/* SPU2-X, A plugin for Emulating the Sound Processing Unit of the Playstation 2 * Developed and maintained by the Pcsx2 Development Team. * * Original portions from SPU2ghz are (c) 2008 by David Quintana [gigaherz] * * SPU2-X is free software: you can redistribute it and/or modify it under the terms * of the GNU Lesser General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * SPU2-X is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with SPU2-X. If not, see . */ #pragma once #include "Mixer.h" // -------------------------------------------------------------------------------------- // SPU2 Memory Indexers // -------------------------------------------------------------------------------------- #define spu2Rs16(mmem) (*(s16 *)((s8 *)spu2regs + ((mmem) & 0x1fff))) #define spu2Ru16(mmem) (*(u16 *)((s8 *)spu2regs + ((mmem) & 0x1fff))) extern s16* __fastcall GetMemPtr(u32 addr); extern s16 __fastcall spu2M_Read( u32 addr ); extern void __fastcall spu2M_Write( u32 addr, s16 value ); extern void __fastcall spu2M_Write( u32 addr, u16 value ); struct V_VolumeLR { static V_VolumeLR Max; s32 Left; s32 Right; V_VolumeLR() {} V_VolumeLR( s32 both ) : Left( both ), Right( both ) { } void DebugDump( FILE* dump, const char* title ); }; struct V_VolumeSlide { // Holds the "original" value of the volume for this voice, prior to slides. // (ie, the volume as written to the register) s16 Reg_VOL; s32 Value; s8 Increment; s8 Mode; public: V_VolumeSlide() {} V_VolumeSlide( s16 regval, s32 fullvol ) : Reg_VOL( regval ), Value( fullvol ), Increment( 0 ), Mode( 0 ) { } void Update(); void RegSet( u16 src ); // used to set the volume from a register source (16 bit signed) void DebugDump( FILE* dump, const char* title, const char* nameLR ); }; struct V_VolumeSlideLR { static V_VolumeSlideLR Max; V_VolumeSlide Left; V_VolumeSlide Right; public: V_VolumeSlideLR() {} V_VolumeSlideLR( s16 regval, s32 bothval ) : Left( regval, bothval ), Right( regval, bothval ) { } void Update() { Left.Update(); Right.Update(); } void DebugDump( FILE* dump, const char* title ); }; struct V_ADSR { union { u32 reg32; struct { u16 regADSR1; u16 regADSR2; }; struct { u32 SustainLevel:4, DecayRate:4, AttackRate:7, AttackMode:1, // 0 for linear (+lin), 1 for pseudo exponential (+exp) ReleaseRate:5, ReleaseMode:1, // 0 for linear (-lin), 1 for exponential (-exp) SustainRate:7, SustainMode:3; // 0 = +lin, 1 = -lin, 2 = +exp, 3 = -exp }; }; s32 Value; // Ranges from 0 to 0x7fffffff (signed values are clamped to 0) [Reg_ENVX] u8 Phase; // monitors current phase of ADSR envelope bool Releasing; // Ready To Release, triggered by Voice.Stop(); public: bool Calculate(); }; struct V_Voice { u32 PlayCycle; // SPU2 cycle where the Playing started V_VolumeSlideLR Volume; // Envelope V_ADSR ADSR; // Pitch (also Reg_PITCH) s16 Pitch; // Loop Start address (also Reg_LSAH/L) u32 LoopStartA; // Sound Start address (also Reg_SSAH/L) u32 StartA; // Next Read Data address (also Reg_NAXH/L) u32 NextA; // Voice Decoding State s32 Prev1; s32 Prev2; // Pitch Modulated by previous voice bool Modulated; // Source (Wave/Noise) bool Noise; s8 LoopMode; s8 LoopFlags; // Sample pointer (19:12 bit fixed point) s32 SP; // Sample pointer for Cubic Interpolation // Cubic interpolation mixes a sample behind Linear, so that it // can have sample data to either side of the end points from which // to extrapolate. This SP represents that late sample position. s32 SPc; // Previous sample values - used for interpolation // Inverted order of these members to match the access order in the // code (might improve cache hits). s32 PV4; s32 PV3; s32 PV2; s32 PV1; // Last outputted audio value, used for voice modulation. s32 OutX; // SBuffer now points directly to an ADPCM cache entry. s16 *SBuffer; // sample position within the current decoded packet. s32 SCurrent; void Start(); void Stop(); }; // ** Begin Debug-only variables section ** // Separated from the V_Voice struct to improve cache performance of // the Public Release build. struct V_VoiceDebug { s8 FirstBlock; s32 SampleData; s32 PeakX; s32 displayPeak; s32 lastSetStartA; }; struct V_CoreDebug { V_VoiceDebug Voices[24]; // Last Transfer Size u32 lastsize; }; // Debug tracking information - 24 voices and 2 cores. extern V_CoreDebug DebugCores[2]; struct V_Reverb { s16 IN_COEF_L; s16 IN_COEF_R; u32 FB_SRC_A; u32 FB_SRC_B; s16 FB_ALPHA; s16 FB_X; u32 IIR_SRC_A0; u32 IIR_SRC_A1; u32 IIR_SRC_B1; u32 IIR_SRC_B0; u32 IIR_DEST_A0; u32 IIR_DEST_A1; u32 IIR_DEST_B0; u32 IIR_DEST_B1; s16 IIR_ALPHA; s16 IIR_COEF; u32 ACC_SRC_A0; u32 ACC_SRC_A1; u32 ACC_SRC_B0; u32 ACC_SRC_B1; u32 ACC_SRC_C0; u32 ACC_SRC_C1; u32 ACC_SRC_D0; u32 ACC_SRC_D1; s16 ACC_COEF_A; s16 ACC_COEF_B; s16 ACC_COEF_C; s16 ACC_COEF_D; u32 MIX_DEST_A0; u32 MIX_DEST_A1; u32 MIX_DEST_B0; u32 MIX_DEST_B1; }; struct V_ReverbBuffers { s32 FB_SRC_A0; s32 FB_SRC_B0; s32 FB_SRC_A1; s32 FB_SRC_B1; s32 IIR_SRC_A0; s32 IIR_SRC_A1; s32 IIR_SRC_B1; s32 IIR_SRC_B0; s32 IIR_DEST_A0; s32 IIR_DEST_A1; s32 IIR_DEST_B0; s32 IIR_DEST_B1; s32 ACC_SRC_A0; s32 ACC_SRC_A1; s32 ACC_SRC_B0; s32 ACC_SRC_B1; s32 ACC_SRC_C0; s32 ACC_SRC_C1; s32 ACC_SRC_D0; s32 ACC_SRC_D1; s32 MIX_DEST_A0; s32 MIX_DEST_A1; s32 MIX_DEST_B0; s32 MIX_DEST_B1; bool NeedsUpdated; }; struct V_SPDIF { u16 Out; u16 Info; u16 Unknown1; u16 Mode; u16 Media; u16 Unknown2; u16 Protection; }; struct V_CoreRegs { u32 PMON; u32 NON; u32 VMIXL; u32 VMIXR; u32 VMIXEL; u32 VMIXER; u32 ENDX; u16 MMIX; u16 STATX; u16 ATTR; u16 _1AC; }; struct V_VoiceGates { s16 DryL; // 'AND Gate' for Direct Output to Left Channel s16 DryR; // 'AND Gate' for Direct Output for Right Channel s16 WetL; // 'AND Gate' for Effect Output for Left Channel s16 WetR; // 'AND Gate' for Effect Output for Right Channel }; struct V_CoreGates { union { u128 v128; struct { s16 InpL; // Sound Data Input to Direct Output (Left) s16 InpR; // Sound Data Input to Direct Output (Right) s16 SndL; // Voice Data to Direct Output (Left) s16 SndR; // Voice Data to Direct Output (Right) s16 ExtL; // External Input to Direct Output (Left) s16 ExtR; // External Input to Direct Output (Right) }; }; }; struct VoiceMixSet { static const VoiceMixSet Empty; StereoOut32 Dry, Wet; VoiceMixSet() {} VoiceMixSet( const StereoOut32& dry, const StereoOut32& wet ) : Dry( dry ), Wet( wet ) { } }; struct V_Core { static const uint NumVoices = 24; int Index; // Core index identifier. // Voice Gates -- These are SSE-related values, and must always be // first to ensure 16 byte alignment V_VoiceGates VoiceGates[NumVoices]; V_CoreGates DryGate; V_CoreGates WetGate; V_VolumeSlideLR MasterVol; // Master Volume V_VolumeLR ExtVol; // Volume for External Data Input V_VolumeLR InpVol; // Volume for Sound Data Input V_VolumeLR FxVol; // Volume for Output from Effects V_Voice Voices[NumVoices]; u32 IRQA; // Interrupt Address u32 TSA; // DMA Transfer Start Address u32 TDA; // DMA Transfer Data Address (Internal...) bool IRQEnable; // Interrupt Enable bool FxEnable; // Effect Enable bool Mute; // Mute bool AdmaInProgress; s8 DMABits; // DMA related? s8 NoiseClk; // Noise Clock u16 AutoDMACtrl; // AutoDMA Status s32 DMAICounter; // DMA Interrupt Counter u32 InputDataLeft; // Input Buffer u32 InputPosRead; u32 InputPosWrite; u32 InputDataProgress; V_Reverb Revb; // Reverb Registers V_ReverbBuffers RevBuffers; // buffer pointers for reverb, pre-calculated and pre-clipped. u32 EffectsStartA; u32 EffectsEndA; u32 ReverbX; // Current size of the effects buffer. Pre-caculated when the effects start // or end position registers are written. CAN BE NEGATIVE OR ZERO, in which // case reverb should be disabled. s32 EffectsBufferSize; V_CoreRegs Regs; // Registers // Last samples to pass through the effects processor. // Used because the effects processor works at 24khz and just pulls // from this for the odd Ts. StereoOut32 LastEffect; u8 InitDelay; u8 CoreEnabled; u8 AttrBit0; u8 AttrBit4; u8 AttrBit5; // new dma only bool DmaStarted; u32 AutoDmaFree; // old dma only u16* DMAPtr; u32 MADR; u32 TADR; StereoOut32 downbuf[8]; StereoOut32 upbuf[8]; int dbpos, ubpos; // HACK -- This is a temp buffer which is (or isn't?) used to circumvent some memory // corruption that originates elsewhere in the plugin. >_< The actual ADMA buffer // is an area mapped to SPU2 main memory. s16 ADMATempBuffer[0x1000]; // ---------------------------------------------------------------------------------- // V_Core Methods // ---------------------------------------------------------------------------------- // uninitialized constructor V_Core() : Index( -1 ), DMAPtr( NULL ) {} V_Core( int idx ); // our badass constructor virtual ~V_Core() throw(); void Reset( int index ); void UpdateEffectsBufferSize(); s32 EffectsBufferIndexer( s32 offset ) const; void UpdateFeedbackBuffersA(); void UpdateFeedbackBuffersB(); void WriteRegPS1( u32 mem, u16 value ); u16 ReadRegPS1( u32 mem ); // -------------------------------------------------------------------------------------- // Mixer Section // -------------------------------------------------------------------------------------- StereoOut32 Mix( const VoiceMixSet& inVoices, const StereoOut32& Input, const StereoOut32& Ext ); void Reverb_AdvanceBuffer(); StereoOut32 DoReverb( const StereoOut32& Input ); s32 RevbGetIndexer( s32 offset ); StereoOut32 ReadInput(); StereoOut32 ReadInput_HiFi(); // -------------------------------------------------------------------------- // DMA Section // -------------------------------------------------------------------------- // Returns the index of the DMA channel (4 for Core 0, or 7 for Core 1) int GetDmaIndex() const { return (Index == 0) ? 4 : 7; } // returns either '4' or '7' char GetDmaIndexChar() const { return 0x30 + GetDmaIndex(); } __forceinline u16 DmaRead() { const u16 ret = (u16)spu2M_Read(TDA); ++TDA; TDA &= 0xfffff; return ret; } __forceinline void DmaWrite(u16 value) { spu2M_Write( TSA, value ); ++TSA; TSA &= 0xfffff; } void LogAutoDMA( FILE* fp ); s32 NewDmaRead(u32* data, u32 bytesLeft, u32* bytesProcessed); s32 NewDmaWrite(u32* data, u32 bytesLeft, u32* bytesProcessed); void NewDmaInterrupt(); // old dma only void DoDMAwrite(u16* pMem, u32 size); void DoDMAread(u16* pMem, u32 size); void AutoDMAReadBuffer(int mode); void StartADMAWrite(u16 *pMem, u32 sz); void PlainDMAWrite(u16 *pMem, u32 sz); }; extern V_Core Cores[2]; extern V_SPDIF Spdif; // Output Buffer Writing Position (the same for all data); extern s16 OutPos; // Input Buffer Reading Position (the same for all data); extern s16 InputPos; // SPU Mixing Cycles ("Ticks mixed" counter) extern u32 Cycles; extern short* spu2regs; extern short* _spu2mem; extern int PlayMode; extern void SetIrqCall(); extern void StartVoices(int core, u32 value); extern void StopVoices(int core, u32 value); extern void InitADSR(); extern void CalculateADSR( V_Voice& vc ); extern void spdif_set51(u32 is_5_1_out); extern u32 spdif_init(); extern void spdif_shutdown(); extern void spdif_get_samples(s32 *samples); // fills the buffer with [l,r,c,lfe,sl,sr] if using 5.1 output, or [l,r] if using stereo extern void UpdateSpdifMode(); namespace Savestate { struct DataBlock; extern s32 __fastcall FreezeIt( DataBlock& spud ); extern s32 __fastcall ThawIt( DataBlock& spud ); extern s32 __fastcall SizeIt(); } // -------------------------------------------------------------------------------------- // ADPCM Decoder Cache // -------------------------------------------------------------------------------------- // The SPU2 has a dynamic memory range which is used for several internal operations, such as // registers, CORE 1/2 mixing, AutoDMAs, and some other fancy stuff. We exclude this range // from the cache here: static const s32 SPU2_DYN_MEMLINE = 0x2800; // 8 short words per encoded PCM block. (as stored in SPU2 ram) static const int pcm_WordsPerBlock = 8; // number of cachable ADPCM blocks (any blocks above the SPU2_DYN_MEMLINE) static const int pcm_BlockCount = 0x100000 / pcm_WordsPerBlock; // 28 samples per decoded PCM block (as stored in our cache) static const int pcm_DecodedSamplesPerBlock = 28; struct PcmCacheEntry { bool Validated; s16 Sampledata[pcm_DecodedSamplesPerBlock]; }; extern PcmCacheEntry* pcm_cache_data;