/* * Copyright (C) 2007-2009 Gabest * http://www.gabest.org * * This Program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This Program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA. * http://www.gnu.org/copyleft/gpl.html * */ #include "stdafx.h" #include "GSTextureCache.h" bool s_IS_OPENGL = false; GSTextureCache::GSTextureCache(GSRenderer* r) : m_renderer(r) { bool userhacks = !!theApp.GetConfig("UserHacks", 0); s_IS_OPENGL = (static_cast(theApp.GetConfig("Renderer", static_cast(GSRendererType::Default))) == GSRendererType::OGL_HW); m_spritehack = userhacks ? theApp.GetConfig("UserHacks_SpriteHack", 0) : 0; UserHacks_HalfPixelOffset = userhacks && theApp.GetConfig("UserHacks_HalfPixelOffset", 0); m_paltex = !!theApp.GetConfig("paltex", 0); m_preload_frame = userhacks && theApp.GetConfig("preload_frame_with_gs_data", 0); m_can_convert_depth = s_IS_OPENGL && theApp.GetConfig("texture_cache_depth", 1); m_crc_hack_level = theApp.GetConfig("crc_hack_level", 3); m_temp = (uint8*)_aligned_malloc(1024 * 1024 * sizeof(uint32), 32); } GSTextureCache::~GSTextureCache() { RemoveAll(); _aligned_free(m_temp); } void GSTextureCache::RemovePartial() { //m_src.RemoveAll(); for (int type = 0; type < 2; type++) { for_each(m_dst[type].begin(), m_dst[type].end(), delete_object()); m_dst[type].clear(); } } void GSTextureCache::RemoveAll() { m_src.RemoveAll(); for(int type = 0; type < 2; type++) { for_each(m_dst[type].begin(), m_dst[type].end(), delete_object()); m_dst[type].clear(); } } GSTextureCache::Source* GSTextureCache::LookupSource(const GIFRegTEX0& TEX0, const GIFRegTEXA& TEXA, const GSVector4i& r) { const GSLocalMemory::psm_t& psm = GSLocalMemory::m_psm[TEX0.PSM]; //const GSLocalMemory::psm_t& cpsm = psm.pal > 0 ? GSLocalMemory::m_psm[TEX0.CPSM] : psm; // Until DX is fixed if (s_IS_OPENGL) { if(psm.pal > 0) m_renderer->m_mem.m_clut.Read32(TEX0, TEXA); } else { GIFRegTEXA plainTEXA; plainTEXA.AEM = 1; plainTEXA.TA0 = 0; plainTEXA.TA1 = 0x80; m_renderer->m_mem.m_clut.Read32(TEX0, plainTEXA); } const uint32* clut = m_renderer->m_mem.m_clut; Source* src = NULL; list& m = m_src.m_map[TEX0.TBP0 >> 5]; for(list::iterator i = m.begin(); i != m.end(); i++) { Source* s = *i; if (((TEX0.u32[0] ^ s->m_TEX0.u32[0]) | ((TEX0.u32[1] ^ s->m_TEX0.u32[1]) & 3)) != 0) // TBP0 TBW PSM TW TH continue; // Target are converted (AEM & palette) on the fly by the GPU. They don't need extra check if (!s->m_target) { // We request a palette texture (psm.pal). If the texture was // converted by the CPU (s->m_palette == NULL), we need to ensure // palette content is the same. // Note: content of the palette will be uploaded at the end of the function if (psm.pal > 0 && s->m_palette == NULL && !GSVector4i::compare64(clut, s->m_clut, psm.pal * sizeof(clut[0]))) continue; // We request a 24/16 bit RGBA texture. Alpha expansion was done by // the CPU. We need to check that TEXA is identical if (psm.pal == 0 && psm.fmt > 0 && s->m_TEXA.u64 != TEXA.u64) continue; } m.splice(m.begin(), m, i); src = s; break; } Target* dst = NULL; bool half_right = false; #ifdef DISABLE_HW_TEXTURE_CACHE if( 0 ) #else if(src == NULL) #endif { uint32 bp = TEX0.TBP0; uint32 psm = TEX0.PSM; // Arc the Lad finds the wrong surface here when looking for a depth stencil. // Since we're currently not caching depth stencils (check ToDo in CreateSource) we should not look for it here. // (Simply not doing this code at all makes a lot of previsouly missing stuff show (but breaks pretty much everything // else.) for(list::iterator i = m_dst[RenderTarget].begin(); i != m_dst[RenderTarget].end(); i++) { Target* t = *i; if(t->m_used && t->m_dirty.empty()) { // Typical bug (MGS3 blue cloud): // 1/ RT used as 32 bits => alpha channel written // 2/ RT used as 24 bits => no update of alpha channel // 3/ Lookup of texture that used alpha channel as index, HasSharedBits will return false // because of the previous draw call format // // Solution: consider the RT as 32 bits if the alpha was used in the past uint32 t_psm = (t->m_dirty_alpha) ? t->m_TEX0.PSM & ~0x1 : t->m_TEX0.PSM; if (GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t_psm)) { if (!s_IS_OPENGL && (psm == PSM_PSMT8)) { // OpenGL can convert the texture directly in the GPU. Not sure we want to keep this // code for DX. It fixes effect but it is slow (MGS3) // It is a complex to convert the code in shader. As a reference, let's do it on the CPU, it will // be slow but // 1/ it just works :) // 2/ even with upscaling // 3/ for both DX and OpenGL // Gregory: to avoid a massive slow down for nothing, let's only enable // this code when CRC is below the FULL level if (m_crc_hack_level < 3) Read(t, t->m_valid); else dst = t; } else { dst = t; } break; } else if ((t->m_TEX0.TBW >= 16) && GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0 + t->m_TEX0.TBW * 0x10, t->m_TEX0.PSM)) { // Detect half of the render target (fix snow engine game) // Target Page (8KB) have always a width of 64 pixels // Half of the Target is TBW/2 pages * 8KB / (1 block * 256B) = 0x10 half_right = true; dst = t; break; } } } if (dst == NULL && CanConvertDepth()) { // Let's try a trick to avoid to use wrongly a depth buffer // Unfortunately, I don't have any Arc the Lad testcase // // 1/ Check only current frame, I guess it is only used as a postprocessing effect for(list::iterator i = m_dst[DepthStencil].begin(); i != m_dst[DepthStencil].end(); i++) { Target* t = *i; if(!t->m_age && t->m_used && t->m_dirty.empty() && GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t->m_TEX0.PSM)) { dst = t; break; } } } } if(src == NULL) { #ifdef ENABLE_OGL_DEBUG if (dst) { GL_CACHE("TC: dst %s hit (%s): %d (0x%x, F:0x%x)", to_string(dst->m_type), half_right ? "half" : "full", dst->m_texture ? dst->m_texture->GetID() : 0, TEX0.TBP0, TEX0.PSM); } else { GL_CACHE("TC: src miss (0x%x, F:0x%x)", TEX0.TBP0, TEX0.PSM); } #endif src = CreateSource(TEX0, TEXA, dst, half_right); if(src == NULL) { return NULL; } } else { GL_CACHE("TC: src hit: %d (0x%x, F:0x%x)", src->m_texture ? src->m_texture->GetID() : 0, TEX0.TBP0, TEX0.PSM); } if (src->m_palette) { int size = psm.pal * sizeof(clut[0]); if(src->m_initpalette || !GSVector4i::update(src->m_clut, clut, size)) { src->m_palette->Update(GSVector4i(0, 0, psm.pal, 1), src->m_clut, size); src->m_initpalette = false; } } src->Update(r); m_src.m_used = true; return src; } GSTextureCache::Target* GSTextureCache::LookupTarget(const GIFRegTEX0& TEX0, int w, int h, int type, bool used) { uint32 bp = TEX0.TBP0; Target* dst = NULL; for(list::iterator i = m_dst[type].begin(); i != m_dst[type].end(); i++) { Target* t = *i; if(bp == t->m_TEX0.TBP0) { m_dst[type].splice(m_dst[type].begin(), m_dst[type], i); dst = t; dst->m_32_bits_fmt |= !(TEX0.PSM & 2); dst->m_TEX0 = TEX0; break; } } if (dst) { GL_CACHE("TC: Lookup Target(%s) %dx%d, hit: %d (0x%x, F:0x%x)", to_string(type), w, h, dst->m_texture->GetID(), bp, TEX0.PSM); dst->Update(); dst->m_dirty_alpha |= (TEX0.PSM != PSM_PSMCT24) && (TEX0.PSM != PSM_PSMZ24); } else if (CanConvertDepth()) { int rev_type = (type == DepthStencil) ? RenderTarget : DepthStencil; GSVector4 sRect(0, 0, 1.0, 1.0); GSVector4 dRect(0, 0, w, h); // Depth stencil/RT can be an older RT/DS but only check recent RT/DS to avoid to pick // some bad data. for(list::iterator i = m_dst[rev_type].begin(); i != m_dst[rev_type].end(); i++) { Target* t = *i; if(!t->m_age && bp == t->m_TEX0.TBP0) { dst = CreateTarget(TEX0, w, h, type); dst->m_32_bits_fmt = t->m_32_bits_fmt; if (type == DepthStencil) { GL_CACHE("TC: Lookup Target(Depth) %dx%d, hit Color (0x%x, F:0x%x)", w, h, bp, TEX0.PSM); int shader = ShaderConvert_RGBA8_TO_FLOAT32 + GSLocalMemory::m_psm[TEX0.PSM].fmt; m_renderer->m_dev->StretchRect(t->m_texture, sRect, dst->m_texture, dRect, shader, false); } else { GL_CACHE("TC: Lookup Target(Color) %dx%d, hit Depth (0x%x, F:0x%x)", w, h, bp, TEX0.PSM); m_renderer->m_dev->StretchRect(t->m_texture, sRect, dst->m_texture, dRect, ShaderConvert_FLOAT32_TO_RGBA8, false); } break; } } } if(dst == NULL) { GL_CACHE("TC: Lookup Target(%s) %dx%d, miss (0x%x, F:0x%x)", to_string(type), w, h, bp, TEX0.PSM); dst = CreateTarget(TEX0, w, h, type); if(dst == NULL) return NULL; // In theory new textures contain invalidated data. Still in theory a new target // must contains the content of the GS memory. // In practice, TC will wrongly invalidate some RT. For example due to write on the alpha // channel but colors is still valid. Unfortunately TC doesn't support the upload of data // in target. // // Cleaning the code here will likely break several games. However it might reduce // the noise in draw call debugging. It is the main reason to enable it on debug build. // // From a performance point of view, it might cost a little on big upscaling // but normally few RT are miss so it must remain reasonable. if (s_IS_OPENGL) { if (m_preload_frame) { GL_INS("Preloading the RT DATA"); dst->m_dirty.push_back(GSDirtyRect(GSVector4i(0, 0, TEX0.TBW * 64, h), TEX0.PSM)); dst->Update(); } else { #ifdef ENABLE_OGL_DEBUG switch (type) { case RenderTarget: m_renderer->m_dev->ClearRenderTarget(dst->m_texture, 0); break; case DepthStencil: m_renderer->m_dev->ClearDepth(dst->m_texture, 0); break; default:break; } #endif } } } if(m_renderer->CanUpscale()) { int multiplier = m_renderer->GetUpscaleMultiplier(); if(multiplier > 1) // it's limited to a maximum of 4 on reading the config { dst->m_texture->SetScale(GSVector2((float)multiplier, (float)multiplier)); } else { GSVector4i fr = m_renderer->GetFrameRect(); int ww = (int)(fr.left + m_renderer->GetDisplayRect().width()); int hh = (int)(fr.top + m_renderer->GetDisplayRect().height()); if(hh <= m_renderer->GetDeviceSize().y / 2) { hh *= 2; } // Gregory: I'm sure this sillyness is related to the usage of a 32bits // buffer as a 16 bits format. In this case the height of the buffer is // multiplyed by 2 (Hence a scissor bigger than the RT) // This vp2 fix doesn't work most of the time if(hh < 512 && m_renderer->m_context->SCISSOR.SCAY1 == 511) // vp2 { hh = 512; } if(ww > 0 && hh > 0) { dst->m_texture->SetScale(GSVector2((float)w / ww, (float)h / hh)); } } } if(used) { dst->m_used = true; } return dst; } GSTextureCache::Target* GSTextureCache::LookupTarget(const GIFRegTEX0& TEX0, int w, int h, int real_h) { uint32 bp = TEX0.TBP0; Target* dst = NULL; for(list::iterator i = m_dst[RenderTarget].begin(); i != m_dst[RenderTarget].end(); i++) { Target* t = *i; if(bp == t->m_TEX0.TBP0) { dst = t; GL_CACHE("TC: Lookup Frame %dx%d, perfect hit: %d (0x%x)", w, h, dst->m_texture->GetID(), bp); break; } else { // HACK: try to find something close to the base pointer if(t->m_TEX0.TBP0 <= bp && bp < t->m_TEX0.TBP0 + 0xe00UL && (!dst || t->m_TEX0.TBP0 >= dst->m_TEX0.TBP0)) { GL_CACHE("TC: Lookup Frame %dx%d, close hit: %d (0x%x, took 0x%x)", w, h, t->m_texture->GetID(), bp, t->m_TEX0.TBP0); dst = t; } } } if(dst == NULL) { GL_CACHE("TC: Lookup Frame %dx%d, miss (0x%x)", w, h, bp); dst = CreateTarget(TEX0, w, h, RenderTarget); if(dst == NULL) { return NULL; } m_renderer->m_dev->ClearRenderTarget(dst->m_texture, 0); // new frame buffers after reset should be cleared, don't display memory garbage if (m_preload_frame) { // Load GS data into frame. Game can directly uploads a background or the full image in // "CTRC" buffer. It will also avoid various black screen issue in gs dump. // // Code is more or less an equivalent of the SW renderer // // Option is hidden and not enabled by default to avoid any regression dst->m_dirty.push_back(GSDirtyRect(GSVector4i(0, 0, TEX0.TBW * 64, real_h), TEX0.PSM)); dst->Update(); } } else { dst->Update(); } dst->m_used = true; return dst; } // Goal: Depth And Target at the same address is not possible. On GS it is // the same memory but not on the Dx/GL. Therefore a write to the Depth/Target // must invalidate the Target/Depth respectively void GSTextureCache::InvalidateVideoMemType(int type, uint32 bp) { if (!CanConvertDepth()) return; for(list::iterator i = m_dst[type].begin(); i != m_dst[type].end(); i++) { Target* t = *i; if(bp == t->m_TEX0.TBP0) { GL_CACHE("TC: InvalidateVideoMemType: Remove Target(%s) %d (0x%x)", to_string(type), t->m_texture ? t->m_texture->GetID() : 0, t->m_TEX0.TBP0); m_dst[type].erase(i); delete t; break; } } } // Goal: invalidate data sent to the GPU when the source (GS memory) is modified // Called each time you want to write to the GS memory void GSTextureCache::InvalidateVideoMem(GSOffset* off, const GSVector4i& rect, bool target) { if(!off) return; // Fixme. Crashes Dual Hearts, maybe others as well. Was fine before r1549. uint32 bp = off->bp; uint32 bw = off->bw; uint32 psm = off->psm; if(!target) { // Remove Source that have same BP as the render target (color&dss) // rendering will dirty the copy const list& m = m_src.m_map[bp >> 5]; for(list::const_iterator i = m.begin(); i != m.end(); ) { list::const_iterator j = i++; Source* s = *j; if(GSUtil::HasSharedBits(bp, psm, s->m_TEX0.TBP0, s->m_TEX0.PSM)) { m_src.RemoveAt(s); } } uint32 bbp = bp + bw * 0x10; if (bw >= 16 && bbp < 16384) { // Detect half of the render target (fix snow engine game) // Target Page (8KB) have always a width of 64 pixels // Half of the Target is TBW/2 pages * 8KB / (1 block * 256B) = 0x10 const list& m = m_src.m_map[bbp >> 5]; for(list::const_iterator i = m.begin(); i != m.end(); ) { list::const_iterator j = i++; Source* s = *j; if(GSUtil::HasSharedBits(bbp, psm, s->m_TEX0.TBP0, s->m_TEX0.PSM)) { m_src.RemoveAt(s); } } } } GSVector4i r; uint32* pages = (uint32*)m_temp; off->GetPages(rect, pages, &r); bool found = false; for(const uint32* p = pages; *p != GSOffset::EOP; p++) { uint32 page = *p; const list& m = m_src.m_map[page]; for(list::const_iterator i = m.begin(); i != m.end(); ) { list::const_iterator j = i++; Source* s = *j; if(GSUtil::HasSharedBits(psm, s->m_TEX0.PSM)) { uint32* RESTRICT valid = s->m_valid; bool b = bp == s->m_TEX0.TBP0; if(!s->m_target) { // Invalidate data of input texture if(s->m_repeating) { vector& l = s->m_p2t[page]; for(vector::iterator k = l.begin(); k != l.end(); k++) { valid[k->x] &= k->y; } } else { valid[page] = 0; } s->m_complete = false; found |= b; } else { // render target used as input texture // TODO if(b) { m_src.RemoveAt(s); } } } } } if(!target) return; for(int type = 0; type < 2; type++) { for(list::iterator i = m_dst[type].begin(); i != m_dst[type].end(); ) { list::iterator j = i++; Target* t = *j; // GH: (I think) this code is completely broken. Typical issue: // EE write an alpha channel into 32 bits texture // Results: the target is deleted (because HasCompatibleBits is false) // // Major issues are expected if the game try to reuse the target // If we dirty the RT, it will likely upload partially invalid data. // (The color on the previous example) if(GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t->m_TEX0.PSM)) { if(!found && GSUtil::HasCompatibleBits(psm, t->m_TEX0.PSM)) { GL_CACHE("TC: Dirty Target(%s) %d (0x%x)", to_string(type), t->m_texture ? t->m_texture->GetID() : 0, t->m_TEX0.TBP0); t->m_dirty.push_back(GSDirtyRect(r, psm)); t->m_TEX0.TBW = bw; } else { m_dst[type].erase(j); GL_CACHE("TC: Remove Target(%s) %d (0x%x)", to_string(type), t->m_texture ? t->m_texture->GetID() : 0, t->m_TEX0.TBP0); delete t; continue; } } else if (bp == t->m_TEX0.TBP0) { // EE writes the ALPHA channel. Mark it as invalid for // the texture cache. Otherwise it will generate a wrong // hit on the texture cache. // Game: Conflict - Desert Storm (flickering) t->m_dirty_alpha = false; } // GH: Try to detect texture write that will overlap with a target buffer if(GSUtil::HasSharedBits(psm, t->m_TEX0.PSM) && bp < t->m_TEX0.TBP0) { uint32 rowsize = bw * 8192; uint32 offset = (uint32)((t->m_TEX0.TBP0 - bp) * 256); if(rowsize > 0 && offset % rowsize == 0) { int y = GSLocalMemory::m_psm[psm].pgs.y * offset / rowsize; if(r.bottom > y) { GL_CACHE("TC: Dirty After Target(%s) %d (0x%x)", to_string(type), t->m_texture ? t->m_texture->GetID() : 0, t->m_TEX0.TBP0); // TODO: do not add this rect above too t->m_dirty.push_back(GSDirtyRect(GSVector4i(r.left, r.top - y, r.right, r.bottom - y), psm)); t->m_TEX0.TBW = bw; continue; } } } // FIXME: this code "fixes" black FMV issue with rule of rose. // Code is completely hardcoded so maybe not the best solution. Besides I don't // know the full impact of it. // Let's keep this code for the future #if 0 if(GSUtil::HasSharedBits(psm, t->m_TEX0.PSM) && (t->m_TEX0.TBP0 + 0x200 == bp)) { GL_CACHE("TC: Dirty in the middle of Target(%s) %d (0x%x)", to_string(type), t->m_texture ? t->m_texture->GetID() : 0, t->m_TEX0.TBP0); uint32 rowsize = bw * 8192u; uint32 offset = 0x200 * 256u; int y = GSLocalMemory::m_psm[psm].pgs.y * offset / rowsize; t->m_dirty.push_back(GSDirtyRect(GSVector4i(r.left, r.top + y, r.right, r.bottom + y), psm)); t->m_TEX0.TBW = bw; continue; } #endif } } } // Goal: retrive the data from the GPU to the GS memory. // Called each time you want to read from the GS memory void GSTextureCache::InvalidateLocalMem(GSOffset* off, const GSVector4i& r) { uint32 bp = off->bp; uint32 psm = off->psm; //uint32 bw = off->bw; // No depth handling please. if (psm == PSM_PSMZ32 || psm == PSM_PSMZ24 || psm == PSM_PSMZ16 || psm == PSM_PSMZ16S) return; // This is a shorter but potentially slower version of the below, commented out code. // It works for all the games mentioned below and fixes a couple of other ones as well // (Busen0: Wizardry and Chaos Legion). // Also in a few games the below code ran the Grandia3 case when it shouldn't :p for(list::iterator i = m_dst[RenderTarget].begin(); i != m_dst[RenderTarget].end(); ) { list::iterator j = i++; Target* t = *j; if (t->m_TEX0.PSM != PSM_PSMZ32 && t->m_TEX0.PSM != PSM_PSMZ24 && t->m_TEX0.PSM != PSM_PSMZ16 && t->m_TEX0.PSM != PSM_PSMZ16S) { if(GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t->m_TEX0.PSM)) { // GH Note: Read will do a StretchRect and then will sizzle data to the GS memory // t->m_valid will do the full target texture whereas r.intersect(t->m_valid) will be limited // to the useful part for the transfer. // 1/ Logically intersect must be enough, except if we miss some call to InvalidateLocalMem // or it need the depth part too // 2/ Read function is slow but I suspect the swizzle part to be costly. Maybe a compute shader // that do the swizzle at the same time of the Stretching could save CPU computation. // note: r.rintersect breaks Wizardry and Chaos Legion // Read(t, t->m_valid) works in all tested games but is very slow in GUST titles >< if (r.x == 0 && r.y == 0) // Full screen read? Read(t, t->m_valid); else // Block level read? Read(t, r.rintersect(t->m_valid)); } } } //GSTextureCache::Target* rt2 = NULL; //int ymin = INT_MAX; //for(list::iterator i = m_dst[RenderTarget].begin(); i != m_dst[RenderTarget].end(); ) //{ // list::iterator j = i++; // Target* t = *j; // if (t->m_TEX0.PSM != PSM_PSMZ32 && t->m_TEX0.PSM != PSM_PSMZ24 && t->m_TEX0.PSM != PSM_PSMZ16 && t->m_TEX0.PSM != PSM_PSMZ16S) // { // if(GSUtil::HasSharedBits(bp, psm, t->m_TEX0.TBP0, t->m_TEX0.PSM)) // { // if(GSUtil::HasCompatibleBits(psm, t->m_TEX0.PSM)) // { // Read(t, r.rintersect(t->m_valid)); // return; // } // else if(psm == PSM_PSMCT32 && (t->m_TEX0.PSM == PSM_PSMCT16 || t->m_TEX0.PSM == PSM_PSMCT16S)) // { // // ffx-2 riku changing to her default (shoots some reflecting glass at the end), 16-bit rt read as 32-bit // Read(t, GSVector4i(r.left, r.top, r.right, r.top + (r.bottom - r.top) * 2).rintersect(t->m_valid)); // return; // } // else // { // if (psm == PSM_PSMT4HH && t->m_TEX0.PSM == PSM_PSMCT32) // { // // Silent Hill Origins shadows: Read 8 bit using only the HIGH bits (4 bit) texture as 32 bit. // Read(t, r.rintersect(t->m_valid)); // return; // } // else // { // //printf("Trashing render target. We have a %d type texture and we are trying to write into a %d type texture\n", t->m_TEX0.PSM, psm); // m_dst[RenderTarget].erase(j); // delete t; // } // } // } // // Grandia3, FFX, FFX-2 pause menus. t->m_TEX0.TBP0 magic number checks because otherwise kills xs2 videos // if( (GSUtil::HasSharedBits(psm, t->m_TEX0.PSM) && (bp > t->m_TEX0.TBP0) ) // && ((t->m_TEX0.TBP0 == 0) || (t->m_TEX0.TBP0==3328) || (t->m_TEX0.TBP0==3584) )) // { // //printf("first : %d-%d child : %d-%d\n", psm, bp, t->m_TEX0.PSM, t->m_TEX0.TBP0); // uint32 rowsize = bw * 8192; // uint32 offset = (uint32)((bp - t->m_TEX0.TBP0) * 256); // if(rowsize > 0 && offset % rowsize == 0) // { // int y = GSLocalMemory::m_psm[psm].pgs.y * offset / rowsize; // if(y < ymin && y < 512) // { // rt2 = t; // ymin = y; // } // } // } // } //} //if(rt2) //{ // Read(rt2, GSVector4i(r.left, r.top + ymin, r.right, r.bottom + ymin)); //} // TODO: ds } void GSTextureCache::IncAge() { int maxage = m_src.m_used ? 3 : 30; // You can't use m_map[page] because Source* are duplicated on several pages. for(hash_set::iterator i = m_src.m_surfaces.begin(); i != m_src.m_surfaces.end(); ) { hash_set::iterator j = i++; Source* s = *j; if(++s->m_age > maxage) { m_src.RemoveAt(s); } } m_src.m_used = false; // Clearing of Rendertargets causes flickering in many scene transitions. // Sigh, this seems to be used to invalidate surfaces. So set a huge maxage to avoid flicker, // but still invalidate surfaces. (Disgaea 2 fmv when booting the game through the BIOS) // Original maxage was 4 here, Xenosaga 2 needs at least 240, else it flickers on scene transitions. maxage = 400; // ffx intro scene changes leave the old image untouched for a couple of frames and only then start using it for(int type = 0; type < 2; type++) { for(list::iterator i = m_dst[type].begin(); i != m_dst[type].end(); ) { list::iterator j = i++; Target* t = *j; // This variable is used to detect the texture shuffle effect. There is a high // probability that game will do it on the current RT. // Variable is cleared here to avoid issue with game that uses a 16 bits // render target if (t->m_age > 0) { // GoW2 uses the effect at the start of the frame t->m_32_bits_fmt = false; } if(++t->m_age > maxage) { m_dst[type].erase(j); GL_CACHE("TC: Remove Target(%s): %d (0x%x) due to age", to_string(type), t->m_texture ? t->m_texture->GetID() : 0, t->m_TEX0.TBP0); delete t; } } } } //Fixme: Several issues in here. Not handling depth stencil, pitch conversion doesnt work. GSTextureCache::Source* GSTextureCache::CreateSource(const GIFRegTEX0& TEX0, const GIFRegTEXA& TEXA, Target* dst, bool half_right) { const GSLocalMemory::psm_t& psm = GSLocalMemory::m_psm[TEX0.PSM]; Source* src = new Source(m_renderer, TEX0, TEXA, m_temp); int tw = 1 << TEX0.TW; int th = 1 << TEX0.TH; //int tp = TEX0.TBW << 6; bool hack = false; if(m_spritehack && (TEX0.PSM == PSM_PSMT8 || TEX0.PSM == PSM_PSMT8H)) { src->m_spritehack_t = true; if(m_spritehack == 2 && TEX0.CPSM != PSM_PSMCT16) src->m_spritehack_t = false; } else src->m_spritehack_t = false; if (dst) { // TODO: clean up this mess int shader = dst->m_type != RenderTarget ? ShaderConvert_FLOAT32_TO_RGBA8 : ShaderConvert_COPY; bool is_8bits = TEX0.PSM == PSM_PSMT8 && s_IS_OPENGL; if (is_8bits) { GL_INS("Reading RT as a packed-indexed 8 bits format"); shader = ShaderConvert_RGBA_TO_8I; } #ifdef ENABLE_OGL_DEBUG if (TEX0.PSM == PSM_PSMT4) { GL_INS("ERROR: Reading RT as a packed-indexed 4 bits format is not supported"); } #endif if (TEX0.PSM < PSM_PSMT8 || TEX0.PSM > PSM_PSMT4HH) { src->m_32_bits_fmt = dst->m_32_bits_fmt; } src->m_target = true; dst->Update(); GSTexture* tmp = NULL; if (dst->m_texture->IsMSAA()) { tmp = dst->m_texture; dst->m_texture = m_renderer->m_dev->Resolve(dst->m_texture); } // do not round here!!! if edge becomes a black pixel and addressing mode is clamp => everything outside the clamped area turns into black (kh2 shadows) int w = (int)(dst->m_texture->GetScale().x * tw); int h = (int)(dst->m_texture->GetScale().y * th); if (is_8bits) { // Unscale 8 bits textures, quality won't be nice but format is really awful w = tw; h = th; } GSVector2i dstsize = dst->m_texture->GetSize(); // pitch conversion if(dst->m_TEX0.TBW != TEX0.TBW) // && dst->m_TEX0.PSM == TEX0.PSM { // This is so broken :p ////Better not do the code below, "fixes" like every game that ever gets here.. ////Edit: Ratchet and Clank needs this to show most of it's graphics at all. ////Someone else fix this please, I can't :p ////delete src; return NULL; //// sfex3 uses this trick (bw: 10 -> 5, wraps the right side below the left) //ASSERT(dst->m_TEX0.TBW > TEX0.TBW); // otherwise scale.x need to be reduced to make the larger texture fit (TODO) //src->m_texture = m_renderer->m_dev->CreateRenderTarget(dstsize.x, dstsize.y, false); //GSVector4 size = GSVector4(dstsize).xyxy(); //GSVector4 scale = GSVector4(dst->m_texture->GetScale()).xyxy(); //int blockWidth = 64; //int blockHeight = TEX0.PSM == PSM_PSMCT32 || TEX0.PSM == PSM_PSMCT24 ? 32 : 64; //GSVector4i br(0, 0, blockWidth, blockHeight); //int sw = (int)dst->m_TEX0.TBW << 6; //int dw = (int)TEX0.TBW << 6; //int dh = 1 << TEX0.TH; //if(sw != 0) //for(int dy = 0; dy < dh; dy += blockHeight) //{ // for(int dx = 0; dx < dw; dx += blockWidth) // { // int off = dy * dw / blockHeight + dx; // int sx = off % sw; // int sy = off / sw; // GSVector4 sRect = GSVector4(GSVector4i(sx, sy).xyxy() + br) * scale / size; // GSVector4 dRect = GSVector4(GSVector4i(dx, dy).xyxy() + br) * scale; // m_renderer->m_dev->StretchRect(dst->m_texture, sRect, src->m_texture, dRect); // // TODO: this is quite a lot of StretchRect, do it with one Draw // } //} } else if(tw < 1024) { // FIXME: timesplitters blurs the render target by blending itself over a couple of times hack = true; //if(tw == 256 && th == 128 && (TEX0.TBP0 == 0 || TEX0.TBP0 == 0x00e00)) //{ // delete src; // return NULL; //} } // width/height conversion GSVector2 scale = dst->m_texture->GetScale(); GSVector4 dRect(0, 0, w, h); // Lengthy explanation of the rescaling code. // Here an example in 2x: // RT is 1280x1024 but only contains 512x448 valid data (so 256x224 pixels without upscaling) // // PS2 want to read it back as a 1024x1024 pixels (they don't care about the extra pixels) // So in theory we need to shrink a 2048x2048 RT into a 1024x1024 texture. Obviously the RT is // too small. // // So we will only limit the resize to the available data in RT. // Therefore we will resize the RT from 1280x1024 to 1280x1024/2048x2048 % of the new texture // size (which is 1280x1024) (i.e. 800x512) // From the rendering point of view. UV coordinate will be normalized on the real GS texture size // This way it can be used on an upscaled texture without extra scaling factor (only requirement is // to have same proportion) // // FIXME: The scaling will create a bad offset. For example if texture coordinate start at 0.5 (pixel 0) // At 2x it will become 0.5/128 * 256 = 1 (pixel 1) // I think it is the purpose of the UserHacks_HalfPixelOffset below. However implementation is less // than ideal. // 1/ It suppose games have an half pixel offset on texture coordinate which could be wrong // 2/ It doesn't support rescaling of the RT (tw = 1024) // Maybe it will be more easy to just round the UV value in the Vertex Shader if (!is_8bits) { // 8 bits handling is special due to unscaling. It is better to not execute this code if (w > dstsize.x) { scale.x = (float)dstsize.x / tw; dRect.z = (float)dstsize.x * scale.x / dst->m_texture->GetScale().x; w = dstsize.x; } if (h > dstsize.y) { scale.y = (float)dstsize.y / th; dRect.w = (float)dstsize.y * scale.y / dst->m_texture->GetScale().y; h = dstsize.y; } } GSVector4 sRect(0, 0, w, h); GSTexture* sTex = src->m_texture ? src->m_texture : dst->m_texture; GSTexture* dTex = m_renderer->m_dev->CreateRenderTarget(w, h, false); // GH: by default (m_paltex == 0) GSdx converts texture to the 32 bit format // However it is different here. We want to reuse a Render Target as a texture. // Because the texture is already on the GPU, CPU can't convert it. if (psm.pal > 0) { src->m_palette = m_renderer->m_dev->CreateTexture(256, 1); } // Disable linear filtering for various GS post-processing effect // 1/ Palette is used to interpret the alpha channel of the RT as an index. // Star Ocean 3 uses it to emulate a stencil buffer. // 2/ Z formats are a bad idea to interpolate (discontinuties). // 3/ 16 bits buffer is used to move data from a channel to another. // // I keep linear filtering for standard color even if I'm not sure that it is // working correctly. // Indeed, texture is reduced so you need to read all covered pixels (9 in 3x) // to correctly interpolate the value. Linear interpolation is likely acceptable // only in 2x scaling // // Src texture will still be bilinear interpolated so I'm really not sure // that we need to do it here too. // // Future note: instead to do // RT 2048x2048 -> T 1024x1024 -> RT 2048x2048 // We can maybe sample directly a bigger texture // RT 2048x2048 -> T 2048x2048 -> RT 2048x2048 // Pro: better quality. Copy instead of StretchRect (must be faster) // Cons: consume more memory // // In distant future: investigate to reuse the RT directly without any // copy. Likely a speed boost and memory usage reduction. bool linear = (TEX0.PSM == PSM_PSMCT32 || TEX0.PSM == PSM_PSMCT24); if(!src->m_texture) { src->m_texture = dTex; } if ((sRect == dRect).alltrue() && !shader) { if (half_right) { // You typically hit this code in snow engine game. Dstsize is the size of of Dx/GL RT // which is arbitrary set to 1280 (biggest RT used by GS). h/w are based on the input texture // so the only reliable way to find the real size of the target is to use the TBW value. float real_width = dst->m_TEX0.TBW * 64u * dst->m_texture->GetScale().x; m_renderer->m_dev->CopyRect(sTex, dTex, GSVector4i(real_width/2.0f, 0, real_width, h)); } else { m_renderer->m_dev->CopyRect(sTex, dTex, GSVector4i(0, 0, w, h)); // <= likely wrong dstsize.x could be bigger than w } } else { // Different size or not the same format sRect.z /= sTex->GetWidth(); sRect.w /= sTex->GetHeight(); if (half_right) { sRect.x = sRect.z/2.0f; } m_renderer->m_dev->StretchRect(sTex, sRect, dTex, dRect, shader, linear); } if(dTex != src->m_texture) { m_renderer->m_dev->Recycle(src->m_texture); src->m_texture = dTex; } if( src->m_texture ) src->m_texture->SetScale(scale); else ASSERT(0); if(tmp != NULL) { // tmp is the texture before a MultiSample resolve m_renderer->m_dev->Recycle(dst->m_texture); dst->m_texture = tmp; } // Offset hack. Can be enabled via GSdx options. // The offset will be used in Draw(). float modx = 0.0f; float mody = 0.0f; if(UserHacks_HalfPixelOffset && hack) { switch(m_renderer->GetUpscaleMultiplier()) { case 2: modx = 2.2f; mody = 2.2f; dst->m_texture->LikelyOffset = true; break; case 3: modx = 3.1f; mody = 3.1f; dst->m_texture->LikelyOffset = true; break; case 4: modx = 4.2f; mody = 4.2f; dst->m_texture->LikelyOffset = true; break; case 5: modx = 5.3f; mody = 5.3f; dst->m_texture->LikelyOffset = true; break; case 6: modx = 6.2f; mody = 6.2f; dst->m_texture->LikelyOffset = true; break; case 8: modx = 8.2f; mody = 8.2f; dst->m_texture->LikelyOffset = true; break; default: modx = 0.0f; mody = 0.0f; dst->m_texture->LikelyOffset = false; break; } } dst->m_texture->OffsetHack_modx = modx; dst->m_texture->OffsetHack_mody = mody; } else { if (m_paltex && psm.pal > 0) { src->m_texture = m_renderer->m_dev->CreateTexture(tw, th, Get8bitFormat()); src->m_palette = m_renderer->m_dev->CreateTexture(256, 1); } else src->m_texture = m_renderer->m_dev->CreateTexture(tw, th); } if(src->m_texture == NULL) { ASSERT(0); delete src; return NULL; } if(psm.pal > 0) { memcpy(src->m_clut, (const uint32*)m_renderer->m_mem.m_clut, psm.pal * sizeof(uint32)); } m_src.Add(src, TEX0, m_renderer->m_context->offset.tex); return src; } GSTextureCache::Target* GSTextureCache::CreateTarget(const GIFRegTEX0& TEX0, int w, int h, int type) { Target* t = new Target(m_renderer, TEX0, m_temp, CanConvertDepth()); // FIXME: initial data should be unswizzled from local mem in Update() if dirty t->m_type = type; if(type == RenderTarget) { t->m_texture = m_renderer->m_dev->CreateRenderTarget(w, h, true); t->m_used = true; // FIXME } else if(type == DepthStencil) { t->m_texture = m_renderer->m_dev->CreateDepthStencil(w, h, true); } if(t->m_texture == NULL) { ASSERT(0); delete t; return NULL; } m_dst[type].push_front(t); return t; } void GSTextureCache::PrintMemoryUsage() { #ifdef ENABLE_OGL_DEBUG uint32 tex = 0; uint32 tex_rt = 0; uint32 rt = 0; uint32 dss = 0; for(hash_set::iterator i = m_src.m_surfaces.begin(); i != m_src.m_surfaces.end(); i++) { Source* s = *i; if (s) { if (s->m_target) tex_rt += s->m_texture->GetMemUsage(); else tex += s->m_texture->GetMemUsage(); } } for(list::iterator i = m_dst[RenderTarget].begin(); i != m_dst[RenderTarget].end(); i++) { Target* t = *i; if (t) rt += t->m_texture->GetMemUsage(); } for(list::iterator i = m_dst[DepthStencil].begin(); i != m_dst[DepthStencil].end(); i++) { Target* t = *i; if (t) dss += t->m_texture->GetMemUsage(); } GL_PERF("MEM: RO Tex %dMB. RW Tex %dMB. Target %dMB. Depth %dMB", tex >> 20u, tex_rt >> 20u, rt >> 20u, dss >> 20u); #endif } // GSTextureCache::Surface GSTextureCache::Surface::Surface(GSRenderer* r, uint8* temp) : m_renderer(r) , m_texture(NULL) , m_age(0) , m_temp(temp) , m_32_bits_fmt(false) { m_TEX0.TBP0 = 0x3fff; } GSTextureCache::Surface::~Surface() { m_renderer->m_dev->Recycle(m_texture); } void GSTextureCache::Surface::Update() { m_age = 0; } // GSTextureCache::Source GSTextureCache::Source::Source(GSRenderer* r, const GIFRegTEX0& TEX0, const GIFRegTEXA& TEXA, uint8* temp) : Surface(r, temp) , m_palette(NULL) , m_initpalette(true) , m_target(false) , m_complete(false) , m_spritehack_t(false) , m_p2t(NULL) { m_TEX0 = TEX0; m_TEXA = TEXA; memset(m_valid, 0, sizeof(m_valid)); m_clut = (uint32*)_aligned_malloc(256 * sizeof(uint32), 32); memset(m_clut, 0, 256*sizeof(uint32)); m_write.rect = (GSVector4i*)_aligned_malloc(3 * sizeof(GSVector4i), 32); m_write.count = 0; m_repeating = m_TEX0.IsRepeating(); if(m_repeating) { m_p2t = r->m_mem.GetPage2TileMap(m_TEX0); } } GSTextureCache::Source::~Source() { m_renderer->m_dev->Recycle(m_palette); _aligned_free(m_clut); _aligned_free(m_write.rect); } void GSTextureCache::Source::Update(const GSVector4i& rect) { Surface::Update(); if(m_complete || m_target) { return; } GSVector2i bs = GSLocalMemory::m_psm[m_TEX0.PSM].bs; int tw = std::max(1 << m_TEX0.TW, bs.x); int th = std::max(1 << m_TEX0.TH, bs.y); GSVector4i r = rect.ralign(bs); if(r.eq(GSVector4i(0, 0, tw, th))) { m_complete = true; // lame, but better than nothing } const GSOffset* off = m_renderer->m_context->offset.tex; uint32 blocks = 0; if(m_repeating) { for(int y = r.top; y < r.bottom; y += bs.y) { uint32 base = off->block.row[y >> 3]; for(int x = r.left, i = (y << 7) + x; x < r.right; x += bs.x, i += bs.x) { uint32 block = base + off->block.col[x >> 3]; if(block < MAX_BLOCKS) { uint32 addr = i >> 3; uint32 row = addr >> 5; uint32 col = 1 << (addr & 31); if((m_valid[row] & col) == 0) { m_valid[row] |= col; Write(GSVector4i(x, y, x + bs.x, y + bs.y)); blocks++; } } } } } else { for(int y = r.top; y < r.bottom; y += bs.y) { uint32 base = off->block.row[y >> 3]; for(int x = r.left; x < r.right; x += bs.x) { uint32 block = base + off->block.col[x >> 3]; if(block < MAX_BLOCKS) { uint32 row = block >> 5; uint32 col = 1 << (block & 31); if((m_valid[row] & col) == 0) { m_valid[row] |= col; Write(GSVector4i(x, y, x + bs.x, y + bs.y)); blocks++; } } } } } if(blocks > 0) { m_renderer->m_perfmon.Put(GSPerfMon::Unswizzle, bs.x * bs.y * blocks << (m_palette ? 2 : 0)); Flush(m_write.count); } } void GSTextureCache::Source::Write(const GSVector4i& r) { m_write.rect[m_write.count++] = r; while(m_write.count >= 2) { GSVector4i& a = m_write.rect[m_write.count - 2]; GSVector4i& b = m_write.rect[m_write.count - 1]; if((a == b.zyxw()).mask() == 0xfff0) { a.right = b.right; // extend right m_write.count--; } else if((a == b.xwzy()).mask() == 0xff0f) { a.bottom = b.bottom; // extend down m_write.count--; } else { break; } } if(m_write.count > 2) { Flush(1); } } void GSTextureCache::Source::Flush(uint32 count) { // This function as written will not work for paletted formats copied from framebuffers // because they are 8 or 4 bit formats on the GS and the GS local memory module reads // these into an 8 bit format while the D3D surfaces are 32 bit. // However the function is never called for these cases. This is just for information // should someone wish to use this function for these cases later. const GSLocalMemory::psm_t& psm = GSLocalMemory::m_psm[m_TEX0.PSM]; int tw = 1 << m_TEX0.TW; int th = 1 << m_TEX0.TH; GSVector4i tr(0, 0, tw, th); int pitch = max(tw, psm.bs.x) * sizeof(uint32); GSLocalMemory& mem = m_renderer->m_mem; const GSOffset* off = m_renderer->m_context->offset.tex; GSLocalMemory::readTexture rtx = psm.rtx; GIFRegTEXA plainTEXA; // Until DX is fixed if (s_IS_OPENGL) { plainTEXA = m_TEXA; } else { plainTEXA.AEM = 1; plainTEXA.TA0 = 0; plainTEXA.TA1 = 0x80; } if(m_palette) { pitch >>= 2; rtx = psm.rtxP; } uint8* buff = m_temp; for(uint32 i = 0; i < count; i++) { GSVector4i r = m_write.rect[i]; if((r > tr).mask() & 0xff00) { (mem.*rtx)(off, r, buff, pitch, m_TEXA); m_texture->Update(r.rintersect(tr), buff, pitch); } else { GSTexture::GSMap m; if(m_texture->Map(m, &r)) { (mem.*rtx)(off, r, m.bits, m.pitch, plainTEXA); m_texture->Unmap(); } else { (mem.*rtx)(off, r, buff, pitch, plainTEXA); m_texture->Update(r, buff, pitch); } } } if(count < m_write.count) { // Warning src and destination overlap. Memmove must be used instead of memcpy memmove(&m_write.rect[0], &m_write.rect[count], (m_write.count - count) * sizeof(m_write.rect[0])); } m_write.count -= count; } // GSTextureCache::Target GSTextureCache::Target::Target(GSRenderer* r, const GIFRegTEX0& TEX0, uint8* temp, bool depth_supported) : Surface(r, temp) , m_type(-1) , m_used(false) , m_depth_supported(depth_supported) { m_TEX0 = TEX0; m_32_bits_fmt |= !(TEX0.PSM & 2); m_dirty_alpha = (TEX0.PSM != PSM_PSMCT24) && (TEX0.PSM != PSM_PSMZ24); m_valid = GSVector4i::zero(); } void GSTextureCache::Target::Update() { Surface::Update(); // FIXME: the union of the rects may also update wrong parts of the render target (but a lot faster :) // GH: it must be doable // 1/ rescale the new t to the good size // 2/ copy each rectangle (rescale the rectangle) (use CopyRect or multiple vertex) // Alternate // 1/ uses multiple vertex rectangle GSVector4i r = m_dirty.GetDirtyRectAndClear(m_TEX0, m_texture->GetSize()); if (r.rempty()) return; // No handling please if ((m_type == DepthStencil) && !m_depth_supported) { // do the most likely thing a direct write would do, clear it GL_INS("ERROR: Update DepthStencil dummy"); if((m_renderer->m_game.flags & CRC::ZWriteMustNotClear) == 0) m_renderer->m_dev->ClearDepth(m_texture, 0); return; } int w = r.width(); int h = r.height(); GIFRegTEXA TEXA; TEXA.AEM = 1; TEXA.TA0 = 0; TEXA.TA1 = 0x80; GSTexture* t = m_renderer->m_dev->CreateTexture(w, h); if (t == NULL) return; const GSOffset* off = m_renderer->m_mem.GetOffset(m_TEX0.TBP0, m_TEX0.TBW, m_TEX0.PSM); GSTexture::GSMap m; if(t->Map(m)) { m_renderer->m_mem.ReadTexture(off, r, m.bits, m.pitch, TEXA); t->Unmap(); } else { int pitch = ((w + 3) & ~3) * 4; m_renderer->m_mem.ReadTexture(off, r, m_temp, pitch, TEXA); t->Update(r.rsize(), m_temp, pitch); } // m_renderer->m_perfmon.Put(GSPerfMon::Unswizzle, w * h * 4); // Copy the new GS memory content into the destination texture. if(m_type == RenderTarget) { GL_INS("ERROR: Update RenderTarget"); m_renderer->m_dev->StretchRect(t, m_texture, GSVector4(r) * GSVector4(m_texture->GetScale()).xyxy()); } else if(m_type == DepthStencil) { GL_INS("ERROR: Update DepthStencil"); // FIXME linear or not? m_renderer->m_dev->StretchRect(t, m_texture, GSVector4(r) * GSVector4(m_texture->GetScale()).xyxy(), ShaderConvert_RGBA8_TO_FLOAT32); } m_renderer->m_dev->Recycle(t); } // GSTextureCache::SourceMap void GSTextureCache::SourceMap::Add(Source* s, const GIFRegTEX0& TEX0, const GSOffset* off) { m_surfaces.insert(s); if(s->m_target) { // TODO // GH: I don't know why but it seems we only consider the first page for a render target m_map[TEX0.TBP0 >> 5].push_front(s); return; } // Remaining code will compute a list of pages that are dirty (in a similar fashion as GSOffset::GetPages) // (Maybe GetPages could be used instead, perf opt?) // The source pointer will be stored/duplicated in all m_map[array of pages] const GSLocalMemory::psm_t& psm = GSLocalMemory::m_psm[TEX0.PSM]; GSVector2i bs = (TEX0.TBP0 & 31) == 0 ? psm.pgs : psm.bs; int tw = 1 << TEX0.TW; int th = 1 << TEX0.TH; for(int y = 0; y < th; y += bs.y) { uint32 base = off->block.row[y >> 3]; for(int x = 0; x < tw; x += bs.x) { uint32 page = (base + off->block.col[x >> 3]) >> 5; if(page < MAX_PAGES) { m_pages[page >> 5] |= 1 << (page & 31); } } } for(size_t i = 0; i < countof(m_pages); i++) { if(uint32 p = m_pages[i]) { m_pages[i] = 0; list* m = &m_map[i << 5]; unsigned long j; while(_BitScanForward(&j, p)) { p ^= 1 << j; m[j].push_front(s); } } } } void GSTextureCache::SourceMap::RemoveAll() { for_each(m_surfaces.begin(), m_surfaces.end(), delete_object()); m_surfaces.clear(); for(size_t i = 0; i < countof(m_map); i++) { m_map[i].clear(); } } void GSTextureCache::SourceMap::RemoveAt(Source* s) { m_surfaces.erase(s); GL_CACHE("TC: Remove Src Texture: %d (0x%x)", s->m_texture ? s->m_texture->GetID() : 0, s->m_TEX0.TBP0); // Source (except render target) is duplicated for each page they use. for(size_t start = s->m_TEX0.TBP0 >> 5, end = s->m_target ? start : countof(m_map) - 1; start <= end; start++) { list& m = m_map[start]; for(list::iterator i = m.begin(); i != m.end(); ) { list::iterator j = i++; if(*j == s) {m.erase(j); break;} } } delete s; }