/* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2010 PCSX2 Dev Team
*
* PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see .
*/
/*
* ix86 core v0.9.1
*
* Original Authors (v0.6.2 and prior):
* linuzappz
* alexey silinov
* goldfinger
* zerofrog(@gmail.com)
*
* Authors of v0.9.1:
* Jake.Stine(@gmail.com)
* cottonvibes(@gmail.com)
* sudonim(1@gmail.com)
*/
#include "common/emitter/internal.h"
namespace x86Emitter
{
void xImpl_JmpCall::operator()(const xAddressReg& absreg) const
{
// Jumps are always wide and don't need the rex.W
xOpWrite(0, 0xff, isJmp ? 4 : 2, absreg.GetNonWide());
}
void xImpl_JmpCall::operator()(const xIndirectNative& src) const
{
// Jumps are always wide and don't need the rex.W
EmitRex(0, xIndirect32(src.Base, src.Index, 1, 0));
xWrite8(0xff);
EmitSibMagic(isJmp ? 4 : 2, src);
}
const xImpl_JmpCall xJMP = {true};
const xImpl_JmpCall xCALL = {false};
template
void prepareRegsForFastcall(const Reg1& a1, const Reg2& a2)
{
if (a1.IsEmpty())
return;
// Make sure we don't mess up if someone tries to fastcall with a1 in arg2reg and a2 in arg1reg
if (a2.Id != arg1reg.Id)
{
xMOV(Reg1(arg1reg), a1);
if (!a2.IsEmpty())
{
xMOV(Reg2(arg2reg), a2);
}
}
else if (a1.Id != arg2reg.Id)
{
xMOV(Reg2(arg2reg), a2);
xMOV(Reg1(arg1reg), a1);
}
else
{
xPUSH(a1);
xMOV(Reg2(arg2reg), a2);
xPOP(Reg1(arg1reg));
}
}
void xImpl_FastCall::operator()(void* f, const xRegister32& a1, const xRegister32& a2) const
{
prepareRegsForFastcall(a1, a2);
uptr disp = ((uptr)xGetPtr() + 5) - (uptr)f;
if ((sptr)disp == (s32)disp)
{
xCALL(f);
}
else
{
xLEA(rax, ptr64[f]);
xCALL(rax);
}
}
void xImpl_FastCall::operator()(void* f, const xRegisterLong& a1, const xRegisterLong& a2) const
{
prepareRegsForFastcall(a1, a2);
uptr disp = ((uptr)xGetPtr() + 5) - (uptr)f;
if ((sptr)disp == (s32)disp)
{
xCALL(f);
}
else
{
xLEA(rax, ptr64[f]);
xCALL(rax);
}
}
void xImpl_FastCall::operator()(void* f, u32 a1, const xRegisterLong& a2) const
{
if (!a2.IsEmpty())
{
xMOV(arg2reg, a2);
}
xMOV(arg1reg, a1);
(*this)(f, arg1reg, arg2reg);
}
void xImpl_FastCall::operator()(void* f, void* a1) const
{
xLEA(arg1reg, ptr[a1]);
(*this)(f, arg1reg, arg2reg);
}
void xImpl_FastCall::operator()(void* f, u32 a1, const xRegister32& a2) const
{
if (!a2.IsEmpty())
{
xMOV(arg2regd, a2);
}
xMOV(arg1regd, a1);
(*this)(f, arg1regd, arg2regd);
}
void xImpl_FastCall::operator()(void* f, const xIndirect32& a1) const
{
xMOV(arg1regd, a1);
(*this)(f, arg1regd);
}
void xImpl_FastCall::operator()(void* f, u32 a1, u32 a2) const
{
xMOV(arg1regd, a1);
xMOV(arg2regd, a2);
(*this)(f, arg1regd, arg2regd);
}
void xImpl_FastCall::operator()(const xIndirectNative& f, const xRegisterLong& a1, const xRegisterLong& a2) const
{
prepareRegsForFastcall(a1, a2);
xCALL(f);
}
const xImpl_FastCall xFastCall = {};
// ------------------------------------------------------------------------
// Emits a 32 bit jump, and returns a pointer to the 32 bit displacement.
// (displacements should be assigned relative to the end of the jump instruction,
// or in other words *(retval+1) )
__emitinline s32* xJcc32(JccComparisonType comparison, s32 displacement)
{
if (comparison == Jcc_Unconditional)
xWrite8(0xe9);
else
{
xWrite8(0x0f);
xWrite8(0x80 | comparison);
}
xWrite(displacement);
return ((s32*)xGetPtr()) - 1;
}
// ------------------------------------------------------------------------
// Emits a 32 bit jump, and returns a pointer to the 8 bit displacement.
// (displacements should be assigned relative to the end of the jump instruction,
// or in other words *(retval+1) )
__emitinline s8* xJcc8(JccComparisonType comparison, s8 displacement)
{
xWrite8((comparison == Jcc_Unconditional) ? 0xeb : (0x70 | comparison));
xWrite(displacement);
return (s8*)xGetPtr() - 1;
}
// ------------------------------------------------------------------------
// Writes a jump at the current x86Ptr, which targets a pre-established target address.
// (usually a backwards jump)
//
// slideForward - used internally by xSmartJump to indicate that the jump target is going
// to slide forward in the event of an 8 bit displacement.
//
__emitinline void xJccKnownTarget(JccComparisonType comparison, const void* target, bool slideForward)
{
// Calculate the potential j8 displacement first, assuming an instruction length of 2:
sptr displacement8 = (sptr)target - (sptr)(xGetPtr() + 2);
const int slideVal = slideForward ? ((comparison == Jcc_Unconditional) ? 3 : 4) : 0;
displacement8 -= slideVal;
if (slideForward)
{
pxAssertDev(displacement8 >= 0, "Used slideForward on a backward jump; nothing to slide!");
}
if (is_s8(displacement8))
xJcc8(comparison, displacement8);
else
{
// Perform a 32 bit jump instead. :(
s32* bah = xJcc32(comparison);
sptr distance = (sptr)target - (sptr)xGetPtr();
// This assert won't physically happen on x86 targets
pxAssertDev(distance >= -0x80000000LL && distance < 0x80000000LL, "Jump target is too far away, needs an indirect register");
*bah = (s32)distance;
}
}
// Low-level jump instruction! Specify a comparison type and a target in void* form, and
// a jump (either 8 or 32 bit) is generated.
__emitinline void xJcc(JccComparisonType comparison, const void* target)
{
xJccKnownTarget(comparison, target, false);
}
xForwardJumpBase::xForwardJumpBase(uint opsize, JccComparisonType cctype)
{
pxAssert(opsize == 1 || opsize == 4);
pxAssertDev(cctype != Jcc_Unknown, "Invalid ForwardJump conditional type.");
BasePtr = (s8*)xGetPtr() +
((opsize == 1) ? 2 : // j8's are always 2 bytes.
((cctype == Jcc_Unconditional) ? 5 : 6)); // j32's are either 5 or 6 bytes
if (opsize == 1)
xWrite8((cctype == Jcc_Unconditional) ? 0xeb : (0x70 | cctype));
else
{
if (cctype == Jcc_Unconditional)
xWrite8(0xe9);
else
{
xWrite8(0x0f);
xWrite8(0x80 | cctype);
}
}
xAdvancePtr(opsize);
}
void xForwardJumpBase::_setTarget(uint opsize) const
{
pxAssertDev(BasePtr != NULL, "");
sptr displacement = (sptr)xGetPtr() - (sptr)BasePtr;
if (opsize == 1)
{
pxAssertDev(is_s8(displacement), "Emitter Error: Invalid short jump displacement.");
BasePtr[-1] = (s8)displacement;
}
else
{
// full displacement, no sanity checks needed :D
((s32*)BasePtr)[-1] = displacement;
}
}
// returns the inverted conditional type for this Jcc condition. Ie, JNS will become JS.
__fi JccComparisonType xInvertCond(JccComparisonType src)
{
pxAssert(src != Jcc_Unknown);
if (Jcc_Unconditional == src)
return Jcc_Unconditional;
// x86 conditionals are clever! To invert conditional types, just invert the lower bit:
return (JccComparisonType)((int)src ^ 1);
}
} // namespace x86Emitter