/* PCSX2 - PS2 Emulator for PCs * Copyright (C) 2002-2021 PCSX2 Dev Team * * PCSX2 is free software: you can redistribute it and/or modify it under the terms * of the GNU Lesser General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with PCSX2. * If not, see . */ #include "common/Vulkan/Context.h" #include "common/Align.h" #include "common/Assertions.h" #include "common/Console.h" #include "common/General.h" #include "common/StringUtil.h" #include "common/Vulkan/ShaderCompiler.h" #include "common/Vulkan/SwapChain.h" #include "common/Vulkan/Util.h" #include #include #include #ifdef _WIN32 #include "common/RedtapeWindows.h" #else #include #endif std::unique_ptr g_vulkan_context; // Tweakables enum : u32 { MAX_DRAW_CALLS_PER_FRAME = 8192, MAX_COMBINED_IMAGE_SAMPLER_DESCRIPTORS_PER_FRAME = 2 * MAX_DRAW_CALLS_PER_FRAME, MAX_SAMPLED_IMAGE_DESCRIPTORS_PER_FRAME = MAX_DRAW_CALLS_PER_FRAME, // assume at least half our draws aren't going to be shuffle/blending MAX_STORAGE_IMAGE_DESCRIPTORS_PER_FRAME = 4, // Currently used by CAS only MAX_INPUT_ATTACHMENT_IMAGE_DESCRIPTORS_PER_FRAME = MAX_DRAW_CALLS_PER_FRAME, MAX_DESCRIPTOR_SETS_PER_FRAME = MAX_DRAW_CALLS_PER_FRAME * 2 }; namespace Vulkan { Context::Context(VkInstance instance, VkPhysicalDevice physical_device) : m_instance(instance) , m_physical_device(physical_device) { // Read device physical memory properties, we need it for allocating buffers vkGetPhysicalDeviceProperties(physical_device, &m_device_properties); vkGetPhysicalDeviceMemoryProperties(physical_device, &m_device_memory_properties); // We need this to be at least 32 byte aligned for AVX2 stores. m_device_properties.limits.minUniformBufferOffsetAlignment = std::max(m_device_properties.limits.minUniformBufferOffsetAlignment, static_cast(32)); m_device_properties.limits.minTexelBufferOffsetAlignment = std::max(m_device_properties.limits.minTexelBufferOffsetAlignment, static_cast(32)); m_device_properties.limits.optimalBufferCopyOffsetAlignment = std::max(m_device_properties.limits.optimalBufferCopyOffsetAlignment, static_cast(32)); m_device_properties.limits.optimalBufferCopyRowPitchAlignment = Common::NextPow2(std::max(m_device_properties.limits.optimalBufferCopyRowPitchAlignment, static_cast(32))); m_device_properties.limits.bufferImageGranularity = std::max(m_device_properties.limits.bufferImageGranularity, static_cast(32)); } Context::~Context() = default; VkInstance Context::CreateVulkanInstance( const WindowInfo* wi, bool enable_debug_utils, bool enable_validation_layer) { ExtensionList enabled_extensions; if (!SelectInstanceExtensions(&enabled_extensions, wi, enable_debug_utils)) return VK_NULL_HANDLE; // Remember to manually update this every release. We don't pull in svnrev.h here, because // it's only the major/minor version, and rebuilding the file every time something else changes // is unnecessary. VkApplicationInfo app_info = {}; app_info.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO; app_info.pNext = nullptr; app_info.pApplicationName = "PCSX2"; app_info.applicationVersion = VK_MAKE_VERSION(1, 7, 0); app_info.pEngineName = "PCSX2"; app_info.engineVersion = VK_MAKE_VERSION(1, 7, 0); app_info.apiVersion = VK_API_VERSION_1_1; VkInstanceCreateInfo instance_create_info = {}; instance_create_info.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO; instance_create_info.pNext = nullptr; instance_create_info.flags = 0; instance_create_info.pApplicationInfo = &app_info; instance_create_info.enabledExtensionCount = static_cast(enabled_extensions.size()); instance_create_info.ppEnabledExtensionNames = enabled_extensions.data(); instance_create_info.enabledLayerCount = 0; instance_create_info.ppEnabledLayerNames = nullptr; // Enable debug layer on debug builds if (enable_validation_layer) { static const char* layer_names[] = {"VK_LAYER_KHRONOS_validation"}; instance_create_info.enabledLayerCount = 1; instance_create_info.ppEnabledLayerNames = layer_names; } VkInstance instance; VkResult res = vkCreateInstance(&instance_create_info, nullptr, &instance); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateInstance failed: "); return nullptr; } return instance; } bool Context::SelectInstanceExtensions(ExtensionList* extension_list, const WindowInfo* wi, bool enable_debug_utils) { u32 extension_count = 0; VkResult res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumerateInstanceExtensionProperties failed: "); return false; } if (extension_count == 0) { Console.Error("Vulkan: No extensions supported by instance."); return false; } std::vector available_extension_list(extension_count); res = vkEnumerateInstanceExtensionProperties(nullptr, &extension_count, available_extension_list.data()); pxAssert(res == VK_SUCCESS); auto SupportsExtension = [&](const char* name, bool required) { if (std::find_if(available_extension_list.begin(), available_extension_list.end(), [&](const VkExtensionProperties& properties) { return !strcmp(name, properties.extensionName); }) != available_extension_list.end()) { DevCon.WriteLn("Enabling extension: %s", name); extension_list->push_back(name); return true; } if (required) Console.Error("Vulkan: Missing required extension %s.", name); return false; }; // Common extensions if (wi && wi->type != WindowInfo::Type::Surfaceless && !SupportsExtension(VK_KHR_SURFACE_EXTENSION_NAME, true)) return false; #if defined(VK_USE_PLATFORM_WIN32_KHR) if (wi && wi->type == WindowInfo::Type::Win32 && !SupportsExtension(VK_KHR_WIN32_SURFACE_EXTENSION_NAME, true)) return false; #endif #if defined(VK_USE_PLATFORM_XLIB_KHR) if (wi && wi->type == WindowInfo::Type::X11 && !SupportsExtension(VK_KHR_XLIB_SURFACE_EXTENSION_NAME, true)) return false; #endif #if defined(VK_USE_PLATFORM_WAYLAND_KHR) if (wi && wi->type == WindowInfo::Type::Wayland && !SupportsExtension(VK_KHR_WAYLAND_SURFACE_EXTENSION_NAME, true)) return false; #endif #if defined(VK_USE_PLATFORM_ANDROID_KHR) if (wi && wi->type == WindowInfo::Type::Android && !SupportsExtension(VK_KHR_ANDROID_SURFACE_EXTENSION_NAME, true)) return false; #endif #if defined(VK_USE_PLATFORM_METAL_EXT) if (wi && wi->type == WindowInfo::Type::MacOS && !SupportsExtension(VK_EXT_METAL_SURFACE_EXTENSION_NAME, true)) return false; #endif #if 0 if (wi && wi->type == WindowInfo::Type::Display && !SupportsExtension(VK_KHR_DISPLAY_EXTENSION_NAME, true)) return false; #endif // VK_EXT_debug_utils if (enable_debug_utils && !SupportsExtension(VK_EXT_DEBUG_UTILS_EXTENSION_NAME, false)) Console.Warning("Vulkan: Debug report requested, but extension is not available."); return true; } Context::GPUList Context::EnumerateGPUs(VkInstance instance) { u32 gpu_count = 0; VkResult res = vkEnumeratePhysicalDevices(instance, &gpu_count, nullptr); if ((res != VK_SUCCESS && res != VK_INCOMPLETE) || gpu_count == 0) { LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices (1) failed: "); return {}; } GPUList gpus; gpus.resize(gpu_count); res = vkEnumeratePhysicalDevices(instance, &gpu_count, gpus.data()); if (res == VK_INCOMPLETE) { Console.Warning("First vkEnumeratePhysicalDevices() call returned %zu devices, but second returned %u", gpus.size(), gpu_count); } else if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices (2) failed: "); return {}; } // Maybe we lost a GPU? if (gpu_count < gpus.size()) gpus.resize(gpu_count); return gpus; } Context::GPUNameList Context::EnumerateGPUNames(VkInstance instance) { u32 gpu_count = 0; VkResult res = vkEnumeratePhysicalDevices(instance, &gpu_count, nullptr); if (res != VK_SUCCESS || gpu_count == 0) { LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices failed: "); return {}; } GPUList gpus; gpus.resize(gpu_count); res = vkEnumeratePhysicalDevices(instance, &gpu_count, gpus.data()); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumeratePhysicalDevices failed: "); return {}; } GPUNameList gpu_names; gpu_names.reserve(gpu_count); for (u32 i = 0; i < gpu_count; i++) { VkPhysicalDeviceProperties props = {}; vkGetPhysicalDeviceProperties(gpus[i], &props); std::string gpu_name(props.deviceName); // handle duplicate adapter names if (std::any_of(gpu_names.begin(), gpu_names.end(), [&gpu_name](const std::string& other) { return (gpu_name == other); })) { std::string original_adapter_name = std::move(gpu_name); u32 current_extra = 2; do { gpu_name = StringUtil::StdStringFromFormat("%s (%u)", original_adapter_name.c_str(), current_extra); current_extra++; } while (std::any_of(gpu_names.begin(), gpu_names.end(), [&gpu_name](const std::string& other) { return (gpu_name == other); })); } gpu_names.push_back(std::move(gpu_name)); } return gpu_names; } bool Context::Create(std::string_view gpu_name, const WindowInfo* wi, std::unique_ptr* out_swap_chain, VkPresentModeKHR preferred_present_mode, bool threaded_presentation, bool enable_debug_utils, bool enable_validation_layer) { pxAssertMsg(!g_vulkan_context, "Has no current context"); if (!Vulkan::LoadVulkanLibrary()) { Console.Error("Failed to load Vulkan library"); return false; } const bool enable_surface = (wi && wi->type != WindowInfo::Type::Surfaceless); VkInstance instance = CreateVulkanInstance(wi, enable_debug_utils, enable_validation_layer); if (instance == VK_NULL_HANDLE) { if (enable_debug_utils || enable_validation_layer) { // Try again without the validation layer. enable_debug_utils = false; enable_validation_layer = false; instance = CreateVulkanInstance(wi, enable_debug_utils, enable_validation_layer); if (instance == VK_NULL_HANDLE) { Vulkan::UnloadVulkanLibrary(); return false; } Console.Error("Vulkan validation/debug layers requested but are unavailable. Creating non-debug device."); } } if (!Vulkan::LoadVulkanInstanceFunctions(instance)) { Console.Error("Failed to load Vulkan instance functions"); vkDestroyInstance(instance, nullptr); Vulkan::UnloadVulkanLibrary(); return false; } GPUList gpus = EnumerateGPUs(instance); if (gpus.empty()) { vkDestroyInstance(instance, nullptr); Vulkan::UnloadVulkanLibrary(); return false; } u32 gpu_index = 0; GPUNameList gpu_names = EnumerateGPUNames(instance); if (!gpu_name.empty()) { for (; gpu_index < static_cast(gpu_names.size()); gpu_index++) { Console.WriteLn("GPU %u: %s", static_cast(gpu_index), gpu_names[gpu_index].c_str()); if (gpu_names[gpu_index] == gpu_name) break; } if (gpu_index == static_cast(gpu_names.size())) { Console.Warning("Requested GPU '%s' not found, using first (%s)", std::string(gpu_name).c_str(), gpu_names[0].c_str()); gpu_index = 0; } } else { Console.WriteLn("No GPU requested, using first (%s)", gpu_names[0].c_str()); } VkSurfaceKHR surface = VK_NULL_HANDLE; WindowInfo wi_copy; if (wi) wi_copy = *wi; if (enable_surface && (surface = SwapChain::CreateVulkanSurface(instance, gpus[gpu_index], &wi_copy)) == VK_NULL_HANDLE) { vkDestroyInstance(instance, nullptr); Vulkan::UnloadVulkanLibrary(); return false; } g_vulkan_context.reset(new Context(instance, gpus[gpu_index])); if (enable_debug_utils) g_vulkan_context->EnableDebugUtils(); // Attempt to create the device. if (!g_vulkan_context->CreateDevice(surface, enable_validation_layer, nullptr, 0, nullptr, 0, nullptr) || !g_vulkan_context->CreateAllocator() || !g_vulkan_context->CreateGlobalDescriptorPool() || !g_vulkan_context->CreateCommandBuffers() || !g_vulkan_context->CreateTextureStreamBuffer() || !g_vulkan_context->InitSpinResources() || (enable_surface && (*out_swap_chain = SwapChain::Create(wi_copy, surface, preferred_present_mode)) == nullptr)) { // Since we are destroying the instance, we're also responsible for destroying the surface. if (surface != VK_NULL_HANDLE) vkDestroySurfaceKHR(instance, surface, nullptr); g_vulkan_context.reset(); return false; } if (threaded_presentation) g_vulkan_context->StartPresentThread(); return true; } void Context::Destroy() { pxAssertMsg(g_vulkan_context, "Has context"); g_vulkan_context->StopPresentThread(); if (g_vulkan_context->m_device != VK_NULL_HANDLE) g_vulkan_context->WaitForGPUIdle(); g_vulkan_context->m_texture_upload_buffer.Destroy(false); g_vulkan_context->DestroySpinResources(); g_vulkan_context->DestroyRenderPassCache(); g_vulkan_context->DestroyGlobalDescriptorPool(); g_vulkan_context->DestroyCommandBuffers(); g_vulkan_context->DestroyAllocator(); if (g_vulkan_context->m_device != VK_NULL_HANDLE) vkDestroyDevice(g_vulkan_context->m_device, nullptr); if (g_vulkan_context->m_debug_messenger_callback != VK_NULL_HANDLE) g_vulkan_context->DisableDebugUtils(); if (g_vulkan_context->m_instance != VK_NULL_HANDLE) vkDestroyInstance(g_vulkan_context->m_instance, nullptr); Vulkan::UnloadVulkanLibrary(); g_vulkan_context.reset(); } bool Context::SelectDeviceExtensions(ExtensionList* extension_list, bool enable_surface) { u32 extension_count = 0; VkResult res = vkEnumerateDeviceExtensionProperties(m_physical_device, nullptr, &extension_count, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEnumerateDeviceExtensionProperties failed: "); return false; } if (extension_count == 0) { Console.Error("Vulkan: No extensions supported by device."); return false; } std::vector available_extension_list(extension_count); res = vkEnumerateDeviceExtensionProperties( m_physical_device, nullptr, &extension_count, available_extension_list.data()); pxAssert(res == VK_SUCCESS); auto SupportsExtension = [&](const char* name, bool required) { if (std::find_if(available_extension_list.begin(), available_extension_list.end(), [&](const VkExtensionProperties& properties) { return !strcmp(name, properties.extensionName); }) != available_extension_list.end()) { if (std::none_of(extension_list->begin(), extension_list->end(), [&](const char* existing_name) { return (std::strcmp(existing_name, name) == 0); })) { DevCon.WriteLn("Enabling extension: %s", name); extension_list->push_back(name); } return true; } if (required) Console.Error("Vulkan: Missing required extension %s.", name); return false; }; if (enable_surface && !SupportsExtension(VK_KHR_SWAPCHAIN_EXTENSION_NAME, true)) return false; m_optional_extensions.vk_ext_provoking_vertex = SupportsExtension(VK_EXT_PROVOKING_VERTEX_EXTENSION_NAME, false); m_optional_extensions.vk_ext_memory_budget = SupportsExtension(VK_EXT_MEMORY_BUDGET_EXTENSION_NAME, false); m_optional_extensions.vk_ext_calibrated_timestamps = SupportsExtension(VK_EXT_CALIBRATED_TIMESTAMPS_EXTENSION_NAME, false); m_optional_extensions.vk_ext_line_rasterization = SupportsExtension(VK_EXT_LINE_RASTERIZATION_EXTENSION_NAME, false); m_optional_extensions.vk_khr_driver_properties = SupportsExtension(VK_KHR_DRIVER_PROPERTIES_EXTENSION_NAME, false); m_optional_extensions.vk_arm_rasterization_order_attachment_access = SupportsExtension(VK_ARM_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_EXTENSION_NAME, false); m_optional_extensions.vk_khr_fragment_shader_barycentric = SupportsExtension(VK_KHR_FRAGMENT_SHADER_BARYCENTRIC_EXTENSION_NAME, false); return true; } bool Context::SelectDeviceFeatures(const VkPhysicalDeviceFeatures* required_features) { VkPhysicalDeviceFeatures available_features; vkGetPhysicalDeviceFeatures(m_physical_device, &available_features); if (required_features) std::memcpy(&m_device_features, required_features, sizeof(m_device_features)); // Enable the features we use. m_device_features.dualSrcBlend = available_features.dualSrcBlend; m_device_features.geometryShader = available_features.geometryShader; m_device_features.largePoints = available_features.largePoints; m_device_features.wideLines = available_features.wideLines; m_device_features.fragmentStoresAndAtomics = available_features.fragmentStoresAndAtomics; m_device_features.textureCompressionBC = available_features.textureCompressionBC; m_device_features.samplerAnisotropy = available_features.samplerAnisotropy; return true; } bool Context::CreateDevice(VkSurfaceKHR surface, bool enable_validation_layer, const char** required_device_extensions, u32 num_required_device_extensions, const char** required_device_layers, u32 num_required_device_layers, const VkPhysicalDeviceFeatures* required_features) { u32 queue_family_count; vkGetPhysicalDeviceQueueFamilyProperties(m_physical_device, &queue_family_count, nullptr); if (queue_family_count == 0) { Console.Error("No queue families found on specified vulkan physical device."); return false; } std::vector queue_family_properties(queue_family_count); vkGetPhysicalDeviceQueueFamilyProperties( m_physical_device, &queue_family_count, queue_family_properties.data()); Console.WriteLn("%u vulkan queue families", queue_family_count); // Find graphics and present queues. m_graphics_queue_family_index = queue_family_count; m_present_queue_family_index = queue_family_count; m_spin_queue_family_index = queue_family_count; u32 spin_queue_index = 0; for (uint32_t i = 0; i < queue_family_count; i++) { VkBool32 graphics_supported = queue_family_properties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT; if (graphics_supported) { m_graphics_queue_family_index = i; // Quit now, no need for a present queue. if (!surface) { break; } } if (surface) { VkBool32 present_supported; VkResult res = vkGetPhysicalDeviceSurfaceSupportKHR(m_physical_device, i, surface, &present_supported); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkGetPhysicalDeviceSurfaceSupportKHR failed: "); return false; } if (present_supported) { m_present_queue_family_index = i; } // Prefer one queue family index that does both graphics and present. if (graphics_supported && present_supported) { break; } } } for (uint32_t i = 0; i < queue_family_count; i++) { // Pick a queue for spinning if (!(queue_family_properties[i].queueFlags & VK_QUEUE_COMPUTE_BIT)) continue; // We need compute if (queue_family_properties[i].timestampValidBits == 0) continue; // We need timing const bool queue_is_used = i == m_graphics_queue_family_index || i == m_present_queue_family_index; if (queue_is_used && m_spin_queue_family_index != queue_family_count) continue; // Found a non-graphics queue to use spin_queue_index = 0; m_spin_queue_family_index = i; if (queue_is_used && queue_family_properties[i].queueCount > 1) spin_queue_index = 1; if (!(queue_family_properties[i].queueFlags & VK_QUEUE_GRAPHICS_BIT)) break; // Async compute queue, definitely pick this one } if (m_graphics_queue_family_index == queue_family_count) { Console.Error("Vulkan: Failed to find an acceptable graphics queue."); return false; } if (surface != VK_NULL_HANDLE && m_present_queue_family_index == queue_family_count) { Console.Error("Vulkan: Failed to find an acceptable present queue."); return false; } VkDeviceCreateInfo device_info = {}; device_info.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO; device_info.pNext = nullptr; device_info.flags = 0; device_info.queueCreateInfoCount = 0; static constexpr float queue_priorities[] = {1.0f, 0.0f}; // Low priority for the spin queue std::array queue_infos; VkDeviceQueueCreateInfo& graphics_queue_info = queue_infos[device_info.queueCreateInfoCount++]; graphics_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; graphics_queue_info.pNext = nullptr; graphics_queue_info.flags = 0; graphics_queue_info.queueFamilyIndex = m_graphics_queue_family_index; graphics_queue_info.queueCount = 1; graphics_queue_info.pQueuePriorities = queue_priorities; if (surface != VK_NULL_HANDLE && m_graphics_queue_family_index != m_present_queue_family_index) { VkDeviceQueueCreateInfo& present_queue_info = queue_infos[device_info.queueCreateInfoCount++]; present_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; present_queue_info.pNext = nullptr; present_queue_info.flags = 0; present_queue_info.queueFamilyIndex = m_present_queue_family_index; present_queue_info.queueCount = 1; present_queue_info.pQueuePriorities = queue_priorities; } if (m_spin_queue_family_index == m_graphics_queue_family_index) { if (spin_queue_index != 0) graphics_queue_info.queueCount = 2; } else if (m_spin_queue_family_index == m_present_queue_family_index) { if (spin_queue_index != 0) queue_infos[1].queueCount = 2; // present queue } else { VkDeviceQueueCreateInfo& spin_queue_info = queue_infos[device_info.queueCreateInfoCount++]; spin_queue_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO; spin_queue_info.pNext = nullptr; spin_queue_info.flags = 0; spin_queue_info.queueFamilyIndex = m_spin_queue_family_index; spin_queue_info.queueCount = 1; spin_queue_info.pQueuePriorities = queue_priorities + 1; } device_info.pQueueCreateInfos = queue_infos.data(); ExtensionList enabled_extensions; for (u32 i = 0; i < num_required_device_extensions; i++) enabled_extensions.emplace_back(required_device_extensions[i]); if (!SelectDeviceExtensions(&enabled_extensions, surface != VK_NULL_HANDLE)) return false; device_info.enabledLayerCount = num_required_device_layers; device_info.ppEnabledLayerNames = required_device_layers; device_info.enabledExtensionCount = static_cast(enabled_extensions.size()); device_info.ppEnabledExtensionNames = enabled_extensions.data(); // Check for required features before creating. if (!SelectDeviceFeatures(required_features)) return false; device_info.pEnabledFeatures = &m_device_features; // Enable debug layer on debug builds if (enable_validation_layer) { static const char* layer_names[] = {"VK_LAYER_LUNARG_standard_validation"}; device_info.enabledLayerCount = 1; device_info.ppEnabledLayerNames = layer_names; } // provoking vertex VkPhysicalDeviceProvokingVertexFeaturesEXT provoking_vertex_feature = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT}; VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesARM rasterization_order_access_feature = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_FEATURES_ARM}; VkPhysicalDeviceLineRasterizationFeaturesEXT line_rasterization_feature = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT}; if (m_optional_extensions.vk_ext_provoking_vertex) { provoking_vertex_feature.provokingVertexLast = VK_TRUE; Util::AddPointerToChain(&device_info, &provoking_vertex_feature); } if (m_optional_extensions.vk_ext_line_rasterization) { line_rasterization_feature.bresenhamLines = VK_TRUE; Util::AddPointerToChain(&device_info, &line_rasterization_feature); } if (m_optional_extensions.vk_arm_rasterization_order_attachment_access) { rasterization_order_access_feature.rasterizationOrderColorAttachmentAccess = VK_TRUE; Util::AddPointerToChain(&device_info, &rasterization_order_access_feature); } VkResult res = vkCreateDevice(m_physical_device, &device_info, nullptr, &m_device); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateDevice failed: "); return false; } // With the device created, we can fill the remaining entry points. if (!LoadVulkanDeviceFunctions(m_device)) return false; // Grab the graphics and present queues. vkGetDeviceQueue(m_device, m_graphics_queue_family_index, 0, &m_graphics_queue); if (surface) { vkGetDeviceQueue(m_device, m_present_queue_family_index, 0, &m_present_queue); } m_spinning_supported = m_spin_queue_family_index != queue_family_count && queue_family_properties[m_graphics_queue_family_index].timestampValidBits > 0 && m_device_properties.limits.timestampPeriod > 0; m_spin_queue_is_graphics_queue = m_spin_queue_family_index == m_graphics_queue_family_index && spin_queue_index == 0; m_gpu_timing_supported = (m_device_properties.limits.timestampComputeAndGraphics != 0 && queue_family_properties[m_graphics_queue_family_index].timestampValidBits > 0 && m_device_properties.limits.timestampPeriod > 0); DevCon.WriteLn("GPU timing is %s (TS=%u TS valid bits=%u, TS period=%f)", m_gpu_timing_supported ? "supported" : "not supported", static_cast(m_device_properties.limits.timestampComputeAndGraphics), queue_family_properties[m_graphics_queue_family_index].timestampValidBits, m_device_properties.limits.timestampPeriod); ProcessDeviceExtensions(); if (m_spinning_supported) { vkGetDeviceQueue(m_device, m_spin_queue_family_index, spin_queue_index, &m_spin_queue); m_spin_timestamp_scale = m_device_properties.limits.timestampPeriod; if (m_optional_extensions.vk_ext_calibrated_timestamps) { #ifdef _WIN32 LARGE_INTEGER Freq; QueryPerformanceFrequency(&Freq); m_queryperfcounter_to_ns = 1000000000.0 / static_cast < double > (Freq.QuadPart); #endif CalibrateSpinTimestamp(); } } return true; } void Context::ProcessDeviceExtensions() { // advanced feature checks VkPhysicalDeviceFeatures2 features2 = {VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2}; VkPhysicalDeviceProvokingVertexFeaturesEXT provoking_vertex_features = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT}; VkPhysicalDeviceLineRasterizationFeaturesEXT line_rasterization_feature = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT}; VkPhysicalDeviceRasterizationOrderAttachmentAccessFeaturesARM rasterization_order_access_feature = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_RASTERIZATION_ORDER_ATTACHMENT_ACCESS_FEATURES_ARM}; // add in optional feature structs if (m_optional_extensions.vk_ext_provoking_vertex) Util::AddPointerToChain(&features2, &provoking_vertex_features); if (m_optional_extensions.vk_ext_line_rasterization) Util::AddPointerToChain(&features2, &line_rasterization_feature); if (m_optional_extensions.vk_arm_rasterization_order_attachment_access) Util::AddPointerToChain(&features2, &rasterization_order_access_feature); // query vkGetPhysicalDeviceFeatures2(m_physical_device, &features2); // confirm we actually support it m_optional_extensions.vk_ext_provoking_vertex &= (provoking_vertex_features.provokingVertexLast == VK_TRUE); m_optional_extensions.vk_arm_rasterization_order_attachment_access &= (rasterization_order_access_feature.rasterizationOrderColorAttachmentAccess == VK_TRUE); m_optional_extensions.vk_ext_line_rasterization &= (line_rasterization_feature.bresenhamLines == VK_TRUE); VkPhysicalDeviceProperties2 properties2 = {VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2}; void** pNext = &properties2.pNext; if (m_optional_extensions.vk_khr_driver_properties) { m_device_driver_properties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_DRIVER_PROPERTIES; *pNext = &m_device_driver_properties; pNext = &m_device_driver_properties.pNext; } // query vkGetPhysicalDeviceProperties2(m_physical_device, &properties2); // VK_EXT_calibrated_timestamps checking if (m_optional_extensions.vk_ext_calibrated_timestamps) { u32 count = 0; vkGetPhysicalDeviceCalibrateableTimeDomainsEXT(m_physical_device, &count, nullptr); std::unique_ptr time_domains = std::make_unique(count); vkGetPhysicalDeviceCalibrateableTimeDomainsEXT(m_physical_device, &count, time_domains.get()); const VkTimeDomainEXT* begin = &time_domains[0]; const VkTimeDomainEXT* end = &time_domains[count]; if (std::find(begin, end, VK_TIME_DOMAIN_DEVICE_EXT) == end) m_optional_extensions.vk_ext_calibrated_timestamps = false; VkTimeDomainEXT preferred_types[] = { #ifdef _WIN32 VK_TIME_DOMAIN_QUERY_PERFORMANCE_COUNTER_EXT, #else #ifdef CLOCK_MONOTONIC_RAW VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT, #endif VK_TIME_DOMAIN_CLOCK_MONOTONIC_EXT, #endif }; m_calibrated_timestamp_type = VK_TIME_DOMAIN_DEVICE_EXT; for (VkTimeDomainEXT type : preferred_types) { if (std::find(begin, end, type) != end) { m_calibrated_timestamp_type = type; break; } } if (m_calibrated_timestamp_type == VK_TIME_DOMAIN_DEVICE_EXT) m_optional_extensions.vk_ext_calibrated_timestamps = false; } Console.WriteLn("VK_EXT_provoking_vertex is %s", m_optional_extensions.vk_ext_provoking_vertex ? "supported" : "NOT supported"); Console.WriteLn("VK_EXT_line_rasterization is %s", m_optional_extensions.vk_ext_line_rasterization ? "supported" : "NOT supported"); Console.WriteLn("VK_EXT_calibrated_timestamps is %s", m_optional_extensions.vk_ext_calibrated_timestamps ? "supported" : "NOT supported"); Console.WriteLn("VK_ARM_rasterization_order_attachment_access is %s", m_optional_extensions.vk_arm_rasterization_order_attachment_access ? "supported" : "NOT supported"); } bool Context::CreateAllocator() { VmaAllocatorCreateInfo ci = {}; ci.vulkanApiVersion = VK_API_VERSION_1_1; ci.flags = VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT; ci.physicalDevice = m_physical_device; ci.device = m_device; ci.instance = m_instance; if (m_optional_extensions.vk_ext_memory_budget) ci.flags |= VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT; VkResult res = vmaCreateAllocator(&ci, &m_allocator); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vmaCreateAllocator failed: "); return false; } return true; } void Context::DestroyAllocator() { if (m_allocator == VK_NULL_HANDLE) return; vmaDestroyAllocator(m_allocator); m_allocator = VK_NULL_HANDLE; } bool Context::CreateCommandBuffers() { VkResult res; uint32_t frame_index = 0; for (FrameResources& resources : m_frame_resources) { resources.needs_fence_wait = false; VkCommandPoolCreateInfo pool_info = { VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO, nullptr, 0, m_graphics_queue_family_index}; res = vkCreateCommandPool(m_device, &pool_info, nullptr, &resources.command_pool); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateCommandPool failed: "); return false; } Vulkan::Util::SetObjectName( g_vulkan_context->GetDevice(), resources.command_pool, "Frame Command Pool %u", frame_index); VkCommandBufferAllocateInfo buffer_info = {VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO, nullptr, resources.command_pool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, static_cast(resources.command_buffers.size())}; res = vkAllocateCommandBuffers(m_device, &buffer_info, resources.command_buffers.data()); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkAllocateCommandBuffers failed: "); return false; } for (u32 i = 0; i < resources.command_buffers.size(); i++) { Vulkan::Util::SetObjectName(g_vulkan_context->GetDevice(), resources.command_buffers[i], "Frame %u %sCommand Buffer", frame_index, (i == 0) ? "Init" : ""); } VkFenceCreateInfo fence_info = {VK_STRUCTURE_TYPE_FENCE_CREATE_INFO, nullptr, VK_FENCE_CREATE_SIGNALED_BIT}; res = vkCreateFence(m_device, &fence_info, nullptr, &resources.fence); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateFence failed: "); return false; } Vulkan::Util::SetObjectName(g_vulkan_context->GetDevice(), resources.fence, "Frame Fence %u", frame_index); // TODO: A better way to choose the number of descriptors. VkDescriptorPoolSize pool_sizes[] = { {VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, MAX_COMBINED_IMAGE_SAMPLER_DESCRIPTORS_PER_FRAME}, {VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, MAX_SAMPLED_IMAGE_DESCRIPTORS_PER_FRAME}, {VK_DESCRIPTOR_TYPE_STORAGE_IMAGE, MAX_STORAGE_IMAGE_DESCRIPTORS_PER_FRAME}, {VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, MAX_INPUT_ATTACHMENT_IMAGE_DESCRIPTORS_PER_FRAME}, }; VkDescriptorPoolCreateInfo pool_create_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, nullptr, 0, MAX_DESCRIPTOR_SETS_PER_FRAME, static_cast(std::size(pool_sizes)), pool_sizes}; res = vkCreateDescriptorPool(m_device, &pool_create_info, nullptr, &resources.descriptor_pool); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateDescriptorPool failed: "); return false; } Vulkan::Util::SetObjectName( g_vulkan_context->GetDevice(), resources.descriptor_pool, "Frame Descriptor Pool %u", frame_index); ++frame_index; } ActivateCommandBuffer(0); return true; } void Context::DestroyCommandBuffers() { for (FrameResources& resources : m_frame_resources) { for (auto& it : resources.cleanup_resources) it(); resources.cleanup_resources.clear(); if (resources.fence != VK_NULL_HANDLE) { vkDestroyFence(m_device, resources.fence, nullptr); resources.fence = VK_NULL_HANDLE; } if (resources.descriptor_pool != VK_NULL_HANDLE) { vkDestroyDescriptorPool(m_device, resources.descriptor_pool, nullptr); resources.descriptor_pool = VK_NULL_HANDLE; } if (resources.command_buffers[0] != VK_NULL_HANDLE) { vkFreeCommandBuffers(m_device, resources.command_pool, static_cast(resources.command_buffers.size()), resources.command_buffers.data()); resources.command_buffers.fill(VK_NULL_HANDLE); } if (resources.command_pool != VK_NULL_HANDLE) { vkDestroyCommandPool(m_device, resources.command_pool, nullptr); resources.command_pool = VK_NULL_HANDLE; } } } bool Context::CreateGlobalDescriptorPool() { // TODO: A better way to choose the number of descriptors. VkDescriptorPoolSize pool_sizes[] = { {VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC, 1024}, {VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1024}, {VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1}, }; VkDescriptorPoolCreateInfo pool_create_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO, nullptr, VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT, 1024, // TODO: tweak this static_cast(std::size(pool_sizes)), pool_sizes}; VkResult res = vkCreateDescriptorPool(m_device, &pool_create_info, nullptr, &m_global_descriptor_pool); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateDescriptorPool failed: "); return false; } Vulkan::Util::SetObjectName(g_vulkan_context->GetDevice(), m_global_descriptor_pool, "Global Descriptor Pool"); if (m_gpu_timing_supported) { const VkQueryPoolCreateInfo query_create_info = {VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO, nullptr, 0, VK_QUERY_TYPE_TIMESTAMP, NUM_COMMAND_BUFFERS * 4, 0}; res = vkCreateQueryPool(m_device, &query_create_info, nullptr, &m_timestamp_query_pool); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateQueryPool failed: "); m_gpu_timing_supported = false; return false; } } return true; } void Context::DestroyGlobalDescriptorPool() { if (m_timestamp_query_pool != VK_NULL_HANDLE) { vkDestroyQueryPool(m_device, m_timestamp_query_pool, nullptr); m_timestamp_query_pool = VK_NULL_HANDLE; } if (m_global_descriptor_pool != VK_NULL_HANDLE) { vkDestroyDescriptorPool(m_device, m_global_descriptor_pool, nullptr); m_global_descriptor_pool = VK_NULL_HANDLE; } } bool Context::CreateTextureStreamBuffer() { if (!m_texture_upload_buffer.Create(VK_BUFFER_USAGE_TRANSFER_SRC_BIT, TEXTURE_BUFFER_SIZE)) { Console.Error("Failed to allocate texture upload buffer"); return false; } return true; } VkCommandBuffer Context::GetCurrentInitCommandBuffer() { FrameResources& res = m_frame_resources[m_current_frame]; VkCommandBuffer buf = res.command_buffers[0]; if (res.init_buffer_used) return buf; VkCommandBufferBeginInfo bi{ VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, nullptr, VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, nullptr}; vkBeginCommandBuffer(buf, &bi); res.init_buffer_used = true; return buf; } VkDescriptorSet Context::AllocateDescriptorSet(VkDescriptorSetLayout set_layout) { VkDescriptorSetAllocateInfo allocate_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, nullptr, m_frame_resources[m_current_frame].descriptor_pool, 1, &set_layout}; VkDescriptorSet descriptor_set; VkResult res = vkAllocateDescriptorSets(m_device, &allocate_info, &descriptor_set); if (res != VK_SUCCESS) { // Failing to allocate a descriptor set is not a fatal error, we can // recover by moving to the next command buffer. return VK_NULL_HANDLE; } return descriptor_set; } VkDescriptorSet Context::AllocatePersistentDescriptorSet(VkDescriptorSetLayout set_layout) { VkDescriptorSetAllocateInfo allocate_info = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, nullptr, m_global_descriptor_pool, 1, &set_layout}; VkDescriptorSet descriptor_set; VkResult res = vkAllocateDescriptorSets(m_device, &allocate_info, &descriptor_set); if (res != VK_SUCCESS) return VK_NULL_HANDLE; return descriptor_set; } void Context::FreeGlobalDescriptorSet(VkDescriptorSet set) { vkFreeDescriptorSets(m_device, m_global_descriptor_pool, 1, &set); } void Context::WaitForFenceCounter(u64 fence_counter) { if (m_completed_fence_counter >= fence_counter) return; // Find the first command buffer which covers this counter value. u32 index = (m_current_frame + 1) % NUM_COMMAND_BUFFERS; while (index != m_current_frame) { if (m_frame_resources[index].fence_counter >= fence_counter) break; index = (index + 1) % NUM_COMMAND_BUFFERS; } pxAssert(index != m_current_frame); WaitForCommandBufferCompletion(index); } void Context::WaitForGPUIdle() { WaitForPresentComplete(); vkDeviceWaitIdle(m_device); } float Context::GetAndResetAccumulatedGPUTime() { const float time = m_accumulated_gpu_time; m_accumulated_gpu_time = 0.0f; return time; } bool Context::SetEnableGPUTiming(bool enabled) { m_gpu_timing_enabled = enabled && m_gpu_timing_supported; return (enabled == m_gpu_timing_enabled); } void Context::ScanForCommandBufferCompletion() { for (u32 check_index = (m_current_frame + 1) % NUM_COMMAND_BUFFERS; check_index != m_current_frame; check_index = (check_index + 1) % NUM_COMMAND_BUFFERS) { FrameResources& resources = m_frame_resources[check_index]; if (resources.fence_counter <= m_completed_fence_counter) continue; // Already completed if (vkGetFenceStatus(m_device, resources.fence) != VK_SUCCESS) break; // Fence not signaled, later fences won't be either CommandBufferCompleted(check_index); m_completed_fence_counter = resources.fence_counter; } for (SpinResources& resources : m_spin_resources) { if (!resources.in_progress) continue; if (vkGetFenceStatus(m_device, resources.fence) != VK_SUCCESS) continue; SpinCommandCompleted(&resources - &m_spin_resources[0]); } } void Context::WaitForCommandBufferCompletion(u32 index) { // Wait for this command buffer to be completed. const VkResult res = vkWaitForFences(m_device, 1, &m_frame_resources[index].fence, VK_TRUE, UINT64_MAX); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkWaitForFences failed: "); m_last_submit_failed.store(true, std::memory_order_release); return; } // Clean up any resources for command buffers between the last known completed buffer and this // now-completed command buffer. If we use >2 buffers, this may be more than one buffer. const u64 now_completed_counter = m_frame_resources[index].fence_counter; u32 cleanup_index = (m_current_frame + 1) % NUM_COMMAND_BUFFERS; while (cleanup_index != m_current_frame) { FrameResources& resources = m_frame_resources[cleanup_index]; if (resources.fence_counter > now_completed_counter) break; if (resources.fence_counter > m_completed_fence_counter) CommandBufferCompleted(cleanup_index); cleanup_index = (cleanup_index + 1) % NUM_COMMAND_BUFFERS; } m_completed_fence_counter = now_completed_counter; } void Context::SubmitCommandBuffer(SwapChain* present_swap_chain /* = nullptr */, bool submit_on_thread /* = false */) { FrameResources& resources = m_frame_resources[m_current_frame]; // End the current command buffer. VkResult res; if (resources.init_buffer_used) { res = vkEndCommandBuffer(resources.command_buffers[0]); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEndCommandBuffer failed: "); pxFailRel("Failed to end command buffer"); } } bool wants_timestamp = m_gpu_timing_enabled || m_spin_timer; if (wants_timestamp && resources.timestamp_written) { vkCmdWriteTimestamp(m_current_command_buffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, m_timestamp_query_pool, m_current_frame * 2 + 1); } res = vkEndCommandBuffer(resources.command_buffers[1]); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkEndCommandBuffer failed: "); pxFailRel("Failed to end command buffer"); } // This command buffer now has commands, so can't be re-used without waiting. resources.needs_fence_wait = true; u32 spin_cycles = 0; const bool spin_enabled = m_spin_timer; if (spin_enabled) { ScanForCommandBufferCompletion(); auto draw = m_spin_manager.DrawSubmitted(m_command_buffer_render_passes); u32 constant_offset = 400000 * m_spin_manager.SpinsPerUnitTime(); // 400µs, just to be safe since going over gets really bad if (m_optional_extensions.vk_ext_calibrated_timestamps) constant_offset /= 2; // Safety factor isn't as important here, going over just hurts this one submission a bit u32 minimum_spin = 200000 * m_spin_manager.SpinsPerUnitTime(); u32 maximum_spin = std::max(1024, 16000000 * m_spin_manager.SpinsPerUnitTime()); // 16ms if (draw.recommended_spin > minimum_spin + constant_offset) spin_cycles = std::min(draw.recommended_spin - constant_offset, maximum_spin); resources.spin_id = draw.id; } else { resources.spin_id = -1; } m_command_buffer_render_passes = 0; if (present_swap_chain != VK_NULL_HANDLE && m_spinning_supported) { m_spin_manager.NextFrame(); if (m_spin_timer) m_spin_timer--; // Calibrate a max of once per frame m_wants_new_timestamp_calibration = m_optional_extensions.vk_ext_calibrated_timestamps; } if (spin_cycles != 0) WaitForSpinCompletion(m_current_frame); std::unique_lock lock(m_present_mutex); WaitForPresentComplete(lock); if (spin_enabled && m_optional_extensions.vk_ext_calibrated_timestamps) resources.submit_timestamp = GetCPUTimestamp(); if (!submit_on_thread || !m_present_thread.joinable()) { DoSubmitCommandBuffer(m_current_frame, present_swap_chain, spin_cycles); if (present_swap_chain) DoPresent(present_swap_chain); return; } m_queued_present.command_buffer_index = m_current_frame; m_queued_present.swap_chain = present_swap_chain; m_queued_present.spin_cycles = spin_cycles; m_present_done.store(false); m_present_queued_cv.notify_one(); } void Context::DoSubmitCommandBuffer(u32 index, SwapChain* present_swap_chain, u32 spin_cycles) { FrameResources& resources = m_frame_resources[index]; uint32_t wait_bits = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; VkSemaphore semas[2]; VkSubmitInfo submit_info = { VK_STRUCTURE_TYPE_SUBMIT_INFO }; submit_info.commandBufferCount = resources.init_buffer_used ? 2u : 1u; submit_info.pCommandBuffers = resources.init_buffer_used ? resources.command_buffers.data() : &resources.command_buffers[1]; if (present_swap_chain) { submit_info.pWaitSemaphores = present_swap_chain->GetImageAvailableSemaphorePtr(); submit_info.waitSemaphoreCount = 1; submit_info.pWaitDstStageMask = &wait_bits; if (spin_cycles != 0) { semas[0] = present_swap_chain->GetRenderingFinishedSemaphore(); semas[1] = m_spin_resources[index].semaphore; submit_info.signalSemaphoreCount = 2; submit_info.pSignalSemaphores = semas; } else { submit_info.pSignalSemaphores = present_swap_chain->GetRenderingFinishedSemaphorePtr(); submit_info.signalSemaphoreCount = 1; } } else if (spin_cycles != 0) { submit_info.signalSemaphoreCount = 1; submit_info.pSignalSemaphores = &m_spin_resources[index].semaphore; } const VkResult res = vkQueueSubmit(m_graphics_queue, 1, &submit_info, resources.fence); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkQueueSubmit failed: "); m_last_submit_failed.store(true, std::memory_order_release); return; } if (spin_cycles != 0) SubmitSpinCommand(index, spin_cycles); } void Context::DoPresent(SwapChain* present_swap_chain) { const VkPresentInfoKHR present_info = {VK_STRUCTURE_TYPE_PRESENT_INFO_KHR, nullptr, 1, present_swap_chain->GetRenderingFinishedSemaphorePtr(), 1, present_swap_chain->GetSwapChainPtr(), present_swap_chain->GetCurrentImageIndexPtr(), nullptr}; present_swap_chain->ReleaseCurrentImage(); const VkResult res = vkQueuePresentKHR(m_present_queue, &present_info); if (res != VK_SUCCESS) { // VK_ERROR_OUT_OF_DATE_KHR is not fatal, just means we need to recreate our swap chain. if (res != VK_ERROR_OUT_OF_DATE_KHR && res != VK_SUBOPTIMAL_KHR) LOG_VULKAN_ERROR(res, "vkQueuePresentKHR failed: "); m_last_present_failed.store(true, std::memory_order_release); return; } // Grab the next image as soon as possible, that way we spend less time blocked on the next // submission. Don't care if it fails, we'll deal with that at the presentation call site. // Credit to dxvk for the idea. present_swap_chain->AcquireNextImage(); } void Context::WaitForPresentComplete() { if (m_present_done.load()) return; std::unique_lock lock(m_present_mutex); WaitForPresentComplete(lock); } void Context::WaitForPresentComplete(std::unique_lock& lock) { if (m_present_done.load()) return; m_present_done_cv.wait(lock, [this]() { return m_present_done.load(); }); } void Context::PresentThread() { std::unique_lock lock(m_present_mutex); while (!m_present_thread_done.load()) { m_present_queued_cv.wait(lock, [this]() { return !m_present_done.load() || m_present_thread_done.load(); }); if (m_present_done.load()) continue; DoSubmitCommandBuffer(m_queued_present.command_buffer_index, m_queued_present.swap_chain, m_queued_present.spin_cycles); if (m_queued_present.swap_chain) DoPresent(m_queued_present.swap_chain); m_present_done.store(true); m_present_done_cv.notify_one(); } } void Context::StartPresentThread() { pxAssert(!m_present_thread.joinable()); m_present_thread_done.store(false); m_present_thread = std::thread(&Context::PresentThread, this); } void Context::StopPresentThread() { if (!m_present_thread.joinable()) return; { std::unique_lock lock(m_present_mutex); WaitForPresentComplete(lock); m_present_thread_done.store(true); m_present_queued_cv.notify_one(); } m_present_thread.join(); } void Context::CommandBufferCompleted(u32 index) { FrameResources& resources = m_frame_resources[index]; for (auto& it : resources.cleanup_resources) it(); resources.cleanup_resources.clear(); bool wants_timestamps = m_gpu_timing_enabled || resources.spin_id >= 0; if (wants_timestamps && resources.timestamp_written) { std::array timestamps; VkResult res = vkGetQueryPoolResults(m_device, m_timestamp_query_pool, index * 2, static_cast(timestamps.size()), sizeof(u64) * timestamps.size(), timestamps.data(), sizeof(u64), VK_QUERY_RESULT_64_BIT); if (res == VK_SUCCESS) { // if we didn't write the timestamp at the start of the cmdbuffer (just enabled timing), the first TS will be zero if (timestamps[0] > 0 && m_gpu_timing_enabled) { const double ns_diff = (timestamps[1] - timestamps[0]) * static_cast(m_device_properties.limits.timestampPeriod); m_accumulated_gpu_time += ns_diff / 1000000.0; } if (resources.spin_id >= 0) { if (m_optional_extensions.vk_ext_calibrated_timestamps && timestamps[1] > 0) { u64 end = timestamps[1] * m_spin_timestamp_scale + m_spin_timestamp_offset; m_spin_manager.DrawCompleted(resources.spin_id, resources.submit_timestamp, end); } else if (!m_optional_extensions.vk_ext_calibrated_timestamps && timestamps[0] > 0) { u64 begin = timestamps[0] * m_spin_timestamp_scale; u64 end = timestamps[1] * m_spin_timestamp_scale; m_spin_manager.DrawCompleted(resources.spin_id, begin, end); } } } else { LOG_VULKAN_ERROR(res, "vkGetQueryPoolResults failed: "); } } } void Context::MoveToNextCommandBuffer() { ActivateCommandBuffer((m_current_frame + 1) % NUM_COMMAND_BUFFERS); } void Context::ActivateCommandBuffer(u32 index) { FrameResources& resources = m_frame_resources[index]; if (!m_present_done.load() && m_queued_present.command_buffer_index == index) WaitForPresentComplete(); // Wait for the GPU to finish with all resources for this command buffer. if (resources.fence_counter > m_completed_fence_counter) WaitForCommandBufferCompletion(index); // Reset fence to unsignaled before starting. VkResult res = vkResetFences(m_device, 1, &resources.fence); if (res != VK_SUCCESS) LOG_VULKAN_ERROR(res, "vkResetFences failed: "); // Reset command pools to beginning since we can re-use the memory now res = vkResetCommandPool(m_device, resources.command_pool, 0); if (res != VK_SUCCESS) LOG_VULKAN_ERROR(res, "vkResetCommandPool failed: "); // Enable commands to be recorded to the two buffers again. VkCommandBufferBeginInfo begin_info = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO, nullptr, VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT, nullptr}; res = vkBeginCommandBuffer(resources.command_buffers[1], &begin_info); if (res != VK_SUCCESS) LOG_VULKAN_ERROR(res, "vkBeginCommandBuffer failed: "); // Also can do the same for the descriptor pools res = vkResetDescriptorPool(m_device, resources.descriptor_pool, 0); if (res != VK_SUCCESS) LOG_VULKAN_ERROR(res, "vkResetDescriptorPool failed: "); bool wants_timestamp = m_gpu_timing_enabled || m_spin_timer; if (wants_timestamp) { vkCmdResetQueryPool(resources.command_buffers[1], m_timestamp_query_pool, index * 2, 2); vkCmdWriteTimestamp(resources.command_buffers[1], VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, m_timestamp_query_pool, index * 2); } resources.fence_counter = m_next_fence_counter++; resources.init_buffer_used = false; resources.timestamp_written = wants_timestamp; m_current_frame = index; m_current_command_buffer = resources.command_buffers[1]; // using the lower 32 bits of the fence index should be sufficient here, I hope... vmaSetCurrentFrameIndex(m_allocator, static_cast(m_next_fence_counter)); } void Context::ExecuteCommandBuffer(WaitType wait_for_completion) { if (m_last_submit_failed.load(std::memory_order_acquire)) return; // If we're waiting for completion, don't bother waking the worker thread. const u32 current_frame = m_current_frame; SubmitCommandBuffer(); MoveToNextCommandBuffer(); if (wait_for_completion != WaitType::None) { // Calibrate while we wait if (m_wants_new_timestamp_calibration) CalibrateSpinTimestamp(); if (wait_for_completion == WaitType::Spin) { while (vkGetFenceStatus(m_device, m_frame_resources[current_frame].fence) == VK_NOT_READY) ShortSpin(); } WaitForCommandBufferCompletion(current_frame); } } bool Context::CheckLastPresentFail() { return m_last_present_failed.exchange(false, std::memory_order_acq_rel); } bool Context::CheckLastSubmitFail() { return m_last_submit_failed.load(std::memory_order_acquire); } void Context::DeferBufferDestruction(VkBuffer object) { FrameResources& resources = m_frame_resources[m_current_frame]; resources.cleanup_resources.push_back([this, object]() { vkDestroyBuffer(m_device, object, nullptr); }); } void Context::DeferBufferDestruction(VkBuffer object, VmaAllocation allocation) { FrameResources& resources = m_frame_resources[m_current_frame]; resources.cleanup_resources.push_back( [this, object, allocation]() { vmaDestroyBuffer(m_allocator, object, allocation); }); } void Context::DeferBufferViewDestruction(VkBufferView object) { FrameResources& resources = m_frame_resources[m_current_frame]; resources.cleanup_resources.push_back([this, object]() { vkDestroyBufferView(m_device, object, nullptr); }); } void Context::DeferDeviceMemoryDestruction(VkDeviceMemory object) { FrameResources& resources = m_frame_resources[m_current_frame]; resources.cleanup_resources.push_back([this, object]() { vkFreeMemory(m_device, object, nullptr); }); } void Context::DeferFramebufferDestruction(VkFramebuffer object) { FrameResources& resources = m_frame_resources[m_current_frame]; resources.cleanup_resources.push_back([this, object]() { vkDestroyFramebuffer(m_device, object, nullptr); }); } void Context::DeferImageDestruction(VkImage object) { FrameResources& resources = m_frame_resources[m_current_frame]; resources.cleanup_resources.push_back([this, object]() { vkDestroyImage(m_device, object, nullptr); }); } void Context::DeferImageDestruction(VkImage object, VmaAllocation allocation) { FrameResources& resources = m_frame_resources[m_current_frame]; resources.cleanup_resources.push_back( [this, object, allocation]() { vmaDestroyImage(m_allocator, object, allocation); }); } void Context::DeferImageViewDestruction(VkImageView object) { FrameResources& resources = m_frame_resources[m_current_frame]; resources.cleanup_resources.push_back([this, object]() { vkDestroyImageView(m_device, object, nullptr); }); } void Context::DeferPipelineDestruction(VkPipeline pipeline) { FrameResources& resources = m_frame_resources[m_current_frame]; resources.cleanup_resources.push_back([this, pipeline]() { vkDestroyPipeline(m_device, pipeline, nullptr); }); } void Context::DeferSamplerDestruction(VkSampler sampler) { FrameResources& resources = m_frame_resources[m_current_frame]; resources.cleanup_resources.push_back([this, sampler]() { vkDestroySampler(m_device, sampler, nullptr); }); } VKAPI_ATTR VkBool32 VKAPI_CALL DebugMessengerCallback(VkDebugUtilsMessageSeverityFlagBitsEXT severity, VkDebugUtilsMessageTypeFlagsEXT messageType, const VkDebugUtilsMessengerCallbackDataEXT* pCallbackData, void* pUserData) { if (severity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT) { Console.Error("Vulkan debug report: (%s) %s", pCallbackData->pMessageIdName ? pCallbackData->pMessageIdName : "", pCallbackData->pMessage); } else if (severity & (VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT)) { Console.Warning("Vulkan debug report: (%s) %s", pCallbackData->pMessageIdName ? pCallbackData->pMessageIdName : "", pCallbackData->pMessage); } else if (severity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT) { Console.WriteLn("Vulkan debug report: (%s) %s", pCallbackData->pMessageIdName ? pCallbackData->pMessageIdName : "", pCallbackData->pMessage); } else { DevCon.WriteLn("Vulkan debug report: (%s) %s", pCallbackData->pMessageIdName ? pCallbackData->pMessageIdName : "", pCallbackData->pMessage); } return VK_FALSE; } bool Context::EnableDebugUtils() { // Already enabled? if (m_debug_messenger_callback != VK_NULL_HANDLE) return true; // Check for presence of the functions before calling if (!vkCreateDebugUtilsMessengerEXT || !vkDestroyDebugUtilsMessengerEXT || !vkSubmitDebugUtilsMessageEXT) { return false; } VkDebugUtilsMessengerCreateInfoEXT messenger_info = {VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT, nullptr, 0, VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_SEVERITY_INFO_BIT_EXT, VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT | VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT, DebugMessengerCallback, nullptr}; const VkResult res = vkCreateDebugUtilsMessengerEXT(m_instance, &messenger_info, nullptr, &m_debug_messenger_callback); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateDebugUtilsMessengerEXT failed: "); return false; } return true; } void Context::DisableDebugUtils() { if (m_debug_messenger_callback != VK_NULL_HANDLE) { vkDestroyDebugUtilsMessengerEXT(m_instance, m_debug_messenger_callback, nullptr); m_debug_messenger_callback = VK_NULL_HANDLE; } } VkRenderPass Context::CreateCachedRenderPass(RenderPassCacheKey key) { VkAttachmentReference color_reference; VkAttachmentReference* color_reference_ptr = nullptr; VkAttachmentReference depth_reference; VkAttachmentReference* depth_reference_ptr = nullptr; VkAttachmentReference input_reference; VkAttachmentReference* input_reference_ptr = nullptr; VkSubpassDependency subpass_dependency; VkSubpassDependency* subpass_dependency_ptr = nullptr; std::array attachments; u32 num_attachments = 0; if (key.color_format != VK_FORMAT_UNDEFINED) { attachments[num_attachments] = {0, static_cast(key.color_format), VK_SAMPLE_COUNT_1_BIT, static_cast(key.color_load_op), static_cast(key.color_store_op), VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, key.color_feedback_loop ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, key.color_feedback_loop ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL}; color_reference.attachment = num_attachments; color_reference.layout = key.color_feedback_loop ? VK_IMAGE_LAYOUT_GENERAL : VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL; color_reference_ptr = &color_reference; if (key.color_feedback_loop) { input_reference.attachment = num_attachments; input_reference.layout = VK_IMAGE_LAYOUT_GENERAL; input_reference_ptr = &input_reference; if (!g_vulkan_context->GetOptionalExtensions().vk_arm_rasterization_order_attachment_access) { // don't need the framebuffer-local dependency when we have rasterization order attachment access subpass_dependency.srcSubpass = 0; subpass_dependency.dstSubpass = 0; subpass_dependency.srcStageMask = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT; subpass_dependency.dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT; subpass_dependency.srcAccessMask = VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT; subpass_dependency.dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT; subpass_dependency.dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT; subpass_dependency_ptr = &subpass_dependency; } } num_attachments++; } if (key.depth_format != VK_FORMAT_UNDEFINED) { attachments[num_attachments] = {0, static_cast(key.depth_format), VK_SAMPLE_COUNT_1_BIT, static_cast(key.depth_load_op), static_cast(key.depth_store_op), static_cast(key.stencil_load_op), static_cast(key.stencil_store_op), VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL}; depth_reference.attachment = num_attachments; depth_reference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL; depth_reference_ptr = &depth_reference; num_attachments++; } const VkSubpassDescriptionFlags subpass_flags = (key.color_feedback_loop && g_vulkan_context->GetOptionalExtensions().vk_arm_rasterization_order_attachment_access) ? VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_COLOR_ACCESS_BIT_ARM : 0; const VkSubpassDescription subpass = {subpass_flags, VK_PIPELINE_BIND_POINT_GRAPHICS, input_reference_ptr ? 1u : 0u, input_reference_ptr ? input_reference_ptr : nullptr, color_reference_ptr ? 1u : 0u, color_reference_ptr ? color_reference_ptr : nullptr, nullptr, depth_reference_ptr, 0, nullptr}; const VkRenderPassCreateInfo pass_info = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0u, num_attachments, attachments.data(), 1u, &subpass, subpass_dependency_ptr ? 1u : 0u, subpass_dependency_ptr}; VkRenderPass pass; const VkResult res = vkCreateRenderPass(m_device, &pass_info, nullptr, &pass); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateRenderPass failed: "); return VK_NULL_HANDLE; } m_render_pass_cache.emplace(key.key, pass); return pass; } void Context::DestroyRenderPassCache() { for (auto& it : m_render_pass_cache) vkDestroyRenderPass(m_device, it.second, nullptr); m_render_pass_cache.clear(); } static constexpr std::string_view SPIN_SHADER = R"( #version 460 core layout(std430, set=0, binding=0) buffer SpinBuffer { uint spin[]; }; layout(push_constant) uniform constants { uint cycles; }; layout(local_size_x = 1, local_size_y = 1, local_size_z = 1) in; void main() { uint value = spin[0]; // The compiler doesn't know, but spin[0] == 0, so this loop won't actually go anywhere for (uint i = 0; i < cycles; i++) value = spin[value]; // Store the result back to the buffer so the compiler can't optimize it away spin[0] = value; } )"; bool Context::InitSpinResources() { if (!m_spinning_supported) return true; auto spirv = ShaderCompiler::CompileComputeShader(SPIN_SHADER); if (!spirv.has_value()) return false; VkResult res; #define CHECKED_CREATE(create_fn, create_struct, output_struct) \ do { \ if ((res = create_fn(m_device, create_struct, nullptr, output_struct)) != VK_SUCCESS) \ { \ LOG_VULKAN_ERROR(res, #create_fn " failed: "); \ return false; \ } \ } while (0) VkDescriptorSetLayoutBinding set_layout_binding = {}; set_layout_binding.binding = 0; set_layout_binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; set_layout_binding.descriptorCount = 1; set_layout_binding.stageFlags = VK_SHADER_STAGE_COMPUTE_BIT; VkDescriptorSetLayoutCreateInfo desc_set_layout_create = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO }; desc_set_layout_create.bindingCount = 1; desc_set_layout_create.pBindings = &set_layout_binding; CHECKED_CREATE(vkCreateDescriptorSetLayout, &desc_set_layout_create, &m_spin_descriptor_set_layout); const VkPushConstantRange push_constant_range = { VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(u32) }; VkPipelineLayoutCreateInfo pl_layout_create = { VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO }; pl_layout_create.setLayoutCount = 1; pl_layout_create.pSetLayouts = &m_spin_descriptor_set_layout; pl_layout_create.pushConstantRangeCount = 1; pl_layout_create.pPushConstantRanges = &push_constant_range; CHECKED_CREATE(vkCreatePipelineLayout, &pl_layout_create, &m_spin_pipeline_layout); VkShaderModuleCreateInfo module_create = { VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO }; module_create.codeSize = spirv->size() * sizeof(ShaderCompiler::SPIRVCodeType); module_create.pCode = spirv->data(); VkShaderModule shader_module; CHECKED_CREATE(vkCreateShaderModule, &module_create, &shader_module); Util::SetObjectName(m_device, shader_module, "Spin Shader"); VkComputePipelineCreateInfo pl_create = { VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO }; pl_create.layout = m_spin_pipeline_layout; pl_create.stage.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO; pl_create.stage.stage = VK_SHADER_STAGE_COMPUTE_BIT; pl_create.stage.pName = "main"; pl_create.stage.module = shader_module; res = vkCreateComputePipelines(m_device, VK_NULL_HANDLE, 1, &pl_create, nullptr, &m_spin_pipeline); vkDestroyShaderModule(m_device, shader_module, nullptr); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkCreateComputePipelines failed: "); return false; } Util::SetObjectName(m_device, m_spin_pipeline, "Spin Pipeline"); VmaAllocationCreateInfo buf_vma_create = {}; buf_vma_create.usage = VMA_MEMORY_USAGE_GPU_ONLY; VkBufferCreateInfo buf_create = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO }; buf_create.size = 4; buf_create.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT; if ((res = vmaCreateBuffer(m_allocator, &buf_create, &buf_vma_create, &m_spin_buffer, &m_spin_buffer_allocation, nullptr)) != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vmaCreateBuffer failed: "); return false; } Util::SetObjectName(m_device, m_spin_buffer, "Spin Buffer"); VkDescriptorSetAllocateInfo desc_set_allocate = { VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO }; desc_set_allocate.descriptorPool = m_global_descriptor_pool; desc_set_allocate.descriptorSetCount = 1; desc_set_allocate.pSetLayouts = &m_spin_descriptor_set_layout; if ((res = vkAllocateDescriptorSets(m_device, &desc_set_allocate, &m_spin_descriptor_set)) != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkAllocateDescriptorSets failed: "); return false; } const VkDescriptorBufferInfo desc_buffer_info = { m_spin_buffer, 0, VK_WHOLE_SIZE }; VkWriteDescriptorSet desc_set_write = { VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET }; desc_set_write.dstSet = m_spin_descriptor_set; desc_set_write.dstBinding = 0; desc_set_write.descriptorCount = 1; desc_set_write.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER; desc_set_write.pBufferInfo = &desc_buffer_info; vkUpdateDescriptorSets(m_device, 1, &desc_set_write, 0, nullptr); for (SpinResources& resources : m_spin_resources) { u32 index = &resources - &m_spin_resources[0]; VkCommandPoolCreateInfo pool_info = { VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO }; pool_info.queueFamilyIndex = m_spin_queue_family_index; CHECKED_CREATE(vkCreateCommandPool, &pool_info, &resources.command_pool); Vulkan::Util::SetObjectName(m_device, resources.command_pool, "Spin Command Pool %u", index); VkCommandBufferAllocateInfo buffer_info = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO }; buffer_info.commandPool = resources.command_pool; buffer_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY; buffer_info.commandBufferCount = 1; res = vkAllocateCommandBuffers(m_device, &buffer_info, &resources.command_buffer); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkAllocateCommandBuffers failed: "); return false; } Vulkan::Util::SetObjectName(m_device, resources.command_buffer, "Spin Command Buffer %u", index); VkFenceCreateInfo fence_info = { VK_STRUCTURE_TYPE_FENCE_CREATE_INFO }; fence_info.flags = VK_FENCE_CREATE_SIGNALED_BIT; CHECKED_CREATE(vkCreateFence, &fence_info, &resources.fence); Vulkan::Util::SetObjectName(m_device, resources.fence, "Spin Fence %u", index); if (!m_spin_queue_is_graphics_queue) { VkSemaphoreCreateInfo sem_info = { VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO }; CHECKED_CREATE(vkCreateSemaphore, &sem_info, &resources.semaphore); Vulkan::Util::SetObjectName(m_device, resources.semaphore, "Draw to Spin Semaphore %u", index); } } #undef CHECKED_CREATE return true; } void Context::DestroySpinResources() { #define CHECKED_DESTROY(destructor, obj) \ do { \ if (obj != VK_NULL_HANDLE) \ { \ destructor(m_device, obj, nullptr); \ obj = VK_NULL_HANDLE; \ } \ } while (0) if (m_spin_buffer) { vmaDestroyBuffer(m_allocator, m_spin_buffer, m_spin_buffer_allocation); m_spin_buffer = VK_NULL_HANDLE; m_spin_buffer_allocation = VK_NULL_HANDLE; } CHECKED_DESTROY(vkDestroyPipeline, m_spin_pipeline); CHECKED_DESTROY(vkDestroyPipelineLayout, m_spin_pipeline_layout); CHECKED_DESTROY(vkDestroyDescriptorSetLayout, m_spin_descriptor_set_layout); if (m_spin_descriptor_set != VK_NULL_HANDLE) { vkFreeDescriptorSets(m_device, m_global_descriptor_pool, 1, &m_spin_descriptor_set); m_spin_descriptor_set = VK_NULL_HANDLE; } for (SpinResources& resources : m_spin_resources) { CHECKED_DESTROY(vkDestroySemaphore, resources.semaphore); CHECKED_DESTROY(vkDestroyFence, resources.fence); if (resources.command_buffer != VK_NULL_HANDLE) { vkFreeCommandBuffers(m_device, resources.command_pool, 1, &resources.command_buffer); resources.command_buffer = VK_NULL_HANDLE; } CHECKED_DESTROY(vkDestroyCommandPool, resources.command_pool); } #undef CHECKED_DESTROY } void Context::WaitForSpinCompletion(u32 index) { SpinResources& resources = m_spin_resources[index]; if (!resources.in_progress) return; const VkResult res = vkWaitForFences(m_device, 1, &resources.fence, VK_TRUE, UINT64_MAX); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkWaitForFences failed: "); m_last_submit_failed.store(true, std::memory_order_release); return; } SpinCommandCompleted(index); } void Context::SpinCommandCompleted(u32 index) { SpinResources& resources = m_spin_resources[index]; resources.in_progress = false; const u32 timestamp_base = (index + NUM_COMMAND_BUFFERS) * 2; std::array timestamps; const VkResult res = vkGetQueryPoolResults(m_device, m_timestamp_query_pool, timestamp_base, static_cast(timestamps.size()), sizeof(timestamps), timestamps.data(), sizeof(u64), VK_QUERY_RESULT_64_BIT); if (res == VK_SUCCESS) { u64 begin, end; if (m_optional_extensions.vk_ext_calibrated_timestamps) { begin = timestamps[0] * m_spin_timestamp_scale + m_spin_timestamp_offset; end = timestamps[1] * m_spin_timestamp_scale + m_spin_timestamp_offset; } else { begin = timestamps[0] * m_spin_timestamp_scale; end = timestamps[1] * m_spin_timestamp_scale; } m_spin_manager.SpinCompleted(resources.cycles, begin, end); } else { LOG_VULKAN_ERROR(res, "vkGetQueryPoolResults failed: "); } } void Context::SubmitSpinCommand(u32 index, u32 cycles) { SpinResources& resources = m_spin_resources[index]; VkResult res; // Reset fence to unsignaled before starting. if ((res = vkResetFences(m_device, 1, &resources.fence)) != VK_SUCCESS) LOG_VULKAN_ERROR(res, "vkResetFences failed: "); // Reset command pools to beginning since we can re-use the memory now if ((res = vkResetCommandPool(m_device, resources.command_pool, 0)) != VK_SUCCESS) LOG_VULKAN_ERROR(res, "vkResetCommandPool failed: "); // Enable commands to be recorded to the two buffers again. VkCommandBufferBeginInfo begin_info = { VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO }; begin_info.flags = VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT; if ((res = vkBeginCommandBuffer(resources.command_buffer, &begin_info)) != VK_SUCCESS) LOG_VULKAN_ERROR(res, "vkBeginCommandBuffer failed: "); if (!m_spin_buffer_initialized) { m_spin_buffer_initialized = true; vkCmdFillBuffer(resources.command_buffer, m_spin_buffer, 0, VK_WHOLE_SIZE, 0); VkBufferMemoryBarrier barrier = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER }; barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT; barrier.dstAccessMask = VK_ACCESS_SHADER_READ_BIT; barrier.srcQueueFamilyIndex = m_spin_queue_family_index; barrier.dstQueueFamilyIndex = m_spin_queue_family_index; barrier.buffer = m_spin_buffer; barrier.offset = 0; barrier.size = VK_WHOLE_SIZE; vkCmdPipelineBarrier(resources.command_buffer, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, 0, nullptr, 1, &barrier, 0, nullptr); } if (m_spin_queue_is_graphics_queue) vkCmdPipelineBarrier(resources.command_buffer, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, 0, 0, nullptr, 0, nullptr, 0, nullptr); const u32 timestamp_base = (index + NUM_COMMAND_BUFFERS) * 2; vkCmdResetQueryPool(resources.command_buffer, m_timestamp_query_pool, timestamp_base, 2); vkCmdWriteTimestamp(resources.command_buffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, m_timestamp_query_pool, timestamp_base); vkCmdPushConstants(resources.command_buffer, m_spin_pipeline_layout, VK_SHADER_STAGE_COMPUTE_BIT, 0, sizeof(u32), &cycles); vkCmdBindPipeline(resources.command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, m_spin_pipeline); vkCmdBindDescriptorSets(resources.command_buffer, VK_PIPELINE_BIND_POINT_COMPUTE, m_spin_pipeline_layout, 0, 1, &m_spin_descriptor_set, 0, nullptr); vkCmdDispatch(resources.command_buffer, 1, 1, 1); vkCmdWriteTimestamp(resources.command_buffer, VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT, m_timestamp_query_pool, timestamp_base + 1); if ((res = vkEndCommandBuffer(resources.command_buffer)) != VK_SUCCESS) LOG_VULKAN_ERROR(res, "vkEndCommandBuffer failed: "); VkSubmitInfo submit_info = { VK_STRUCTURE_TYPE_SUBMIT_INFO }; submit_info.commandBufferCount = 1; submit_info.pCommandBuffers = &resources.command_buffer; VkPipelineStageFlags sema_waits[] = { VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT }; if (!m_spin_queue_is_graphics_queue) { submit_info.waitSemaphoreCount = 1; submit_info.pWaitSemaphores = &resources.semaphore; submit_info.pWaitDstStageMask = sema_waits; } vkQueueSubmit(m_spin_queue, 1, &submit_info, resources.fence); resources.in_progress = true; resources.cycles = cycles; } void Context::NotifyOfReadback() { if (!m_spinning_supported) return; m_spin_timer = 30; m_spin_manager.ReadbackRequested(); } void Context::CalibrateSpinTimestamp() { if (!m_optional_extensions.vk_ext_calibrated_timestamps) return; VkCalibratedTimestampInfoEXT infos[2] = { { VK_STRUCTURE_TYPE_CALIBRATED_TIMESTAMP_INFO_EXT, nullptr, VK_TIME_DOMAIN_DEVICE_EXT }, { VK_STRUCTURE_TYPE_CALIBRATED_TIMESTAMP_INFO_EXT, nullptr, m_calibrated_timestamp_type }, }; u64 timestamps[2]; u64 maxDeviation; constexpr u64 MAX_MAX_DEVIATION = 100000; // 100µs for (int i = 0; i < 4; i++) // 4 tries to get under MAX_MAX_DEVIATION { const VkResult res = vkGetCalibratedTimestampsEXT(m_device, std::size(infos), infos, timestamps, &maxDeviation); if (res != VK_SUCCESS) { LOG_VULKAN_ERROR(res, "vkGetCalibratedTimestampsEXT failed: "); return; } if (maxDeviation < MAX_MAX_DEVIATION) break; } if (maxDeviation >= MAX_MAX_DEVIATION) Console.Warning("vkGetCalibratedTimestampsEXT returned high max deviation of %lluµs", maxDeviation / 1000); const double gpu_time = timestamps[0] * m_spin_timestamp_scale; #ifdef _WIN32 const double cpu_time = timestamps[1] * m_queryperfcounter_to_ns; #else const double cpu_time = timestamps[1]; #endif m_spin_timestamp_offset = cpu_time - gpu_time; } u64 Context::GetCPUTimestamp() { #ifdef _WIN32 LARGE_INTEGER value = {}; QueryPerformanceCounter(&value); return static_cast(static_cast(value.QuadPart) * m_queryperfcounter_to_ns); #else #ifdef CLOCK_MONOTONIC_RAW const bool use_raw = m_calibrated_timestamp_type == VK_TIME_DOMAIN_CLOCK_MONOTONIC_RAW_EXT; const clockid_t clock = use_raw ? CLOCK_MONOTONIC_RAW : CLOCK_MONOTONIC; #else const clockid_t clock = CLOCK_MONOTONIC; #endif timespec ts = {}; clock_gettime(clock, &ts); return static_cast(ts.tv_sec) * 1000000000 + ts.tv_nsec; #endif } } // namespace Vulkan