/* ZeroSPU2 * Copyright (C) 2006-2010 zerofrog * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "zerospu2.h" #include "zerodma.h" #include #include #include "soundtouch/SoundTouch.h" void CALLBACK SPU2readDMAMem(u16 *pMem, int size, int channel) { u32 spuaddr = C_SPUADDR(channel); SPU2_LOG("SPU2 readDMAMem(%d) size %x, addr: %x\n", channel, size, pMem); for (u32 i = 0; i < size; i++) { *pMem++ = *(u16*)(spu2mem + spuaddr); if (spu2attr(channel).irq && (C_IRQA(channel) == spuaddr)) { C_SPUADDR_SET(spuaddr, channel); IRQINFO |= (4 * (channel + 1)); SPU2_LOG("SPU2readDMAMem(%d):interrupt\n", channel); irqCallbackSPU2(); } spuaddr++; // inc spu addr if (spuaddr > 0x0fffff) spuaddr=0; // wrap at 2Mb } spuaddr += 19; //Transfer Local To Host TSAH/L + Data Size + 20 (already +1'd) C_SPUADDR_SET(spuaddr, channel); // DMA complete spu2stat_clear_80(channel); SPUStartCycle[channel] = SPUCycles; SPUTargetCycle[channel] = size; interrupt |= (1 << (1 + channel)); } void CALLBACK SPU2readDMA4Mem(u16 *pMem, int size) { LOG_CALLBACK("SPU2readDMA4Mem()\n"); return SPU2readDMAMem(pMem, size, 0); } void CALLBACK SPU2readDMA7Mem(u16* pMem, int size) { LOG_CALLBACK("SPU2readDMA7Mem()\n"); return SPU2readDMAMem(pMem, size, 1); } // WRITE // AutoDMA's are used to transfer to the DIRECT INPUT area of the spu2 memory // Left and Right channels are always interleaved together in the transfer so // the AutoDMA's deinterleaves them and transfers them. An interrupt is // generated when half of the buffer (256 short-words for left and 256 // short-words for right ) has been transferred. Another interrupt occurs at // the end of the transfer. int ADMASWrite(int channel) { u32 spuaddr; ADMA *Adma = &adma[channel]; if (interrupt & 0x2) { WARN_LOG("ADMASWrite(%d) returning for interrupt\n", channel); return 0; } if (Adma->AmountLeft <= 0) { WARN_LOG("ADMASWrite(%d) amount left is 0\n", channel); return 1; } assert( Adma->AmountLeft >= 512 ); spuaddr = C_SPUADDR(channel); u32 left_addr = spuaddr + 0x2000 + c_offset(channel); u32 right_addr = left_addr + 0x200; // SPU2 Deinterleaves the Left and Right Channels memcpy((s16*)(spu2mem + left_addr),(s16*)Adma->MemAddr,512); Adma->MemAddr += 256; memcpy((s16*)(spu2mem + right_addr),(s16*)Adma->MemAddr,512); Adma->MemAddr += 256; if (spu2attr(channel).irq && (irq_test1(channel, spuaddr) || irq_test2(channel, spuaddr))) { IRQINFO |= (4 * (channel + 1)); WARN_LOG("ADMAMem access(%d): interrupt\n", channel); irqCallbackSPU2(); } spuaddr = (spuaddr + 256) & 511; C_SPUADDR_SET(spuaddr, channel); Adma->AmountLeft -= 512; return (Adma->AmountLeft <= 0); } void SPU2writeDMAMem(u16* pMem, int size, int channel) { u32 spuaddr; ADMA *Adma = &adma[channel]; s32 offset = (channel == 0) ? 0 : 0x400; SPU2_LOG("SPU2 writeDMAMem size %x, addr: %x(spu2:%x)"/*, ctrl: %x, adma: %x\n"*/, \ size, pMem, C_SPUADDR(channel)/*, spu2Ru16(REG_C0_CTRL + offset), spu2Ru16(REG_C0_ADMAS + offset)*/); if (spu2admas(channel) && (spu2attr(channel).dma == 0) && size) { if (!Adma->Enabled ) Adma->Index = 0; Adma->MemAddr = pMem; Adma->AmountLeft = size; SPUTargetCycle[channel] = size; spu2stat_clear_80(channel); if (!Adma->Enabled || (Adma->Index > 384)) { C_SPUADDR_SET(0, channel); if (ADMASWrite(channel)) { SPUStartCycle[channel] = SPUCycles; interrupt |= (1 << (1 + channel)); } } Adma->Enabled = 1; return; } #ifdef ZEROSPU2_DEVBUILD if ((conf.Log && conf.options & OPTION_RECORDING) && (channel == 1)) LogPacketSound(pMem, 0x8000); #endif spuaddr = C_SPUADDR(channel); memcpy((u8*)(spu2mem + spuaddr),(u8*)pMem,size << 1); spuaddr += size; C_SPUADDR_SET(spuaddr, channel); if (spu2attr(channel).irq && (spuaddr < C_IRQA(channel) && (C_IRQA(channel) <= (spuaddr + 0x20)))) { IRQINFO |= 4 * (channel + 1); SPU2_LOG("SPU2writeDMAMem:interrupt\n"); irqCallbackSPU2(); } if (spuaddr > 0xFFFFE) spuaddr = 0x2800; C_SPUADDR_SET(spuaddr, channel); MemAddr[channel] += size << 1; spu2stat_clear_80(channel); SPUStartCycle[channel] = SPUCycles; SPUTargetCycle[channel] = size; interrupt |= (1 << (channel + 1)); } void CALLBACK SPU2interruptDMA(int channel) { SPU2_LOG("SPU2 interruptDMA(%d)\n", channel); spu2attr(channel).dma = 0; spu2stat_set_80(channel); } #ifndef ENABLE_NEW_IOPDMA_SPU2 void CALLBACK SPU2writeDMA4Mem(u16* pMem, int size) { LOG_CALLBACK("SPU2writeDMA4Mem()\n"); SPU2writeDMAMem(pMem, size, 0); } void CALLBACK SPU2writeDMA7Mem(u16* pMem, int size) { LOG_CALLBACK("SPU2writeDMA7Mem()\n"); SPU2writeDMAMem(pMem, size, 1); } void CALLBACK SPU2interruptDMA4() { LOG_CALLBACK("SPU2interruptDMA4()\n"); SPU2interruptDMA(4); } void CALLBACK SPU2interruptDMA7() { LOG_CALLBACK("SPU2interruptDMA7()\n"); SPU2interruptDMA(7); } #else s32 CALLBACK SPU2dmaRead(s32 channel, u32* data, u32 bytesLeft, u32* bytesProcessed) { // Needs implementation. return 0; } s32 CALLBACK SPU2dmaWrite(s32 channel, u32* data, u32 bytesLeft, u32* bytesProcessed) { // Needs implementation. return 0; } void CALLBACK SPU2dmaInterrupt(s32 channel) { LOG_CALLBACK("SPU2dmaInterruptDMA()\n"); SPU2interruptDMA(channel); } #endif