//GiGaHeRz's SPU2 Driver //Copyright (c) 2003-2008, David Quintana // //This library is free software; you can redistribute it and/or //modify it under the terms of the GNU Lesser General Public //License as published by the Free Software Foundation; either //version 2.1 of the License, or (at your option) any later version. // //This library is distributed in the hope that it will be useful, //but WITHOUT ANY WARRANTY; without even the implied warranty of //MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU //Lesser General Public License for more details. // //You should have received a copy of the GNU Lesser General Public //License along with this library; if not, write to the Free Software //Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // #include "spu2.h" extern u8 callirq; FILE *DMA4LogFile=0; FILE *DMA7LogFile=0; FILE *ADMA4LogFile=0; FILE *ADMA7LogFile=0; FILE *ADMAOutLogFile=0; FILE *REGWRTLogFile[2]={0,0}; int packcount=0; u16* MBASE[2] = {0,0}; u16* DMABaseAddr; void DMALogOpen() { if(!DMALog()) return; DMA4LogFile=fopen(DMA4LogFileName,"wb"); DMA7LogFile=fopen(DMA7LogFileName,"wb"); ADMA4LogFile=fopen("logs/adma4.raw","wb"); ADMA7LogFile=fopen("logs/adma7.raw","wb"); ADMAOutLogFile=fopen("logs/admaOut.raw","wb"); //REGWRTLogFile[0]=fopen("logs/RegWrite0.raw","wb"); //REGWRTLogFile[1]=fopen("logs/RegWrite1.raw","wb"); } void DMA4LogWrite(void *lpData, u32 ulSize) { if(!DMALog()) return; if (!DMA4LogFile) return; fwrite(lpData,ulSize,1,DMA4LogFile); } void DMA7LogWrite(void *lpData, u32 ulSize) { if(!DMALog()) return; if (!DMA7LogFile) return; fwrite(lpData,ulSize,1,DMA7LogFile); } void ADMA4LogWrite(void *lpData, u32 ulSize) { if(!DMALog()) return; if (!ADMA4LogFile) return; fwrite(lpData,ulSize,1,ADMA4LogFile); } void ADMA7LogWrite(void *lpData, u32 ulSize) { if(!DMALog()) return; if (!ADMA7LogFile) return; fwrite(lpData,ulSize,1,ADMA7LogFile); } void ADMAOutLogWrite(void *lpData, u32 ulSize) { if(!DMALog()) return; if (!ADMAOutLogFile) return; fwrite(lpData,ulSize,1,ADMAOutLogFile); } void RegWriteLog(u32 core,u16 value) { if(!DMALog()) return; if (!REGWRTLogFile[core]) return; fwrite(&value,2,1,REGWRTLogFile[core]); } void DMALogClose() { if(!DMALog()) return; if (DMA4LogFile) fclose(DMA4LogFile); if (DMA7LogFile) fclose(DMA7LogFile); if (REGWRTLogFile[0]) fclose(REGWRTLogFile[0]); if (REGWRTLogFile[1]) fclose(REGWRTLogFile[1]); if (ADMA4LogFile) fclose(ADMA4LogFile); if (ADMA7LogFile) fclose(ADMA7LogFile); if (ADMAOutLogFile) fclose(ADMAOutLogFile); } __forceinline u16 DmaRead(u32 core) { const u16 ret = (u16)spu2M_Read(Cores[core].TDA); Cores[core].TDA++; Cores[core].TDA&=0xfffff; return ret; } __forceinline void DmaWrite(u32 core, u16 value) { spu2M_Write( Cores[core].TSA, value ); Cores[core].TSA++; Cores[core].TSA&=0xfffff; } void AutoDMAReadBuffer(int core, int mode) //mode: 0= split stereo; 1 = do not split stereo { int spos=((Cores[core].InputPos+0xff)&0x100); //starting position of the free buffer if(core==0) ADMA4LogWrite(Cores[core].DMAPtr+Cores[core].InputDataProgress,0x400); else ADMA7LogWrite(Cores[core].DMAPtr+Cores[core].InputDataProgress,0x400); if(mode) { //hacky :p memcpy((Cores[core].ADMATempBuffer+(spos<<1)),Cores[core].DMAPtr+Cores[core].InputDataProgress,0x400); Cores[core].MADR+=0x400; Cores[core].InputDataLeft-=0x200; Cores[core].InputDataProgress+=0x200; } else { memcpy((Cores[core].ADMATempBuffer+spos),Cores[core].DMAPtr+Cores[core].InputDataProgress,0x200); //memcpy((spu2mem+0x2000+(core<<10)+spos),Cores[core].DMAPtr+Cores[core].InputDataProgress,0x200); Cores[core].MADR+=0x200; Cores[core].InputDataLeft-=0x100; Cores[core].InputDataProgress+=0x100; memcpy((Cores[core].ADMATempBuffer+spos+0x200),Cores[core].DMAPtr+Cores[core].InputDataProgress,0x200); //memcpy((spu2mem+0x2200+(core<<10)+spos),Cores[core].DMAPtr+Cores[core].InputDataProgress,0x200); Cores[core].MADR+=0x200; Cores[core].InputDataLeft-=0x100; Cores[core].InputDataProgress+=0x100; } // See ReadInput at mixer.cpp for explanation on the commented out lines // } void StartADMAWrite(int core,u16 *pMem, u32 sz) { int size=(sz)&(~511); if(MsgAutoDMA()) ConLog(" * SPU2: DMA%c AutoDMA Transfer of %d bytes to %x (%02x %x %04x).\n",(core==0)?'4':'7',size<<1,Cores[core].TSA,Cores[core].DMABits,Cores[core].AutoDMACtrl,(~Cores[core].Regs.ATTR)&0x7fff); Cores[core].InputDataProgress=0; if((Cores[core].AutoDMACtrl&(core+1))==0) { Cores[core].TSA=0x2000+(core<<10); Cores[core].DMAICounter=size; } else if(size>=512) { Cores[core].InputDataLeft=size; if(Cores[core].AdmaInProgress==0) { #ifdef PCM24_S1_INTERLEAVE if((core==1)&&((PlayMode&8)==8)) { AutoDMAReadBuffer(core,1); } else { AutoDMAReadBuffer(core,0); } #else if(((PlayMode&4)==4)&&(core==0)) Cores[0].InputPos=0; AutoDMAReadBuffer(core,0); #endif if(size==512) Cores[core].DMAICounter=size; } Cores[core].AdmaInProgress=1; } else { Cores[core].InputDataLeft=0; Cores[core].DMAICounter=1; } Cores[core].TADR=Cores[core].MADR+(size<<1); } void DoDMAWrite(int core,u16 *pMem,u32 size) { u32 i; { // Perform an alignment check. // Not really important. Everything should work regardless, // but it could be indicative of an emulation foopah elsewhere. uptr pa = ((uptr)pMem)&7; uptr pm = Cores[core].TSA&0x7; if( pa ) { fprintf(stderr, "* SPU2 DMA Write > Missaligned SOURCE! Core: %d TSA: 0x%x TDA: 0x%x Size: 0x%x\n", core, Cores[core].TSA, Cores[core].TDA, size); } if( pm ) { fprintf(stderr, "* SPU2 DMA Write > Missaligned TARGET! Core: %d TSA: 0x%x TDA: 0x%x Size: 0x%x\n", core, Cores[core].TSA, Cores[core].TDA, size ); } } if(core==0) DMA4LogWrite(pMem,size<<1); else DMA7LogWrite(pMem,size<<1); if(MsgDMA()) ConLog(" * SPU2: DMA%c Transfer of %d bytes to %x (%02x %x %04x).\n",(core==0)?'4':'7',size<<1,Cores[core].TSA,Cores[core].DMABits,Cores[core].AutoDMACtrl,(~Cores[core].Regs.ATTR)&0x7fff); // split the DMA copy into two chunks if needed. // Instead of checking the adpcm cache for every word, we check for every block. // That way we can use the optimized fast write instruction to commit the memory. Cores[core].TDA = Cores[core].TSA & 0xfffff; u32 buff1end = Cores[core].TDA + size; s32 buff2end = buff1end - 0xfffff; if( buff2end > 0 ) buff1end = 0xfffff; { u32 nexta = Cores[core].TDA >> 3; // next address in 8 word blocks const u32 leftsidebit = nexta & 31; u32 rightsidebit; // assigned later nexta >>= 5; // Left side remainder: // this produces a bitmask of the left side remainder of the cache flags: pcm_cache_flags[nexta] &= (1ul << leftsidebit)-1; // middle run! // Traverse from start to finish in 8*32 word blocks, // and clear all the the pcm cache flags for each block. for(; Cores[core].TDA>= (3+5); // 8 words per block, 32 blocks per int. memset( &pcm_cache_flags[nexta], 0, sizeof( u32 ) * (buff1end-nexta) ); if( buff2end > 0 ) { // second branch needs cleared: // It starts at the beginning of memory and moves forward to buff2end const u32 endpt2 = buff2end >> (3+5); // 8 words per block, 32 blocks per int. memset( pcm_cache_flags, 0, sizeof( u32 ) * endpt2 ); for(Cores[core].TDA=0; Cores[core].TDA<(u32)buff2end; ++Cores[core].TDA, ++pMem) *GetMemPtr( Cores[core].TDA ) = *pMem; rightsidebit = ( buff2end >> 3 ); nexta = endpt2; } else { rightsidebit = (Cores[core].TDA >> 3); nexta = buff1end; } // clear the right-side remainder: pcm_cache_flags[nexta] &= ~((1ul << (32-(rightsidebit&31)))-1); } i=Cores[core].TSA; Cores[core].TDA=Cores[core].TSA+size; if((Cores[core].TDA>0xFFFFF)||((Cores[core].TDA>=Cores[core].IRQA)&&(i<=Cores[core].IRQA))) { if(Cores[core].IRQEnable) { Spdif.Info=4<0xFFFFF)||((Cores[core].TSA<=Cores[core].IRQA)&&(i>=Cores[core].IRQA))) { if(Cores[core].IRQEnable) { Spdif.Info=4<