _MM_FROUND_TO_NEG_INF | _MM_FROUND_RAISE_EXC #define _MM_FROUND_CEIL _MM_FROUND_TO_POS_INF | _MM_FROUND_RAISE_EXC #define _MM_FROUND_TRUNC _MM_FROUND_TO_ZERO | _MM_FROUND_RAISE_EXC #define _MM_FROUND_RINT _MM_FROUND_CUR_DIRECTION | _MM_FROUND_RAISE_EXC #define _MM_FROUND_NEARBYINT _MM_FROUND_CUR_DIRECTION | _MM_FROUND_NO_EXC /* * MACRO functions for ceil/floor intrinsics */ #define _mm_ceil_pd(val) _mm_round_pd((val), _MM_FROUND_CEIL) #define _mm_ceil_sd(dst, val) _mm_round_sd((dst), (val), _MM_FROUND_CEIL) #define _mm_floor_pd(val) _mm_round_pd((val), _MM_FROUND_FLOOR) #define _mm_floor_sd(dst, val) _mm_round_sd((dst), (val), _MM_FROUND_FLOOR) #define _mm_ceil_ps(val) _mm_round_ps((val), _MM_FROUND_CEIL) #define _mm_ceil_ss(dst, val) _mm_round_ss((dst), (val), _MM_FROUND_CEIL) #define _mm_floor_ps(val) _mm_round_ps((val), _MM_FROUND_FLOOR) #define _mm_floor_ss(dst, val) _mm_round_ss((dst), (val), _MM_FROUND_FLOOR) #define _mm_test_all_zeros(mask, val) _mm_testz_si128((mask), (val)) /* * MACRO functions for packed integer 128-bit comparison intrinsics. */ #define _mm_test_all_ones(val) \ _mm_testc_si128((val), _mm_cmpeq_epi32((val),(val))) #define _mm_test_mix_ones_zeros(mask, val) _mm_testnzc_si128((mask), (val)) #if __cplusplus extern "C" { #endif // Integer blend instructions - select data from 2 sources // using constant/variable mask extern __m128i _mm_blend_epi16 (__m128i v1, __m128i v2, const int mask); extern __m128i _mm_blendv_epi8 (__m128i v1, __m128i v2, __m128i mask); // Float single precision blend instructions - select data // from 2 sources using constant/variable mask extern __m128 _mm_blend_ps (__m128 v1, __m128 v2, const int mask); extern __m128 _mm_blendv_ps(__m128 v1, __m128 v2, __m128 v3); // Float double precision blend instructions - select data // from 2 sources using constant/variable mask extern __m128d _mm_blend_pd (__m128d v1, __m128d v2, const int mask); extern __m128d _mm_blendv_pd(__m128d v1, __m128d v2, __m128d v3); // Dot product instructions with mask-defined summing and zeroing // of result's parts extern __m128 _mm_dp_ps(__m128 val1, __m128 val2, const int mask); extern __m128d _mm_dp_pd(__m128d val1, __m128d val2, const int mask); // Packed integer 64-bit comparison, zeroing or filling with ones // corresponding parts of result extern __m128i _mm_cmpeq_epi64(__m128i val1, __m128i val2); // Min/max packed integer instructions extern __m128i _mm_min_epi8 (__m128i val1, __m128i val2); extern __m128i _mm_max_epi8 (__m128i val1, __m128i val2); extern __m128i _mm_min_epu16(__m128i val1, __m128i val2); extern __m128i _mm_max_epu16(__m128i val1, __m128i val2); extern __m128i _mm_min_epi32(__m128i val1, __m128i val2); extern __m128i _mm_max_epi32(__m128i val1, __m128i val2); extern __m128i _mm_min_epu32(__m128i val1, __m128i val2); extern __m128i _mm_max_epu32(__m128i val1, __m128i val2); // Packed integer 32-bit multiplication with truncation // of upper halves of results extern __m128i _mm_mullo_epi32(__m128i a, __m128i b); // Packed integer 32-bit multiplication of 2 pairs of operands // producing two 64-bit results extern __m128i _mm_mul_epi32(__m128i a, __m128i b); // Packed integer 128-bit bitwise comparison. // return 1 if (val 'and' mask) == 0 extern int _mm_testz_si128(__m128i mask, __m128i val); // Packed integer 128-bit bitwise comparison. // return 1 if (val 'and_not' mask) == 0 extern int _mm_testc_si128(__m128i mask, __m128i val); // Packed integer 128-bit bitwise comparison // ZF = ((val 'and' mask) == 0) CF = ((val 'and_not' mask) == 0) // return 1 if both ZF and CF are 0 extern int _mm_testnzc_si128(__m128i mask, __m128i s2); // Insert single precision float into packed single precision // array element selected by index. // The bits [7-6] of the 3d parameter define src index, // the bits [5-4] define dst index, and bits [3-0] define zeroing // mask for dst extern __m128 _mm_insert_ps(__m128 dst, __m128 src, const int ndx); // Helper macro to create ndx-parameter value for _mm_insert_ps #define _MM_MK_INSERTPS_NDX(srcField, dstField, zeroMask) \ (((srcField)<<6) | ((dstField)<<4) | (zeroMask)) // Extract binary representation of single precision float from // packed single precision array element selected by index extern int _mm_extract_ps(__m128 src, const int ndx); // Extract single precision float from packed single precision // array element selected by index into dest #define _MM_EXTRACT_FLOAT(dest, src, ndx) \ *((int*)&(dest)) = _mm_extract_ps((src), (ndx)) // Extract specified single precision float element // into the lower part of __m128 #define _MM_PICK_OUT_PS(src, num) \ _mm_insert_ps(_mm_setzero_ps(), (src), \ _MM_MK_INSERTPS_NDX((num), 0, 0x0e)); // Insert integer into packed integer array element // selected by index extern __m128i _mm_insert_epi8 (__m128i dst, int s, const int ndx); extern __m128i _mm_insert_epi32(__m128i dst, int s, const int ndx); #if defined(_M_X64) extern __m128i _mm_insert_epi64(__m128i dst, __int64 s, const int ndx); #endif // Extract integer from packed integer array element // selected by index extern int _mm_extract_epi8 (__m128i src, const int ndx); extern int _mm_extract_epi32(__m128i src, const int ndx); #if defined(_M_X64) extern __int64 _mm_extract_epi64(__m128i src, const int ndx); #endif // Horizontal packed word minimum and its index in // result[15:0] and result[18:16] respectively extern __m128i _mm_minpos_epu16(__m128i shortValues); // Packed/single float double precision rounding extern __m128d _mm_round_pd(__m128d val, int iRoundMode); extern __m128d _mm_round_sd(__m128d dst, __m128d val, int iRoundMode); // Packed/single float single precision rounding extern __m128 _mm_round_ps(__m128 val, int iRoundMode); extern __m128 _mm_round_ss(__m128 dst, __m128 val, int iRoundMode); // Packed integer sign-extension extern __m128i _mm_cvtepi8_epi32 (__m128i byteValues); extern __m128i _mm_cvtepi16_epi32(__m128i shortValues); extern __m128i _mm_cvtepi8_epi64 (__m128i byteValues); extern __m128i _mm_cvtepi32_epi64(__m128i intValues); extern __m128i _mm_cvtepi16_epi64(__m128i shortValues); extern __m128i _mm_cvtepi8_epi16 (__m128i byteValues); // Packed integer zero-extension extern __m128i _mm_cvtepu8_epi32 (__m128i byteValues); extern __m128i _mm_cvtepu16_epi32(__m128i shortValues); extern __m128i _mm_cvtepu8_epi64 (__m128i shortValues); extern __m128i _mm_cvtepu32_epi64(__m128i intValues); extern __m128i _mm_cvtepu16_epi64(__m128i shortValues); extern __m128i _mm_cvtepu8_epi16 (__m128i byteValues); // Pack 8 double words from 2 operands into 8 words of result // with unsigned saturation extern __m128i _mm_packus_epi32(__m128i val1, __m128i val2); // Sum absolute 8-bit integer difference of adjacent groups of 4 byte // integers in operands. Starting offsets within operands are // determined by mask extern __m128i _mm_mpsadbw_epu8(__m128i s1, __m128i s2, const int msk); /* * Load double quadword using non-temporal aligned hint */ extern __m128i _mm_stream_load_si128(__m128i* v1); #if defined __cplusplus }; /* End "C" */ #endif /* __cplusplus */ #endif /* defined(_M_CEE_PURE) */ #endif #endif /* _INCLUDED_SMM */