/* * Copyright (C) 2011-2014 Gregory hainaut * Copyright (C) 2007-2009 Gabest * * This Program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This Program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with GNU Make; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA USA. * http://www.gnu.org/copyleft/gpl.html * */ #include "stdafx.h" #include "GSDeviceOGL.h" #include "GLState.h" #include #include "res/glsl_source.h" //#define ONLY_LINES // TODO port those value into PerfMon API #ifdef ENABLE_OGL_DEBUG_MEM_BW uint64 g_real_texture_upload_byte = 0; uint64 g_vertex_upload_byte = 0; uint64 g_uniform_upload_byte = 0; #endif static const uint32 g_merge_cb_index = 10; static const uint32 g_interlace_cb_index = 11; static const uint32 g_shadeboost_cb_index = 12; static const uint32 g_fx_cb_index = 14; static const uint32 g_convert_index = 15; bool GSDeviceOGL::m_debug_gl_call = false; int GSDeviceOGL::s_n = 0; FILE* GSDeviceOGL::m_debug_gl_file = NULL; GSDeviceOGL::GSDeviceOGL() : m_msaa(0) , m_window(NULL) , m_fbo(0) , m_fbo_read(0) , m_va(NULL) , m_apitrace(0) , m_palette_ss(0) , m_vs_cb(NULL) , m_ps_cb(NULL) , m_shader(NULL) { memset(&m_merge_obj, 0, sizeof(m_merge_obj)); memset(&m_interlace, 0, sizeof(m_interlace)); memset(&m_convert, 0, sizeof(m_convert)); memset(&m_fxaa, 0, sizeof(m_fxaa)); memset(&m_shaderfx, 0, sizeof(m_shaderfx)); memset(&m_date, 0, sizeof(m_date)); memset(&m_shadeboost, 0, sizeof(m_shadeboost)); memset(&m_om_dss, 0, sizeof(m_om_dss)); GLState::Clear(); // Reset the debug file #ifdef ENABLE_OGL_DEBUG m_debug_gl_file = fopen("GSdx_opengl_debug.txt","w"); #endif m_debug_gl_call = theApp.GetConfig("debug_opengl", 0); } GSDeviceOGL::~GSDeviceOGL() { if (m_debug_gl_file) { fclose(m_debug_gl_file); m_debug_gl_file = NULL; } // If the create function wasn't called nothing to do. if (m_shader == NULL) return; GL_PUSH("GSDeviceOGL destructor"); // Clean vertex buffer state delete (m_va); // Clean m_merge_obj for (size_t i = 0; i < countof(m_merge_obj.ps); i++) m_shader->Delete(m_merge_obj.ps[i]); delete (m_merge_obj.cb); // Clean m_interlace for (size_t i = 0; i < countof(m_interlace.ps); i++) m_shader->Delete(m_interlace.ps[i]); delete (m_interlace.cb); // Clean m_convert m_shader->Delete(m_convert.vs); for (size_t i = 0; i < countof(m_convert.ps); i++) m_shader->Delete(m_convert.ps[i]); delete m_convert.dss; delete m_convert.dss_write; delete m_convert.cb; // Clean m_fxaa delete m_fxaa.cb; m_shader->Delete(m_fxaa.ps); // Clean m_shaderfx delete m_shaderfx.cb; m_shader->Delete(m_shaderfx.ps); // Clean m_date delete m_date.dss; // Clean shadeboost delete m_shadeboost.cb; m_shader->Delete(m_shadeboost.ps); // Clean various opengl allocation gl_DeleteFramebuffers(1, &m_fbo); gl_DeleteFramebuffers(1, &m_fbo_read); // Delete HW FX delete m_vs_cb; delete m_ps_cb; gl_DeleteSamplers(1, &m_palette_ss); m_shader->Delete(m_apitrace); for (uint32 key = 0; key < countof(m_vs); key++) m_shader->Delete(m_vs[key]); for (uint32 key = 0; key < countof(m_gs); key++) m_shader->Delete(m_gs[key]); for (auto it = m_ps.begin(); it != m_ps.end() ; it++) m_shader->Delete(it->second); m_ps.clear(); gl_DeleteSamplers(countof(m_ps_ss), m_ps_ss); for (uint32 key = 0; key < countof(m_om_dss); key++) delete m_om_dss[key]; PboPool::Destroy(); // Must be done after the destruction of all shader/program objects delete m_shader; m_shader = NULL; GL_POP(); } GSTexture* GSDeviceOGL::CreateSurface(int type, int w, int h, bool msaa, int fmt) { GL_PUSH("Create surface"); // A wrapper to call GSTextureOGL, with the different kind of parameter GSTextureOGL* t = NULL; t = new GSTextureOGL(type, w, h, fmt, m_fbo_read); // NOTE: I'm not sure RenderTarget always need to be cleared. It could be costly for big upscale. switch(type) { case GSTexture::RenderTarget: ClearRenderTarget(t, 0); break; case GSTexture::DepthStencil: ClearDepth(t, 0); // No need to clear the stencil now. break; } GL_POP(); return t; } GSTexture* GSDeviceOGL::FetchSurface(int type, int w, int h, bool msaa, int format) { return GSDevice::FetchSurface(type, w, h, false, format); } bool GSDeviceOGL::Create(GSWnd* wnd) { if (m_window == NULL) { if (!GLLoader::check_gl_version(3, 3)) return false; if (!GLLoader::check_gl_supported_extension()) return false; } GL_PUSH("GSDeviceOGL::Create"); m_window = wnd; // **************************************************************** // Debug helper // **************************************************************** #ifdef ENABLE_OGL_DEBUG if (theApp.GetConfig("debug_opengl", 0) && gl_DebugMessageCallback) { gl_DebugMessageCallback((GLDEBUGPROC)DebugOutputToFile, NULL); glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS_ARB); } #endif // **************************************************************** // Various object // **************************************************************** m_shader = new GSShaderOGL(!!theApp.GetConfig("debug_glsl_shader", 0)); gl_GenFramebuffers(1, &m_fbo); // Always write to the first buffer OMSetFBO(m_fbo); GLenum target[1] = {GL_COLOR_ATTACHMENT0}; gl_DrawBuffers(1, target); OMSetFBO(0); gl_GenFramebuffers(1, &m_fbo_read); // Always read from the first buffer gl_BindFramebuffer(GL_READ_FRAMEBUFFER, m_fbo_read); glReadBuffer(GL_COLOR_ATTACHMENT0); gl_BindFramebuffer(GL_READ_FRAMEBUFFER, 0); // **************************************************************** // Vertex buffer state // **************************************************************** ASSERT(sizeof(GSVertexPT1) == sizeof(GSVertex)); GSInputLayoutOGL il_convert[] = { {2 , GL_FLOAT , GL_FALSE , sizeof(GSVertexPT1) , (const GLvoid*)(0) } , {2 , GL_FLOAT , GL_FALSE , sizeof(GSVertexPT1) , (const GLvoid*)(16) } , {4 , GL_UNSIGNED_BYTE , GL_FALSE , sizeof(GSVertex) , (const GLvoid*)(8) } , {1 , GL_FLOAT , GL_FALSE , sizeof(GSVertex) , (const GLvoid*)(12) } , {2 , GL_UNSIGNED_SHORT , GL_FALSE , sizeof(GSVertex) , (const GLvoid*)(16) } , {1 , GL_UNSIGNED_INT , GL_FALSE , sizeof(GSVertex) , (const GLvoid*)(20) } , {2 , GL_UNSIGNED_SHORT , GL_FALSE , sizeof(GSVertex) , (const GLvoid*)(24) } , {4 , GL_UNSIGNED_BYTE , GL_TRUE , sizeof(GSVertex) , (const GLvoid*)(28) } , // Only 1 byte is useful but hardware unit only support 4B }; m_va = new GSVertexBufferStateOGL(sizeof(GSVertexPT1), il_convert, countof(il_convert)); // **************************************************************** // Pre Generate the different sampler object // **************************************************************** for (uint32 key = 0; key < countof(m_ps_ss); key++) { m_ps_ss[key] = CreateSampler(PSSamplerSelector(key)); } // **************************************************************** // convert // **************************************************************** m_convert.cb = new GSUniformBufferOGL(g_convert_index, sizeof(ConvertConstantBuffer)); // Upload once and forget about it ConvertConstantBuffer cb; cb.ScalingFactor = GSVector4i(theApp.GetConfig("upscale_multiplier", 1)); m_convert.cb->upload(&cb); m_convert.vs = m_shader->Compile("convert.glsl", "vs_main", GL_VERTEX_SHADER, convert_glsl); for(size_t i = 0; i < countof(m_convert.ps); i++) m_convert.ps[i] = m_shader->Compile("convert.glsl", format("ps_main%d", i), GL_FRAGMENT_SHADER, convert_glsl); PSSamplerSelector point; m_convert.pt = GetSamplerID(point); PSSamplerSelector bilinear; bilinear.ltf = true; m_convert.ln = GetSamplerID(bilinear); m_convert.dss = new GSDepthStencilOGL(); m_convert.dss_write = new GSDepthStencilOGL(); m_convert.dss_write->EnableDepth(); m_convert.dss_write->SetDepth(GL_ALWAYS, true); // **************************************************************** // merge // **************************************************************** m_merge_obj.cb = new GSUniformBufferOGL(g_merge_cb_index, sizeof(MergeConstantBuffer)); for(size_t i = 0; i < countof(m_merge_obj.ps); i++) m_merge_obj.ps[i] = m_shader->Compile("merge.glsl", format("ps_main%d", i), GL_FRAGMENT_SHADER, merge_glsl); // **************************************************************** // interlace // **************************************************************** m_interlace.cb = new GSUniformBufferOGL(g_interlace_cb_index, sizeof(InterlaceConstantBuffer)); for(size_t i = 0; i < countof(m_interlace.ps); i++) m_interlace.ps[i] = m_shader->Compile("interlace.glsl", format("ps_main%d", i), GL_FRAGMENT_SHADER, interlace_glsl); // **************************************************************** // Shade boost // **************************************************************** m_shadeboost.cb = new GSUniformBufferOGL(g_shadeboost_cb_index, sizeof(ShadeBoostConstantBuffer)); int ShadeBoost_Contrast = theApp.GetConfig("ShadeBoost_Contrast", 50); int ShadeBoost_Brightness = theApp.GetConfig("ShadeBoost_Brightness", 50); int ShadeBoost_Saturation = theApp.GetConfig("ShadeBoost_Saturation", 50); std::string shade_macro = format("#define SB_SATURATION %d.0\n", ShadeBoost_Saturation) + format("#define SB_BRIGHTNESS %d.0\n", ShadeBoost_Brightness) + format("#define SB_CONTRAST %d.0\n", ShadeBoost_Contrast); m_shadeboost.ps = m_shader->Compile("shadeboost.glsl", "ps_main", GL_FRAGMENT_SHADER, shadeboost_glsl, shade_macro); // **************************************************************** // rasterization configuration // **************************************************************** #ifdef ONLY_LINES glLineWidth(5.0); glPolygonMode(GL_FRONT_AND_BACK, GL_LINE); #else glPolygonMode(GL_FRONT_AND_BACK, GL_FILL); #endif glDisable(GL_CULL_FACE); glEnable(GL_SCISSOR_TEST); glDisable(GL_MULTISAMPLE); glDisable(GL_DITHER); // Honestly I don't know! // **************************************************************** // DATE // **************************************************************** m_date.dss = new GSDepthStencilOGL(); m_date.dss->EnableStencil(); m_date.dss->SetStencil(GL_ALWAYS, GL_REPLACE); // **************************************************************** // Use DX coordinate convention // **************************************************************** // VS gl_position.z => [-1,-1] // FS depth => [0, 1] // because of -1 we loose lot of precision for small GS value // This extension allow FS depth to range from -1 to 1. So // gl_position.z could range from [0, 1] if (GLLoader::found_GL_ARB_clip_control) { // Change depth convention gl_ClipControl(GL_LOWER_LEFT, GL_ZERO_TO_ONE); } // **************************************************************** // HW renderer shader // **************************************************************** CreateTextureFX(); // **************************************************************** // Pbo Pool allocation // **************************************************************** PboPool::Init(); GL_POP(); // **************************************************************** // Finish window setup and backbuffer // **************************************************************** if(!GSDevice::Create(wnd)) return false; GSVector4i rect = wnd->GetClientRect(); Reset(rect.z, rect.w); // Basic to ensure structures are correctly packed ASSERT(sizeof(VSSelector) == 4); ASSERT(sizeof(PSSelector) == 8); ASSERT(sizeof(PSSamplerSelector) == 4); ASSERT(sizeof(OMDepthStencilSelector) == 4); ASSERT(sizeof(OMColorMaskSelector) == 4); return true; } bool GSDeviceOGL::Reset(int w, int h) { if(!GSDevice::Reset(w, h)) return false; // Opengl allocate the backbuffer with the window. The render is done in the backbuffer when // there isn't any FBO. Only a dummy texture is created to easily detect when the rendering is done // in the backbuffer m_backbuffer = new GSTextureOGL(GSTextureOGL::Backbuffer, w, h, 0, m_fbo_read); return true; } void GSDeviceOGL::SetVSync(bool enable) { m_wnd->SetVSync(enable); } void GSDeviceOGL::Flip() { #ifdef ENABLE_OGL_DEBUG CheckDebugLog(); #endif m_wnd->Flip(); } void GSDeviceOGL::BeforeDraw() { m_shader->UseProgram(); } void GSDeviceOGL::AfterDraw() { } void GSDeviceOGL::DrawPrimitive() { BeforeDraw(); m_va->DrawPrimitive(); AfterDraw(); } void GSDeviceOGL::DrawPrimitive(int offset, int count) { BeforeDraw(); m_va->DrawPrimitive(offset, count); AfterDraw(); } void GSDeviceOGL::DrawIndexedPrimitive() { BeforeDraw(); m_va->DrawIndexedPrimitive(); AfterDraw(); } void GSDeviceOGL::DrawIndexedPrimitive(int offset, int count) { //ASSERT(offset + count <= (int)m_index.count); BeforeDraw(); m_va->DrawIndexedPrimitive(offset, count); AfterDraw(); } void GSDeviceOGL::ClearRenderTarget(GSTexture* t, const GSVector4& c) { if (!t) return; GSTextureOGL* T = static_cast(t); if (T->HasBeenCleaned() && !T->IsBackbuffer()) return; GL_PUSH("Clear RT %d", T->GetID()); // TODO: check size of scissor before toggling it glDisable(GL_SCISSOR_TEST); uint32 old_color_mask = GLState::wrgba; OMSetColorMaskState(); if (T->IsBackbuffer()) { OMSetFBO(0); // glDrawBuffer(GL_BACK); // this is the default when there is no FB // 0 will select the first drawbuffer ie GL_BACK gl_ClearBufferfv(GL_COLOR, 0, c.v); } else { OMSetFBO(m_fbo); OMAttachRt(T); gl_ClearBufferfv(GL_COLOR, 0, c.v); } OMSetColorMaskState(OMColorMaskSelector(old_color_mask)); glEnable(GL_SCISSOR_TEST); T->WasCleaned(); GL_POP(); } void GSDeviceOGL::ClearRenderTarget(GSTexture* t, uint32 c) { if (!t) return; GSVector4 color = GSVector4::rgba32(c) * (1.0f / 255); ClearRenderTarget(t, color); } void GSDeviceOGL::ClearRenderTarget_i(GSTexture* t, int32 c) { if (!t) return; GSTextureOGL* T = static_cast(t); GL_PUSH("Clear RTi %d", T->GetID()); uint32 old_color_mask = GLState::wrgba; OMSetColorMaskState(); // Keep SCISSOR_TEST enabled on purpose to reduce the size // of clean in DATE (impact big upscaling) int32 col[4] = {c, c, c, c}; OMSetFBO(m_fbo); OMAttachRt(T); // Blending is not supported when you render to an Integer texture if (GLState::blend) { glDisable(GL_BLEND); } gl_ClearBufferiv(GL_COLOR, 0, col); OMSetColorMaskState(OMColorMaskSelector(old_color_mask)); if (GLState::blend) { glEnable(GL_BLEND); } GL_POP(); } void GSDeviceOGL::ClearDepth(GSTexture* t, float c) { if (!t) return; GSTextureOGL* T = static_cast(t); GL_PUSH("Clear Depth %d", T->GetID()); OMSetFBO(m_fbo); OMAttachDs(T); // TODO: check size of scissor before toggling it glDisable(GL_SCISSOR_TEST); if (GLState::depth_mask) { gl_ClearBufferfv(GL_DEPTH, 0, &c); } else { glDepthMask(true); gl_ClearBufferfv(GL_DEPTH, 0, &c); glDepthMask(false); } glEnable(GL_SCISSOR_TEST); GL_POP(); } void GSDeviceOGL::ClearStencil(GSTexture* t, uint8 c) { if (!t) return; GSTextureOGL* T = static_cast(t); GL_PUSH("Clear Stencil %d", T->GetID()); // Keep SCISSOR_TEST enabled on purpose to reduce the size // of clean in DATE (impact big upscaling) OMSetFBO(m_fbo); OMAttachDs(T); GLint color = c; gl_ClearBufferiv(GL_STENCIL, 0, &color); GL_POP(); } GLuint GSDeviceOGL::CreateSampler(PSSamplerSelector sel) { return CreateSampler(sel.ltf, sel.tau, sel.tav); } GLuint GSDeviceOGL::CreateSampler(bool bilinear, bool tau, bool tav) { GL_PUSH("Create Sampler"); GLuint sampler; gl_GenSamplers(1, &sampler); if (bilinear) { gl_SamplerParameteri(sampler, GL_TEXTURE_MIN_FILTER, GL_LINEAR); gl_SamplerParameteri(sampler, GL_TEXTURE_MAG_FILTER, GL_LINEAR); } else { gl_SamplerParameteri(sampler, GL_TEXTURE_MIN_FILTER, GL_NEAREST); gl_SamplerParameteri(sampler, GL_TEXTURE_MAG_FILTER, GL_NEAREST); } if (tau) gl_SamplerParameteri(sampler, GL_TEXTURE_WRAP_S, GL_REPEAT); else gl_SamplerParameteri(sampler, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); if (tav) gl_SamplerParameteri(sampler, GL_TEXTURE_WRAP_T, GL_REPEAT); else gl_SamplerParameteri(sampler, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); gl_SamplerParameteri(sampler, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE); gl_SamplerParameterf(sampler, GL_TEXTURE_MIN_LOD, 0); gl_SamplerParameterf(sampler, GL_TEXTURE_MAX_LOD, 6); int anisotropy = theApp.GetConfig("MaxAnisotropy", 0); if (GLLoader::found_GL_EXT_texture_filter_anisotropic && anisotropy && !theApp.GetConfig("paltex", 0)) gl_SamplerParameterf(sampler, GL_TEXTURE_MAX_ANISOTROPY_EXT, (float)anisotropy); GL_POP(); return sampler; } void GSDeviceOGL::InitPrimDateTexture(GSTexture* rt) { const GSVector2i& rtsize = rt->GetSize(); // Create a texture to avoid the useless clean@0 if (m_date.t == NULL) m_date.t = CreateTexture(rtsize.x, rtsize.y, GL_R32I); // Clean with the max signed value ClearRenderTarget_i(m_date.t, 0x7FFFFFFF); gl_BindImageTexture(2, m_date.t->GetID(), 0, false, 0, GL_READ_WRITE, GL_R32I); } void GSDeviceOGL::RecycleDateTexture() { if (m_date.t) { //static_cast(m_date.t)->Save(format("/tmp/date_adv_%04ld.csv", s_n)); Recycle(m_date.t); m_date.t = NULL; } } void GSDeviceOGL::Barrier(GLbitfield b) { gl_MemoryBarrier(b); } /* Note: must be here because tfx_glsl is static */ GLuint GSDeviceOGL::CompileVS(VSSelector sel, int logz) { std::string macro = format("#define VS_BPPZ %d\n", sel.bppz) + format("#define VS_LOGZ %d\n", logz) + format("#define VS_TME %d\n", sel.tme) + format("#define VS_FST %d\n", sel.fst) + format("#define VS_WILDHACK %d\n", sel.wildhack) ; return m_shader->Compile("tfx_vgs.glsl", "vs_main", GL_VERTEX_SHADER, tfx_vgs_glsl, macro); } /* Note: must be here because tfx_glsl is static */ GLuint GSDeviceOGL::CompileGS(GSSelector sel) { std::string macro = format("#define GS_POINT %d\n", sel.point); return m_shader->Compile("tfx_vgs.glsl", "gs_main", GL_GEOMETRY_SHADER, tfx_vgs_glsl, macro); } /* Note: must be here because tfx_glsl is static */ GLuint GSDeviceOGL::CompilePS(PSSelector sel) { std::string macro = format("#define PS_FST %d\n", sel.fst) + format("#define PS_WMS %d\n", sel.wms) + format("#define PS_WMT %d\n", sel.wmt) + format("#define PS_TEX_FMT %d\n", sel.tex_fmt) + format("#define PS_DFMT %d\n", sel.dfmt) + format("#define PS_AEM %d\n", sel.aem) + format("#define PS_TFX %d\n", sel.tfx) + format("#define PS_TCC %d\n", sel.tcc) + format("#define PS_ATST %d\n", sel.atst) + format("#define PS_FOG %d\n", sel.fog) + format("#define PS_CLR1 %d\n", sel.clr1) + format("#define PS_FBA %d\n", sel.fba) + format("#define PS_LTF %d\n", sel.ltf) + format("#define PS_COLCLIP %d\n", sel.colclip) + format("#define PS_DATE %d\n", sel.date) + format("#define PS_TCOFFSETHACK %d\n", sel.tcoffsethack) //+ format("#define PS_POINT_SAMPLER %d\n", sel.point_sampler) + format("#define PS_BLEND_A %d\n", sel.blend_a) + format("#define PS_BLEND_B %d\n", sel.blend_b) + format("#define PS_BLEND_C %d\n", sel.blend_c) + format("#define PS_BLEND_D %d\n", sel.blend_d) + format("#define PS_IIP %d\n", sel.iip) + format("#define PS_SHUFFLE %d\n", sel.shuffle) + format("#define PS_READ_BA %d\n", sel.read_ba) + format("#define PS_WRITE_RG %d\n", sel.write_rg) + format("#define PS_FBMASK %d\n", sel.fbmask) + format("#define PS_HDR %d\n", sel.hdr) + format("#define PS_PABE %d\n", sel.pabe); ; return m_shader->Compile("tfx.glsl", "ps_main", GL_FRAGMENT_SHADER, tfx_fs_all_glsl, macro); } void GSDeviceOGL::SelfShaderTest() { #define RUN_TEST \ do { \ GLuint p = CompilePS(sel); \ nb_shader++; \ perf += m_shader->DumpAsm(file, p); \ m_shader->Delete(p); \ } while(0); #define PRINT_TEST(s) \ do { \ fprintf(stderr, "%s %d instructions for %d shaders (mean of %4.2f)\n", \ s, perf, nb_shader, (float)perf/(float)nb_shader); \ all += perf; \ perf = 0; \ nb_shader = 0; \ } while(0); int nb_shader = 0; int perf = 0; int all = 0; // Test: SW blending for (int colclip = 0; colclip < 2; colclip++) { for (int fmt = 0; fmt < 3; fmt++) { for (int i = 0; i < 3; i++) { PSSelector sel; sel.atst = 1; sel.tfx = 4; int ib = (i + 1) % 3; sel.blend_a = i; sel.blend_b = ib;; sel.blend_c = i; sel.blend_d = i; sel.colclip = colclip; sel.dfmt = fmt; std::string file = format("Shader_Blend_%d_%d_%d_%d__Cclip_%d__Dfmt_%d.glsl.asm", i, ib, i, i, colclip, fmt); RUN_TEST; } } } PRINT_TEST("Blend"); // Test: alpha test for (int atst = 0; atst < 8; atst++) { PSSelector sel; sel.tfx = 4; sel.atst = atst; std::string file = format("Shader_Atst_%d.glsl.asm", atst); RUN_TEST; } PRINT_TEST("Alpha Tst"); // Test: fbmask/fog/shuffle/read_ba for (int read_ba = 0; read_ba < 2; read_ba++) { PSSelector sel; sel.tfx = 4; sel.atst = 1; sel.fog = 1; sel.fbmask = 1; sel.shuffle = 1; sel.read_ba = read_ba; std::string file = format("Shader_Fog__Fbmask__Shuffle__Read_ba_%d.glsl.asm", read_ba); RUN_TEST; } PRINT_TEST("Fbmask/fog/shuffle/read_ba"); // Test: Date for (int date = 1; date < 7; date++) { PSSelector sel; sel.tfx = 4; sel.atst = 1; sel.date = date; std::string file = format("Shader_Date_%d.glsl.asm", date); RUN_TEST; } PRINT_TEST("Date"); // Test: FBA for (int fmt = 0; fmt < 3; fmt++) { PSSelector sel; sel.tfx = 4; sel.atst = 1; sel.fba = 1; sel.dfmt = fmt; sel.clr1 = 1; std::string file = format("Shader_Fba__Clr1__Dfmt_%d.glsl.asm", fmt); RUN_TEST; } PRINT_TEST("Fba/Clr1/Dfmt"); // Test: Fst/Tc/IIP { PSSelector sel; sel.tfx = 1; sel.atst = 1; sel.fst = 0; sel.iip = 1; sel.tcoffsethack = 1; std::string file = format("Shader_Fst__TC__Iip.glsl.asm"); RUN_TEST; } PRINT_TEST("Fst/Tc/IIp"); // Test: tfx/tcc for (int tfx = 0; tfx < 5; tfx++) { for (int tcc = 0; tcc < 2; tcc++) { PSSelector sel; sel.atst = 1; sel.fst = 1; sel.tfx = tfx; sel.tcc = tcc; std::string file = format("Shader_Tfx_%d__Tcc_%d.glsl.asm", tfx, tcc); RUN_TEST; } } PRINT_TEST("Tfx/Tcc"); // Test: Texture Sampling for (int fmt = 0; fmt < 16; fmt++) { if ((fmt & 3) == 3) continue; for (int ltf = 0; ltf < 2; ltf++) { for (int aem = 0; aem < 2; aem++) { for (int wms = 1; wms < 4; wms++) { for (int wmt = 1; wmt < 4; wmt++) { PSSelector sel; sel.atst = 1; sel.tfx = 1; sel.tcc = 1; sel.fst = 1; sel.ltf = ltf; sel.aem = aem; sel.tex_fmt = fmt; sel.wms = wms; sel.wmt = wmt; std::string file = format("Shader_Ltf_%d__Aem_%d__TFmt_%d__Wms_%d__Wmt_%d.glsl.asm", ltf, aem, fmt, wms, wmt); RUN_TEST; } } } } } PRINT_TEST("Texture Sampling"); fprintf(stderr, "\nTotal %d\n", all); #undef RUN_TEST #undef PRINT_TEST } GSTexture* GSDeviceOGL::CreateRenderTarget(int w, int h, bool msaa, int format) { return GSDevice::CreateRenderTarget(w, h, msaa, format ? format : GL_RGBA8); } GSTexture* GSDeviceOGL::CreateDepthStencil(int w, int h, bool msaa, int format) { return GSDevice::CreateDepthStencil(w, h, msaa, format ? format : GL_DEPTH32F_STENCIL8); } GSTexture* GSDeviceOGL::CreateTexture(int w, int h, int format) { return GSDevice::CreateTexture(w, h, format ? format : GL_RGBA8); } GSTexture* GSDeviceOGL::CreateOffscreen(int w, int h, int format) { return GSDevice::CreateOffscreen(w, h, format ? format : GL_RGBA8); } // blit a texture into an offscreen buffer GSTexture* GSDeviceOGL::CopyOffscreen(GSTexture* src, const GSVector4& sRect, int w, int h, int format, int ps_shader) { if (format == 0) format = GL_RGBA8; ASSERT(src); ASSERT(format == GL_RGBA8 || format == GL_R16UI || format == GL_R32UI); GSTexture* dst = CreateOffscreen(w, h, format); GSVector4 dRect(0, 0, w, h); StretchRect(src, sRect, dst, dRect, m_convert.ps[ps_shader]); return dst; } // Copy a sub part of texture (same as below but force a conversion) void GSDeviceOGL::CopyRectConv(GSTexture* sTex, GSTexture* dTex, const GSVector4i& r, bool at_origin) { const GLuint& sid = sTex->GetID(); const GLuint& did = dTex->GetID(); GL_PUSH(format("CopyRectConv from %d to %d", sid, did).c_str()); gl_BindFramebuffer(GL_READ_FRAMEBUFFER, m_fbo_read); gl_FramebufferTexture2D(GL_READ_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, sid, 0); if (at_origin) gl_CopyTextureSubImage2D(did, GL_TEX_LEVEL_0, 0, 0, r.x, r.y, r.width(), r.height()); else gl_CopyTextureSubImage2D(did, GL_TEX_LEVEL_0, r.x, r.y, r.x, r.y, r.width(), r.height()); gl_BindFramebuffer(GL_READ_FRAMEBUFFER, 0); GL_POP(); } // Copy a sub part of a texture into another void GSDeviceOGL::CopyRect(GSTexture* sTex, GSTexture* dTex, const GSVector4i& r) { ASSERT(sTex && dTex); const GLuint& sid = sTex->GetID(); const GLuint& did = dTex->GetID(); GL_PUSH("CopyRect from %d to %d", sid, did); if (GLLoader::found_GL_ARB_copy_image) { gl_CopyImageSubData( sid, GL_TEXTURE_2D, 0, r.x, r.y, 0, did, GL_TEXTURE_2D, 0, 0, 0, 0, r.width(), r.height(), 1); } else { // Slower copy (conversion is done) CopyRectConv(sTex, dTex, r, true); } GL_POP(); } void GSDeviceOGL::StretchRect(GSTexture* sTex, const GSVector4& sRect, GSTexture* dTex, const GSVector4& dRect, int shader, bool linear) { StretchRect(sTex, sRect, dTex, dRect, m_convert.ps[shader], linear); } void GSDeviceOGL::StretchRect(GSTexture* sTex, const GSVector4& sRect, GSTexture* dTex, const GSVector4& dRect, GLuint ps, bool linear) { StretchRect(sTex, sRect, dTex, dRect, ps, m_NO_BLEND, linear); } void GSDeviceOGL::StretchRect(GSTexture* sTex, const GSVector4& sRect, GSTexture* dTex, const GSVector4& dRect, GLuint ps, int bs, bool linear) { if(!sTex || !dTex) { ASSERT(0); return; } bool draw_in_depth = (ps == m_convert.ps[ShaderConvert_RGBA8_TO_FLOAT32] || ps == m_convert.ps[ShaderConvert_RGBA8_TO_FLOAT24] || ps == m_convert.ps[ShaderConvert_RGBA8_TO_FLOAT16] || ps == m_convert.ps[ShaderConvert_RGB5A1_TO_FLOAT16]); // Performance optimization. It might be faster to use a framebuffer blit for standard case // instead to emulate it with shader // see https://www.opengl.org/wiki/Framebuffer#Blitting GL_PUSH("StretchRect from %d to %d", sTex->GetID(), dTex->GetID()); // ************************************ // Init // ************************************ BeginScene(); GSVector2i ds = dTex->GetSize(); m_shader->VS(m_convert.vs); m_shader->GS(0); m_shader->PS(ps); // ************************************ // om // ************************************ if (draw_in_depth) OMSetDepthStencilState(m_convert.dss_write); else OMSetDepthStencilState(m_convert.dss); if (draw_in_depth) OMSetRenderTargets(NULL, dTex); else OMSetRenderTargets(dTex, NULL); OMSetBlendState(bs); OMSetColorMaskState(); // ************************************ // ia // ************************************ // Original code from DX float left = dRect.x * 2 / ds.x - 1.0f; float right = dRect.z * 2 / ds.x - 1.0f; #if 0 float top = 1.0f - dRect.y * 2 / ds.y; float bottom = 1.0f - dRect.w * 2 / ds.y; #else // Opengl get some issues with the coordinate // I flip top/bottom to fix scaling of the internal resolution float top = -1.0f + dRect.y * 2 / ds.y; float bottom = -1.0f + dRect.w * 2 / ds.y; #endif // Flip y axis only when we render in the backbuffer // By default everything is render in the wrong order (ie dx). // 1/ consistency between several pass rendering (interlace) // 2/ in case some GSdx code expect thing in dx order. // Only flipping the backbuffer is transparent (I hope)... GSVector4 flip_sr = sRect; if (static_cast(dTex)->IsBackbuffer()) { flip_sr.y = sRect.w; flip_sr.w = sRect.y; } GSVertexPT1 vertices[] = { {GSVector4(left , top , 0.0f, 0.0f) , GSVector2(flip_sr.x , flip_sr.y)} , {GSVector4(right , top , 0.0f, 0.0f) , GSVector2(flip_sr.z , flip_sr.y)} , {GSVector4(left , bottom, 0.0f, 0.0f) , GSVector2(flip_sr.x , flip_sr.w)} , {GSVector4(right , bottom, 0.0f, 0.0f) , GSVector2(flip_sr.z , flip_sr.w)} , }; IASetVertexBuffer(vertices, 4); IASetPrimitiveTopology(GL_TRIANGLE_STRIP); // ************************************ // Texture // ************************************ PSSetShaderResource(0, sTex); PSSetSamplerState(linear ? m_convert.ln : m_convert.pt); // ************************************ // Draw // ************************************ DrawPrimitive(); // ************************************ // End // ************************************ EndScene(); GL_POP(); } void GSDeviceOGL::DoMerge(GSTexture* sTex[2], GSVector4* sRect, GSTexture* dTex, GSVector4* dRect, bool slbg, bool mmod, const GSVector4& c) { GL_PUSH("DoMerge"); OMSetColorMaskState(); ClearRenderTarget(dTex, c); if(sTex[1] && !slbg) { StretchRect(sTex[1], sRect[1], dTex, dRect[1], m_merge_obj.ps[0]); } if(sTex[0]) { m_merge_obj.cb->upload(&c.v); StretchRect(sTex[0], sRect[0], dTex, dRect[0], m_merge_obj.ps[mmod ? 1 : 0], m_MERGE_BLEND); } GL_POP(); } void GSDeviceOGL::DoInterlace(GSTexture* sTex, GSTexture* dTex, int shader, bool linear, float yoffset) { GL_PUSH("DoInterlace"); OMSetColorMaskState(); GSVector4 s = GSVector4(dTex->GetSize()); GSVector4 sRect(0, 0, 1, 1); GSVector4 dRect(0.0f, yoffset, s.x, s.y + yoffset); InterlaceConstantBuffer cb; cb.ZrH = GSVector2(0, 1.0f / s.y); cb.hH = s.y / 2; m_interlace.cb->upload(&cb); StretchRect(sTex, sRect, dTex, dRect, m_interlace.ps[shader], linear); GL_POP(); } void GSDeviceOGL::DoFXAA(GSTexture* sTex, GSTexture* dTex) { // Lazy compile if (!m_fxaa.ps) { if (!GLLoader::found_GL_ARB_gpu_shader5) { // GL4.0 extension return; } std::string fxaa_macro = "#define FXAA_GLSL_130 1\n"; fxaa_macro += "#extension GL_ARB_gpu_shader5 : enable\n"; m_fxaa.ps = m_shader->Compile("fxaa.fx", "ps_main", GL_FRAGMENT_SHADER, fxaa_fx, fxaa_macro); } GL_PUSH("DoFxaa"); OMSetColorMaskState(); GSVector2i s = dTex->GetSize(); GSVector4 sRect(0, 0, 1, 1); GSVector4 dRect(0, 0, s.x, s.y); StretchRect(sTex, sRect, dTex, dRect, m_fxaa.ps, true); GL_POP(); } void GSDeviceOGL::DoExternalFX(GSTexture* sTex, GSTexture* dTex) { // Lazy compile if (!m_shaderfx.ps) { if (!GLLoader::found_GL_ARB_gpu_shader5) { // GL4.0 extension return; } std::string config_name(theApp.GetConfig("shaderfx_conf", "dummy.ini")); std::ifstream fconfig(config_name); std::stringstream config; if (fconfig.good()) config << fconfig.rdbuf(); else fprintf(stderr, "Warning failed to load '%s'. External Shader might be wrongly configured\n", config_name.c_str()); std::string shader_name(theApp.GetConfig("shaderfx_glsl", "dummy.glsl")); std::ifstream fshader(shader_name); std::stringstream shader; if (!fshader.good()) { fprintf(stderr, "Error failed to load '%s'. External Shader will be disabled !\n", shader_name.c_str()); return; } shader << fshader.rdbuf(); m_shaderfx.cb = new GSUniformBufferOGL(g_fx_cb_index, sizeof(ExternalFXConstantBuffer)); m_shaderfx.ps = m_shader->Compile("Extra", "ps_main", GL_FRAGMENT_SHADER, shader.str().c_str(), config.str()); } GL_PUSH("DoExternalFX"); OMSetColorMaskState(); GSVector2i s = dTex->GetSize(); GSVector4 sRect(0, 0, 1, 1); GSVector4 dRect(0, 0, s.x, s.y); ExternalFXConstantBuffer cb; cb.xyFrame = GSVector2(s.x, s.y); cb.rcpFrame = GSVector4(1.0f / s.x, 1.0f / s.y, 0.0f, 0.0f); cb.rcpFrameOpt = GSVector4::zero(); m_shaderfx.cb->upload(&cb); StretchRect(sTex, sRect, dTex, dRect, m_shaderfx.ps, true); GL_POP(); } void GSDeviceOGL::DoShadeBoost(GSTexture* sTex, GSTexture* dTex) { GL_PUSH("DoShadeBoost"); OMSetColorMaskState(); GSVector2i s = dTex->GetSize(); GSVector4 sRect(0, 0, 1, 1); GSVector4 dRect(0, 0, s.x, s.y); ShadeBoostConstantBuffer cb; cb.rcpFrame = GSVector4(1.0f / s.x, 1.0f / s.y, 0.0f, 0.0f); cb.rcpFrameOpt = GSVector4::zero(); m_shadeboost.cb->upload(&cb); StretchRect(sTex, sRect, dTex, dRect, m_shadeboost.ps, true); GL_POP(); } void GSDeviceOGL::SetupDATE(GSTexture* rt, GSTexture* ds, const GSVertexPT1* vertices, bool datm) { GL_PUSH("DATE First Pass"); // sfex3 (after the capcom logo), vf4 (first menu fading in), ffxii shadows, rumble roses shadows, persona4 shadows BeginScene(); ClearStencil(ds, 0); m_shader->VS(m_convert.vs); m_shader->GS(0); m_shader->PS(m_convert.ps[datm ? ShaderConvert_DATM_1 : ShaderConvert_DATM_0]); // om OMSetDepthStencilState(m_date.dss); if (GLState::blend) { glDisable(GL_BLEND); } OMSetRenderTargets(NULL, ds, &GLState::scissor); // ia IASetVertexBuffer(vertices, 4); IASetPrimitiveTopology(GL_TRIANGLE_STRIP); // Texture PSSetShaderResource(0, rt); PSSetSamplerState(m_convert.pt); DrawPrimitive(); if (GLState::blend) { glEnable(GL_BLEND); } EndScene(); GL_POP(); } void GSDeviceOGL::EndScene() { m_va->EndScene(); } void GSDeviceOGL::IASetVertexBuffer(const void* vertices, size_t count) { m_va->UploadVB(vertices, count); } void GSDeviceOGL::IASetIndexBuffer(const void* index, size_t count) { m_va->UploadIB(index, count); } void GSDeviceOGL::IASetPrimitiveTopology(GLenum topology) { m_va->SetTopology(topology); } void GSDeviceOGL::PSSetShaderResource(int i, GSTexture* sr) { ASSERT(i < (int)countof(GLState::tex_unit)); // Note: Nvidia debgger doesn't support the id 0 (ie the NULL texture) if (sr) { GLuint id = sr->GetID(); if (GLState::tex_unit[i] != id) { GLState::tex_unit[i] = id; gl_BindTextureUnit(i, id); } } } void GSDeviceOGL::PSSetShaderResources(GSTexture* sr0, GSTexture* sr1) { PSSetShaderResource(0, sr0); PSSetShaderResource(1, sr1); } void GSDeviceOGL::PSSetSamplerState(GLuint ss) { if (GLState::ps_ss != ss) { GLState::ps_ss = ss; gl_BindSampler(0, ss); } } void GSDeviceOGL::OMAttachRt(GSTextureOGL* rt) { GLuint id; if (rt) { rt->WasAttached(); id = rt->GetID(); } else { id = 0; } if (GLState::rt != id) { GLState::rt = id; gl_FramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_COLOR_ATTACHMENT0, GL_TEXTURE_2D, id, 0); } } void GSDeviceOGL::OMAttachDs(GSTextureOGL* ds) { GLuint id; if (ds) { ds->WasAttached(); id = ds->GetID(); } else { id = 0; } if (GLState::ds != id) { GLState::ds = id; gl_FramebufferTexture2D(GL_DRAW_FRAMEBUFFER, GL_DEPTH_STENCIL_ATTACHMENT, GL_TEXTURE_2D, id, 0); } } void GSDeviceOGL::OMSetFBO(GLuint fbo) { if (GLState::fbo != fbo) { GLState::fbo = fbo; gl_BindFramebuffer(GL_FRAMEBUFFER, fbo); } } void GSDeviceOGL::OMSetDepthStencilState(GSDepthStencilOGL* dss) { dss->SetupDepth(); dss->SetupStencil(); } void GSDeviceOGL::OMSetColorMaskState(OMColorMaskSelector sel) { if (sel.wrgba != GLState::wrgba) { GLState::wrgba = sel.wrgba; gl_ColorMaski(0, sel.wr, sel.wg, sel.wb, sel.wa); } } void GSDeviceOGL::OMSetBlendState(uint8 blend_index, uint8 blend_factor, bool is_blend_constant) { if (blend_index) { if (!GLState::blend) { GLState::blend = true; glEnable(GL_BLEND); } if (is_blend_constant && GLState::bf != blend_factor) { GLState::bf = blend_factor; float bf = (float)blend_factor / 128.0f; gl_BlendColor(bf, bf, bf, bf); } const OGLBlend& b = m_blendMapOGL[blend_index]; if (GLState::eq_RGB != b.op) { GLState::eq_RGB = b.op; if (gl_BlendEquationSeparateiARB) gl_BlendEquationSeparateiARB(0, b.op, GL_FUNC_ADD); else gl_BlendEquationSeparate(b.op, GL_FUNC_ADD); } if (GLState::f_sRGB != b.src || GLState::f_dRGB != b.dst) { GLState::f_sRGB = b.src; GLState::f_dRGB = b.dst; if (gl_BlendFuncSeparateiARB) gl_BlendFuncSeparateiARB(0, b.src, b.dst, GL_ONE, GL_ZERO); else gl_BlendFuncSeparate(b.src, b.dst, GL_ONE, GL_ZERO); } } else { if (GLState::blend) { GLState::blend = false; glDisable(GL_BLEND); } } } void GSDeviceOGL::OMSetRenderTargets(GSTexture* rt, GSTexture* ds, const GSVector4i* scissor) { GSTextureOGL* RT = static_cast(rt); GSTextureOGL* DS = static_cast(ds); if (rt == NULL || !RT->IsBackbuffer()) { OMSetFBO(m_fbo); if (rt) { OMAttachRt(RT); } else { OMAttachRt(); } // Note: it must be done after OMSetFBO if (ds) OMAttachDs(DS); else OMAttachDs(); } else { // Render in the backbuffer OMSetFBO(0); } GSVector2i size = rt ? rt->GetSize() : ds->GetSize(); if(GLState::viewport != size) { GLState::viewport = size; // FIXME ViewportIndexedf or ViewportIndexedfv (GL4.1) glViewport(0, 0, size.x, size.y); } GSVector4i r = scissor ? *scissor : GSVector4i(size).zwxy(); if(!GLState::scissor.eq(r)) { GLState::scissor = r; // FIXME ScissorIndexedv (GL4.1) glScissor( r.x, r.y, r.width(), r.height() ); } } void GSDeviceOGL::CheckDebugLog() { if (!m_debug_gl_call) return; unsigned int count = 16; // max. num. of messages that will be read from the log int bufsize = 2048; unsigned int sources[16] = {}; unsigned int types[16] = {}; unsigned int ids[16] = {}; unsigned int severities[16] = {}; int lengths[16] = {}; char* messageLog = new char[bufsize]; unsigned int retVal = gl_GetDebugMessageLogARB(count, bufsize, sources, types, ids, severities, lengths, messageLog); if(retVal > 0) { unsigned int pos = 0; for(unsigned int i=0; i Source * Dest color + Dest * Source alpha // 1211 Cd*(1 + Ad) => Source * Dest color + Dest * Dest alpha // 1221 Cd*(1 + F) => Source * Dest color + Dest * Factor // Special blending method table: // # (tricky) => 1 * Cd + Cd * F => Use (Cd, F) as factor of color (1, Cd) // * (bogus) => C * (1 + F ) + ... => factor is always bigger than 1 (except above case) // ? => Cs * F + Cd => do the multiplication in shader and addition in blending unit. It is an optimization // Copy Dx blend table and convert it to ogl #define D3DBLENDOP_ADD GL_FUNC_ADD #define D3DBLENDOP_SUBTRACT GL_FUNC_SUBTRACT #define D3DBLENDOP_REVSUBTRACT GL_FUNC_REVERSE_SUBTRACT #define D3DBLEND_ONE GL_ONE #define D3DBLEND_ZERO GL_ZERO #define D3DBLEND_INVDESTALPHA GL_ONE_MINUS_DST_ALPHA #define D3DBLEND_DESTALPHA GL_DST_ALPHA #define D3DBLEND_DESTCOLOR GL_DST_COLOR #define D3DBLEND_BLENDFACTOR GL_CONSTANT_COLOR #define D3DBLEND_INVBLENDFACTOR GL_ONE_MINUS_CONSTANT_COLOR #define D3DBLEND_SRCALPHA GL_SRC1_ALPHA #define D3DBLEND_INVSRCALPHA GL_ONE_MINUS_SRC1_ALPHA const int GSDeviceOGL::m_NO_BLEND = 0; const int GSDeviceOGL::m_MERGE_BLEND = 3*3*3*3; const GSDeviceOGL::OGLBlend GSDeviceOGL::m_blendMapOGL[3*3*3*3 + 1] = { { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , // 0000: (Cs - Cs)*As + Cs ==> Cs { 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ONE} , // 0001: (Cs - Cs)*As + Cd ==> Cd { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ZERO} , // 0002: (Cs - Cs)*As + 0 ==> 0 { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , // 0010: (Cs - Cs)*Ad + Cs ==> Cs { 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ONE} , // 0011: (Cs - Cs)*Ad + Cd ==> Cd { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ZERO} , // 0012: (Cs - Cs)*Ad + 0 ==> 0 { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , // 0020: (Cs - Cs)*F + Cs ==> Cs { 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ONE} , // 0021: (Cs - Cs)*F + Cd ==> Cd { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ZERO} , // 0022: (Cs - Cs)*F + 0 ==> 0 { BLEND_A_MAX , D3DBLENDOP_SUBTRACT , D3DBLEND_ONE , D3DBLEND_SRCALPHA} , //*0100: (Cs - Cd)*As + Cs ==> Cs*(As + 1) - Cd*As { 0 , D3DBLENDOP_ADD , D3DBLEND_SRCALPHA , D3DBLEND_INVSRCALPHA} , // 0101: (Cs - Cd)*As + Cd ==> Cs*As + Cd*(1 - As) { 0 , D3DBLENDOP_SUBTRACT , D3DBLEND_SRCALPHA , D3DBLEND_SRCALPHA} , // 0102: (Cs - Cd)*As + 0 ==> Cs*As - Cd*As { BLEND_A_MAX , D3DBLENDOP_SUBTRACT , D3DBLEND_ONE , D3DBLEND_DESTALPHA} , //*0110: (Cs - Cd)*Ad + Cs ==> Cs*(Ad + 1) - Cd*Ad { 0 , D3DBLENDOP_ADD , D3DBLEND_DESTALPHA , D3DBLEND_INVDESTALPHA} , // 0111: (Cs - Cd)*Ad + Cd ==> Cs*Ad + Cd*(1 - Ad) { 0 , D3DBLENDOP_SUBTRACT , D3DBLEND_DESTALPHA , D3DBLEND_DESTALPHA} , // 0112: (Cs - Cd)*Ad + 0 ==> Cs*Ad - Cd*Ad { BLEND_A_MAX , D3DBLENDOP_SUBTRACT , D3DBLEND_ONE , D3DBLEND_BLENDFACTOR} , //*0120: (Cs - Cd)*F + Cs ==> Cs*(F + 1) - Cd*F { 0 , D3DBLENDOP_ADD , D3DBLEND_BLENDFACTOR , D3DBLEND_INVBLENDFACTOR} , // 0121: (Cs - Cd)*F + Cd ==> Cs*F + Cd*(1 - F) { 0 , D3DBLENDOP_SUBTRACT , D3DBLEND_BLENDFACTOR , D3DBLEND_BLENDFACTOR} , // 0122: (Cs - Cd)*F + 0 ==> Cs*F - Cd*F { BLEND_NO_BAR | BLEND_A_MAX , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , //*0200: (Cs - 0)*As + Cs ==> Cs*(As + 1) { BLEND_ACCU , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ONE} , //?0201: (Cs - 0)*As + Cd ==> Cs*As + Cd { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_SRCALPHA , D3DBLEND_ZERO} , // 0202: (Cs - 0)*As + 0 ==> Cs*As { BLEND_A_MAX , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , //*0210: (Cs - 0)*Ad + Cs ==> Cs*(Ad + 1) { 0 , D3DBLENDOP_ADD , D3DBLEND_DESTALPHA , D3DBLEND_ONE} , // 0211: (Cs - 0)*Ad + Cd ==> Cs*Ad + Cd { 0 , D3DBLENDOP_ADD , D3DBLEND_DESTALPHA , D3DBLEND_ZERO} , // 0212: (Cs - 0)*Ad + 0 ==> Cs*Ad { BLEND_NO_BAR | BLEND_A_MAX , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , //*0220: (Cs - 0)*F + Cs ==> Cs*(F + 1) { BLEND_ACCU , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ONE} , //?0221: (Cs - 0)*F + Cd ==> Cs*F + Cd { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_BLENDFACTOR , D3DBLEND_ZERO} , // 0222: (Cs - 0)*F + 0 ==> Cs*F { 0 , D3DBLENDOP_ADD , D3DBLEND_INVSRCALPHA , D3DBLEND_SRCALPHA} , // 1000: (Cd - Cs)*As + Cs ==> Cd*As + Cs*(1 - As) { BLEND_A_MAX , D3DBLENDOP_REVSUBTRACT , D3DBLEND_SRCALPHA , D3DBLEND_ONE} , //*1001: (Cd - Cs)*As + Cd ==> Cd*(As + 1) - Cs*As { 0 , D3DBLENDOP_REVSUBTRACT , D3DBLEND_SRCALPHA , D3DBLEND_SRCALPHA} , // 1002: (Cd - Cs)*As + 0 ==> Cd*As - Cs*As { 0 , D3DBLENDOP_ADD , D3DBLEND_INVDESTALPHA , D3DBLEND_DESTALPHA} , // 1010: (Cd - Cs)*Ad + Cs ==> Cd*Ad + Cs*(1 - Ad) { BLEND_A_MAX , D3DBLENDOP_REVSUBTRACT , D3DBLEND_DESTALPHA , D3DBLEND_ONE} , //*1011: (Cd - Cs)*Ad + Cd ==> Cd*(Ad + 1) - Cs*Ad { 0 , D3DBLENDOP_REVSUBTRACT , D3DBLEND_DESTALPHA , D3DBLEND_DESTALPHA} , // 1012: (Cd - Cs)*Ad + 0 ==> Cd*Ad - Cs*Ad { 0 , D3DBLENDOP_ADD , D3DBLEND_INVBLENDFACTOR , D3DBLEND_BLENDFACTOR} , // 1020: (Cd - Cs)*F + Cs ==> Cd*F + Cs*(1 - F) { BLEND_A_MAX , D3DBLENDOP_REVSUBTRACT , D3DBLEND_BLENDFACTOR , D3DBLEND_ONE} , //*1021: (Cd - Cs)*F + Cd ==> Cd*(F + 1) - Cs*F { 0 , D3DBLENDOP_REVSUBTRACT , D3DBLEND_BLENDFACTOR , D3DBLEND_BLENDFACTOR} , // 1022: (Cd - Cs)*F + 0 ==> Cd*F - Cs*F { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , // 1100: (Cd - Cd)*As + Cs ==> Cs { 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ONE} , // 1101: (Cd - Cd)*As + Cd ==> Cd { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ZERO} , // 1102: (Cd - Cd)*As + 0 ==> 0 { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , // 1110: (Cd - Cd)*Ad + Cs ==> Cs { 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ONE} , // 1111: (Cd - Cd)*Ad + Cd ==> Cd { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ZERO} , // 1112: (Cd - Cd)*Ad + 0 ==> 0 { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , // 1120: (Cd - Cd)*F + Cs ==> Cs { 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ONE} , // 1121: (Cd - Cd)*F + Cd ==> Cd { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ZERO} , // 1122: (Cd - Cd)*F + 0 ==> 0 { 0 , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_SRCALPHA} , // 1200: (Cd - 0)*As + Cs ==> Cs + Cd*As { BLEND_C_CLR , D3DBLENDOP_ADD , D3DBLEND_DESTCOLOR , D3DBLEND_SRCALPHA} , //#1201: (Cd - 0)*As + Cd ==> Cd*(1 + As) // ffxii main menu background { 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_SRCALPHA} , // 1202: (Cd - 0)*As + 0 ==> Cd*As { 0 , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_DESTALPHA} , // 1210: (Cd - 0)*Ad + Cs ==> Cs + Cd*Ad { BLEND_C_CLR , D3DBLENDOP_ADD , D3DBLEND_DESTCOLOR , D3DBLEND_DESTALPHA} , //#1211: (Cd - 0)*Ad + Cd ==> Cd*(1 + Ad) { 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_DESTALPHA} , // 1212: (Cd - 0)*Ad + 0 ==> Cd*Ad { 0 , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_BLENDFACTOR} , // 1220: (Cd - 0)*F + Cs ==> Cs + Cd*F { BLEND_C_CLR , D3DBLENDOP_ADD , D3DBLEND_DESTCOLOR , D3DBLEND_BLENDFACTOR} , //#1221: (Cd - 0)*F + Cd ==> Cd*(1 + F) { 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_BLENDFACTOR} , // 1222: (Cd - 0)*F + 0 ==> Cd*F { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_INVSRCALPHA , D3DBLEND_ZERO} , // 2000: (0 - Cs)*As + Cs ==> Cs*(1 - As) { BLEND_ACCU , D3DBLENDOP_REVSUBTRACT , D3DBLEND_ONE , D3DBLEND_ONE} , // 2001: (0 - Cs)*As + Cd ==> Cd - Cs*As { BLEND_NO_BAR , D3DBLENDOP_REVSUBTRACT , D3DBLEND_SRCALPHA , D3DBLEND_ZERO} , // 2002: (0 - Cs)*As + 0 ==> 0 - Cs*As { 0 , D3DBLENDOP_ADD , D3DBLEND_INVDESTALPHA , D3DBLEND_ZERO} , // 2010: (0 - Cs)*Ad + Cs ==> Cs*(1 - Ad) { 0 , D3DBLENDOP_REVSUBTRACT , D3DBLEND_DESTALPHA , D3DBLEND_ONE} , // 2011: (0 - Cs)*Ad + Cd ==> Cd - Cs*Ad { 0 , D3DBLENDOP_REVSUBTRACT , D3DBLEND_DESTALPHA , D3DBLEND_ZERO} , // 2012: (0 - Cs)*Ad + 0 ==> 0 - Cs*Ad { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_INVBLENDFACTOR , D3DBLEND_ZERO} , // 2020: (0 - Cs)*F + Cs ==> Cs*(1 - F) { BLEND_ACCU , D3DBLENDOP_REVSUBTRACT , D3DBLEND_ONE , D3DBLEND_ONE} , // 2021: (0 - Cs)*F + Cd ==> Cd - Cs*F { BLEND_NO_BAR , D3DBLENDOP_REVSUBTRACT , D3DBLEND_BLENDFACTOR , D3DBLEND_ZERO} , // 2022: (0 - Cs)*F + 0 ==> 0 - Cs*F { 0 , D3DBLENDOP_SUBTRACT , D3DBLEND_ONE , D3DBLEND_SRCALPHA} , // 2100: (0 - Cd)*As + Cs ==> Cs - Cd*As { 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_INVSRCALPHA} , // 2101: (0 - Cd)*As + Cd ==> Cd*(1 - As) { 0 , D3DBLENDOP_SUBTRACT , D3DBLEND_ZERO , D3DBLEND_SRCALPHA} , // 2102: (0 - Cd)*As + 0 ==> 0 - Cd*As { 0 , D3DBLENDOP_SUBTRACT , D3DBLEND_ONE , D3DBLEND_DESTALPHA} , // 2110: (0 - Cd)*Ad + Cs ==> Cs - Cd*Ad { 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_INVDESTALPHA} , // 2111: (0 - Cd)*Ad + Cd ==> Cd*(1 - Ad) { 0 , D3DBLENDOP_SUBTRACT , D3DBLEND_ONE , D3DBLEND_DESTALPHA} , // 2112: (0 - Cd)*Ad + 0 ==> 0 - Cd*Ad { 0 , D3DBLENDOP_SUBTRACT , D3DBLEND_ONE , D3DBLEND_BLENDFACTOR} , // 2120: (0 - Cd)*F + Cs ==> Cs - Cd*F { 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_INVBLENDFACTOR} , // 2121: (0 - Cd)*F + Cd ==> Cd*(1 - F) { 0 , D3DBLENDOP_SUBTRACT , D3DBLEND_ONE , D3DBLEND_BLENDFACTOR} , // 2122: (0 - Cd)*F + 0 ==> 0 - Cd*F { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , // 2200: (0 - 0)*As + Cs ==> Cs { 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ONE} , // 2201: (0 - 0)*As + Cd ==> Cd { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ZERO} , // 2202: (0 - 0)*As + 0 ==> 0 { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , // 2210: (0 - 0)*Ad + Cs ==> Cs { 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ONE} , // 2211: (0 - 0)*Ad + Cd ==> Cd { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ZERO} , // 2212: (0 - 0)*Ad + 0 ==> 0 { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ONE , D3DBLEND_ZERO} , // 2220: (0 - 0)*F + Cs ==> Cs { 0 , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ONE} , // 2221: (0 - 0)*F + Cd ==> Cd { BLEND_NO_BAR , D3DBLENDOP_ADD , D3DBLEND_ZERO , D3DBLEND_ZERO} , // 2222: (0 - 0)*F + 0 ==> 0 { 0 , D3DBLENDOP_ADD , GL_SRC_ALPHA , GL_ONE_MINUS_SRC_ALPHA} , // extra for merge operation };