/* PCSX2 - PS2 Emulator for PCs
* Copyright (C) 2002-2010 PCSX2 Dev Team
*
* PCSX2 is free software: you can redistribute it and/or modify it under the terms
* of the GNU Lesser General Public License as published by the Free Software Found-
* ation, either version 3 of the License, or (at your option) any later version.
*
* PCSX2 is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with PCSX2.
* If not, see .
*/
#include "common/Threading.h"
#include "common/ThreadingInternal.h"
namespace Threading
{
static std::atomic _attr_refcount(0);
static pthread_mutexattr_t _attr_recursive;
} // namespace Threading
// --------------------------------------------------------------------------------------
// Mutex Implementations
// --------------------------------------------------------------------------------------
#if defined(_WIN32) || (defined(_POSIX_TIMEOUTS) && _POSIX_TIMEOUTS >= 200112L)
// good, we have pthread_mutex_timedlock
#define xpthread_mutex_timedlock pthread_mutex_timedlock
#else
// We have to emulate pthread_mutex_timedlock(). This could be a serious
// performance drain if its used a lot.
#include // gettimeofday()
// sleep for 10ms at a time
#define TIMEDLOCK_EMU_SLEEP_NS 10000000ULL
// Original POSIX docs:
//
// The pthread_mutex_timedlock() function shall lock the mutex object
// referenced by mutex. If the mutex is already locked, the calling thread
// shall block until the mutex becomes available as in the
// pthread_mutex_lock() function. If the mutex cannot be locked without
// waiting for another thread to unlock the mutex, this wait shall be
// terminated when the specified timeout expires.
//
// This is an implementation that emulates pthread_mutex_timedlock() via
// pthread_mutex_trylock().
static int xpthread_mutex_timedlock(
pthread_mutex_t* mutex,
const struct timespec* abs_timeout)
{
int err = 0;
while ((err = pthread_mutex_trylock(mutex)) == EBUSY)
{
// check if the timeout has expired, gettimeofday() is implemented
// efficiently (in userspace) on OSX
struct timeval now;
gettimeofday(&now, NULL);
if (now.tv_sec > abs_timeout->tv_sec || (now.tv_sec == abs_timeout->tv_sec && (u64)now.tv_usec * 1000ULL > (u64)abs_timeout->tv_nsec))
{
return ETIMEDOUT;
}
// acquiring lock failed, sleep some
struct timespec ts;
ts.tv_sec = 0;
ts.tv_nsec = TIMEDLOCK_EMU_SLEEP_NS;
while (nanosleep(&ts, &ts) == -1)
;
}
return err;
}
#endif
Threading::Mutex::Mutex()
{
pthread_mutex_init(&m_mutex, NULL);
}
static wxTimeSpan def_detach_timeout(0, 0, 6, 0);
void Threading::Mutex::Detach()
{
if (EBUSY != pthread_mutex_destroy(&m_mutex))
return;
if (IsRecursive())
{
// Sanity check: Recursive locks could be held by our own thread, which would
// be considered an assertion failure, but can also be handled gracefully.
// (note: if the mutex is locked recursively more than twice then this assert won't
// detect it)
Release();
Release(); // in case of double recursion.
int result = pthread_mutex_destroy(&m_mutex);
if (pxAssertDev(result != EBUSY, "Detachment of a recursively-locked mutex (self-locked!)."))
return;
}
if (Wait(def_detach_timeout))
pthread_mutex_destroy(&m_mutex);
else
Console.Error("(Thread Log) Mutex cleanup failed due to possible deadlock.");
}
Threading::Mutex::~Mutex()
{
try
{
Mutex::Detach();
}
DESTRUCTOR_CATCHALL;
}
Threading::MutexRecursive::MutexRecursive()
: Mutex(false)
{
if (++_attr_refcount == 1)
{
if (0 != pthread_mutexattr_init(&_attr_recursive))
throw Exception::OutOfMemory(L"Recursive mutexing attributes");
pthread_mutexattr_settype(&_attr_recursive, PTHREAD_MUTEX_RECURSIVE);
}
if (pthread_mutex_init(&m_mutex, &_attr_recursive))
Console.Error("(Thread Log) Failed to initialize mutex.");
}
Threading::MutexRecursive::~MutexRecursive()
{
if (--_attr_refcount == 0)
pthread_mutexattr_destroy(&_attr_recursive);
}
// This is a bit of a hackish function, which is technically unsafe, but can be useful for allowing
// the application to survive unexpected or inconvenient failures, where a mutex is deadlocked by
// a rogue thread. This function allows us to Recreate the mutex and let the deadlocked one ponder
// the deeper meanings of the universe for eternity.
void Threading::Mutex::Recreate()
{
Detach();
pthread_mutex_init(&m_mutex, NULL);
}
// Returns:
// true if the mutex had to be recreated due to lock contention, or false if the mutex is safely
// unlocked.
bool Threading::Mutex::RecreateIfLocked()
{
if (!Wait(def_detach_timeout))
{
Recreate();
return true;
}
return false;
}
// This is a direct blocking action -- very fast, very efficient, and generally very dangerous
// if used from the main GUI thread, since it typically results in an unresponsive program.
// Call this method directly only if you know the code in question will be run from threads
// other than the main thread.
void Threading::Mutex::AcquireWithoutYield()
{
pxAssertMsg(!wxThread::IsMain(), "Unyielding mutex acquire issued from the main/gui thread. Please use Acquire() instead.");
pthread_mutex_lock(&m_mutex);
}
bool Threading::Mutex::AcquireWithoutYield(const wxTimeSpan& timeout)
{
wxDateTime megafail(wxDateTime::UNow() + timeout);
const timespec fail = {megafail.GetTicks(), megafail.GetMillisecond() * 1000000};
return xpthread_mutex_timedlock(&m_mutex, &fail) == 0;
}
void Threading::Mutex::Release()
{
pthread_mutex_unlock(&m_mutex);
}
bool Threading::Mutex::TryAcquire()
{
return EBUSY != pthread_mutex_trylock(&m_mutex);
}
// This is a wxApp-safe rendition of AcquireWithoutYield, which makes sure to execute pending app events
// and messages *if* the lock is performed from the main GUI thread.
//
void Threading::Mutex::Acquire()
{
#if wxUSE_GUI
if (!wxThread::IsMain() || (wxTheApp == NULL))
{
pthread_mutex_lock(&m_mutex);
}
else if (_WaitGui_RecursionGuard(L"Mutex::Acquire"))
{
pthread_mutex_lock(&m_mutex);
}
else
{
//ScopedBusyCursor hourglass( Cursor_KindaBusy );
while (!AcquireWithoutYield(def_yieldgui_interval))
YieldToMain();
}
#else
pthread_mutex_lock(&m_mutex);
#endif
}
bool Threading::Mutex::Acquire(const wxTimeSpan& timeout)
{
#if wxUSE_GUI
if (!wxThread::IsMain() || (wxTheApp == NULL))
{
return AcquireWithoutYield(timeout);
}
else if (_WaitGui_RecursionGuard(L"Mutex::TimedAcquire"))
{
return AcquireWithoutYield(timeout);
}
else
{
//ScopedBusyCursor hourglass( Cursor_KindaBusy );
wxTimeSpan countdown((timeout));
do
{
if (AcquireWithoutYield(def_yieldgui_interval))
break;
YieldToMain();
countdown -= def_yieldgui_interval;
} while (countdown.GetMilliseconds() > 0);
return countdown.GetMilliseconds() > 0;
}
#else
return AcquireWithoutYield(timeout);
#endif
}
// Performs a wait on a locked mutex, or returns instantly if the mutex is unlocked.
// Typically this action is used to determine if a thread is currently performing some
// specific task, and to block until the task is finished (PersistentThread uses it to
// determine if the thread is running or completed, for example).
//
// Implemented internally as a simple Acquire/Release pair.
//
void Threading::Mutex::Wait()
{
Acquire();
Release();
}
// Like wait but spins for a while before sleeping the thread
void Threading::Mutex::WaitWithSpin()
{
u32 waited = 0;
while (true)
{
if (TryAcquire())
{
Release();
return;
}
if (waited >= SPIN_TIME_NS)
break;
waited += ShortSpin();
}
Wait();
}
void Threading::Mutex::WaitWithoutYield()
{
AcquireWithoutYield();
Release();
}
// Performs a wait on a locked mutex, or returns instantly if the mutex is unlocked.
// (Implemented internally as a simple Acquire/Release pair.)
//
// Returns:
// true if the mutex was freed and is in an unlocked state; or false if the wait timed out
// and the mutex is still locked by another thread.
//
bool Threading::Mutex::Wait(const wxTimeSpan& timeout)
{
if (Acquire(timeout))
{
Release();
return true;
}
return false;
}
bool Threading::Mutex::WaitWithoutYield(const wxTimeSpan& timeout)
{
if (AcquireWithoutYield(timeout))
{
Release();
return true;
}
return false;
}
// --------------------------------------------------------------------------------------
// ScopedLock Implementations
// --------------------------------------------------------------------------------------
Threading::ScopedLock::~ScopedLock()
{
if (m_IsLocked && m_lock)
m_lock->Release();
}
Threading::ScopedLock::ScopedLock(const Mutex* locker)
{
m_IsLocked = false;
AssignAndLock(locker);
}
Threading::ScopedLock::ScopedLock(const Mutex& locker)
{
m_IsLocked = false;
AssignAndLock(locker);
}
void Threading::ScopedLock::AssignAndLock(const Mutex& locker)
{
AssignAndLock(&locker);
}
void Threading::ScopedLock::AssignAndLock(const Mutex* locker)
{
pxAssert(!m_IsLocked); // if we're already locked, changing the lock is bad mojo.
m_lock = const_cast(locker);
if (!m_lock)
return;
m_IsLocked = true;
m_lock->Acquire();
}
void Threading::ScopedLock::Assign(const Mutex& locker)
{
m_lock = const_cast(&locker);
}
void Threading::ScopedLock::Assign(const Mutex* locker)
{
m_lock = const_cast(locker);
}
// Provides manual unlocking of a scoped lock prior to object destruction.
void Threading::ScopedLock::Release()
{
if (!m_IsLocked)
return;
m_IsLocked = false;
if (m_lock)
m_lock->Release();
}
// provides manual locking of a scoped lock, to re-lock after a manual unlocking.
void Threading::ScopedLock::Acquire()
{
if (m_IsLocked || !m_lock)
return;
m_lock->Acquire();
m_IsLocked = true;
}
Threading::ScopedLock::ScopedLock(const Mutex& locker, bool isTryLock)
{
m_lock = const_cast(&locker);
if (!m_lock)
return;
m_IsLocked = isTryLock ? m_lock->TryAcquire() : false;
}