/* * Copyright (C) 2007-2009 Gabest * http://www.gabest.org * * This Program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This Program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA. * http://www.gnu.org/copyleft/gpl.html * */ #include "stdafx.h" #include "GSSetupPrimCodeGenerator.h" #include "GSVertexSW.h" #if _M_SSE == 0x500 && (defined(_M_AMD64) || defined(_WIN64)) using namespace Xbyak; void GSSetupPrimCodeGenerator::Generate() { sub(rsp, 8 + 2 * 16); vmovdqa(ptr[rsp + 0], xmm6); vmovdqa(ptr[rsp + 16], xmm7); mov(r8, (size_t)&m_local); if((m_en.z || m_en.f) && m_sel.prim != GS_SPRITE_CLASS || m_en.t || m_en.c && m_sel.iip) { mov(rax, (size_t)&m_shift[0]); for(int i = 0; i < 5; i++) { vmovaps(Xmm(3 + i), ptr[rax + i * 16]); } } Depth(); Texture(); Color(); vmovdqa(xmm6, ptr[rsp + 0]); vmovdqa(xmm7, ptr[rsp + 16]); add(rsp, 8 + 2 * 16); ret(); } void GSSetupPrimCodeGenerator::Depth() { if(!m_en.z && !m_en.f) { return; } if(m_sel.prim != GS_SPRITE_CLASS) { // GSVector4 p = dscan.p; vmovaps(xmm0, ptr[rdx + offsetof(GSVertexSW, p)]); if(m_en.f) { // GSVector4 df = p.wwww(); vshufps(xmm1, xmm0, xmm0, _MM_SHUFFLE(3, 3, 3, 3)); // m_local.d4.f = GSVector4i(df * 4.0f).xxzzlh(); vmulps(xmm2, xmm1, xmm3); vcvttps2dq(xmm2, xmm2); vpshuflw(xmm2, xmm2, _MM_SHUFFLE(2, 2, 0, 0)); vpshufhw(xmm2, xmm2, _MM_SHUFFLE(2, 2, 0, 0)); vmovdqa(ptr[r8 + offsetof(GSScanlineLocalData, d4.f)], xmm2); for(int i = 0; i < 4; i++) { // m_local.d[i].f = GSVector4i(df * m_shift[i]).xxzzlh(); vmulps(xmm2, xmm1, Xmm(4 + i)); vcvttps2dq(xmm2, xmm2); vpshuflw(xmm2, xmm2, _MM_SHUFFLE(2, 2, 0, 0)); vpshufhw(xmm2, xmm2, _MM_SHUFFLE(2, 2, 0, 0)); const size_t variableOffset = offsetof(GSScanlineLocalData, d[0].f) + (i * sizeof(GSScanlineLocalData::d[0])); vmovdqa(ptr[r8 + variableOffset], xmm2); } } if(m_en.z) { // GSVector4 dz = p.zzzz(); vshufps(xmm0, xmm0, _MM_SHUFFLE(2, 2, 2, 2)); // m_local.d4.z = dz * 4.0f; vmulps(xmm1, xmm0, xmm3); vmovdqa(ptr[r8 + offsetof(GSScanlineLocalData, d4.z)], xmm1); for(int i = 0; i < 4; i++) { // m_local.d[i].z = dz * m_shift[i]; vmulps(xmm1, xmm0, Xmm(4 + i)); const size_t variableOffset = offsetof(GSScanlineLocalData, d[0].z) + (i * sizeof(GSScanlineLocalData::d[0])); vmovdqa(ptr[r8 + variableOffset], xmm1); } } } else { // GSVector4 p = vertices[0].p; vmovaps(xmm0, ptr[rcx + offsetof(GSVertexSW, p)]); if(m_en.f) { // m_local.p.f = GSVector4i(p).zzzzh().zzzz(); vcvttps2dq(xmm1, xmm0); vpshufhw(xmm1, xmm1, _MM_SHUFFLE(2, 2, 2, 2)); vpshufd(xmm1, xmm1, _MM_SHUFFLE(2, 2, 2, 2)); vmovdqa(ptr[r8 + offsetof(GSScanlineLocalData, p.f)], xmm1); } if(m_en.z) { // GSVector4 z = p.zzzz(); vshufps(xmm0, xmm0, _MM_SHUFFLE(2, 2, 2, 2)); if(m_sel.zoverflow) { // m_local.p.z = (GSVector4i(z * 0.5f) << 1) | (GSVector4i(z) & GSVector4i::x00000001()); mov(r9, (size_t)&GSVector4::m_half); vbroadcastss(xmm1, ptr[r9]); vmulps(xmm1, xmm0); vcvttps2dq(xmm1, xmm1); vpslld(xmm1, 1); vcvttps2dq(xmm0, xmm0); vpcmpeqd(xmm2, xmm2); vpsrld(xmm2, 31); vpand(xmm0, xmm2); vpor(xmm0, xmm1); } else { // m_local.p.z = GSVector4i(z); vcvttps2dq(xmm0, xmm0); } vmovdqa(ptr[r8 + offsetof(GSScanlineLocalData, p.z)], xmm0); } } } void GSSetupPrimCodeGenerator::Texture() { if(!m_en.t) { return; } // GSVector4 t = dscan.t; vmovaps(xmm0, ptr[rdx + offsetof(GSVertexSW, t)]); vmulps(xmm1, xmm0, xmm3); if(m_sel.fst) { // m_local.d4.stq = GSVector4i(t * 4.0f); vcvttps2dq(xmm1, xmm1); vmovdqa(ptr[r8 + offsetof(GSScanlineLocalData, d4.stq)], xmm1); } else { // m_local.d4.stq = t * 4.0f; vmovaps(ptr[r8 + offsetof(GSScanlineLocalData, d4.stq)], xmm1); } for(int j = 0, k = m_sel.fst ? 2 : 3; j < k; j++) { // GSVector4 ds = t.xxxx(); // GSVector4 dt = t.yyyy(); // GSVector4 dq = t.zzzz(); vshufps(xmm1, xmm0, xmm0, (uint8)_MM_SHUFFLE(j, j, j, j)); for(int i = 0; i < 4; i++) { // GSVector4 v = ds/dt * m_shift[i]; vmulps(xmm2, xmm1, Xmm(4 + i)); if(m_sel.fst) { // m_local.d[i].s/t = GSVector4i(v); vcvttps2dq(xmm2, xmm2); const size_t variableOffsetS = offsetof(GSScanlineLocalData, d[0].s) + (i * sizeof(GSScanlineLocalData::d[0])); const size_t variableOffsetT = offsetof(GSScanlineLocalData, d[0].t) + (i * sizeof(GSScanlineLocalData::d[0])); switch(j) { case 0: vmovdqa(ptr[r8 + variableOffsetS], xmm2); break; case 1: vmovdqa(ptr[r8 + variableOffsetT], xmm2); break; } } else { // m_local.d[i].s/t/q = v; const size_t variableOffsetS = offsetof(GSScanlineLocalData, d[0].s) + (i * sizeof(GSScanlineLocalData::d[0])); const size_t variableOffsetT = offsetof(GSScanlineLocalData, d[0].t) + (i * sizeof(GSScanlineLocalData::d[0])); const size_t variableOffsetQ = offsetof(GSScanlineLocalData, d[0].q) + (i * sizeof(GSScanlineLocalData::d[0])); switch(j) { case 0: vmovaps(ptr[r8 + variableOffsetS], xmm2); break; case 1: vmovaps(ptr[r8 + variableOffsetT], xmm2); break; case 2: vmovaps(ptr[r8 + variableOffsetQ], xmm2); break; } } } } } void GSSetupPrimCodeGenerator::Color() { if(!m_en.c) { return; } if(m_sel.iip) { // GSVector4 c = dscan.c; vmovaps(xmm0, ptr[rdx + offsetof(GSVertexSW, c)]); // m_local.d4.c = GSVector4i(c * 4.0f).xzyw().ps32(); vmulps(xmm1, xmm0, xmm3); vcvttps2dq(xmm1, xmm1); vpshufd(xmm1, xmm1, _MM_SHUFFLE(3, 1, 2, 0)); vpackssdw(xmm1, xmm1); vmovdqa(ptr[r8 + offsetof(GSScanlineLocalData, d4.c)], xmm1); // xmm3 is not needed anymore // GSVector4 dr = c.xxxx(); // GSVector4 db = c.zzzz(); vshufps(xmm2, xmm0, xmm0, _MM_SHUFFLE(0, 0, 0, 0)); vshufps(xmm3, xmm0, xmm0, _MM_SHUFFLE(2, 2, 2, 2)); for(int i = 0; i < 4; i++) { // GSVector4i r = GSVector4i(dr * m_shift[i]).ps32(); vmulps(xmm0, xmm2, Xmm(4 + i)); vcvttps2dq(xmm0, xmm0); vpackssdw(xmm0, xmm0); // GSVector4i b = GSVector4i(db * m_shift[i]).ps32(); vmulps(xmm1, xmm3, Xmm(4 + i)); vcvttps2dq(xmm1, xmm1); vpackssdw(xmm1, xmm1); // m_local.d[i].rb = r.upl16(b); vpunpcklwd(xmm0, xmm1); const size_t variableOffset = offsetof(GSScanlineLocalData, d[0].rb) + (i * sizeof(GSScanlineLocalData::d[0])); vmovdqa(ptr[r8 + variableOffset], xmm0); } // GSVector4 c = dscan.c; vmovaps(xmm0, ptr[rdx + offsetof(GSVertexSW, c)]); // not enough regs, have to reload it // GSVector4 dg = c.yyyy(); // GSVector4 da = c.wwww(); vshufps(xmm2, xmm0, xmm0, _MM_SHUFFLE(1, 1, 1, 1)); vshufps(xmm3, xmm0, xmm0, _MM_SHUFFLE(3, 3, 3, 3)); for(int i = 0; i < 4; i++) { // GSVector4i g = GSVector4i(dg * m_shift[i]).ps32(); vmulps(xmm0, xmm2, Xmm(4 + i)); vcvttps2dq(xmm0, xmm0); vpackssdw(xmm0, xmm0); // GSVector4i a = GSVector4i(da * m_shift[i]).ps32(); vmulps(xmm1, xmm3, Xmm(4 + i)); vcvttps2dq(xmm1, xmm1); vpackssdw(xmm1, xmm1); // m_local.d[i].ga = g.upl16(a); vpunpcklwd(xmm0, xmm1); const size_t variableOffset = offsetof(GSScanlineLocalData, d[0].ga) + (i * sizeof(GSScanlineLocalData::d[0])); vmovdqa(ptr[r8 + variableOffset], xmm0); } } else { // GSVector4i c = GSVector4i(vertices[0].c); vcvttps2dq(xmm0, ptr[rcx + offsetof(GSVertexSW, c)]); // c = c.upl16(c.zwxy()); vpshufd(xmm1, xmm0, _MM_SHUFFLE(1, 0, 3, 2)); vpunpcklwd(xmm0, xmm1); // if(!tme) c = c.srl16(7); if(m_sel.tfx == TFX_NONE) { vpsrlw(xmm0, 7); } // m_local.c.rb = c.xxxx(); // m_local.c.ga = c.zzzz(); vpshufd(xmm1, xmm0, _MM_SHUFFLE(0, 0, 0, 0)); vpshufd(xmm2, xmm0, _MM_SHUFFLE(2, 2, 2, 2)); vmovdqa(ptr[r8 + offsetof(GSScanlineLocalData, c.rb)], xmm1); vmovdqa(ptr[r8 + offsetof(GSScanlineLocalData, c.ga)], xmm2); } } #endif