// SPDX-FileCopyrightText: 2002-2025 PCSX2 Dev Team // SPDX-License-Identifier: GPL-3.0+ ////////////////////////////////////////////////////////////////////// // Vertex Shader ////////////////////////////////////////////////////////////////////// #if defined(VERTEX_SHADER) layout(std140, set = 0, binding = 0) uniform cb0 { vec2 VertexScale; vec2 VertexOffset; vec2 TextureScale; vec2 TextureOffset; vec2 PointSize; uint MaxDepth; uint pad_cb0; }; layout(location = 0) out VSOutput { vec4 t; vec4 ti; #if VS_IIP != 0 vec4 c; #else flat vec4 c; #endif } vsOut; #if VS_EXPAND == 0 layout(location = 0) in vec2 a_st; layout(location = 1) in uvec4 a_c; layout(location = 2) in float a_q; layout(location = 3) in uvec2 a_p; layout(location = 4) in uint a_z; layout(location = 5) in uvec2 a_uv; layout(location = 6) in vec4 a_f; void main() { // Clamp to max depth, gs doesn't wrap uint z = min(a_z, MaxDepth); // pos -= 0.05 (1/320 pixel) helps avoiding rounding problems (integral part of pos is usually 5 digits, 0.05 is about as low as we can go) // example: ceil(afterseveralvertextransformations(y = 133)) => 134 => line 133 stays empty // input granularity is 1/16 pixel, anything smaller than that won't step drawing up/left by one pixel // example: 133.0625 (133 + 1/16) should start from line 134, ceil(133.0625 - 0.05) still above 133 gl_Position = vec4(a_p, float(z), 1.0f) - vec4(0.05f, 0.05f, 0, 0); gl_Position.xy = gl_Position.xy * vec2(VertexScale.x, -VertexScale.y) - vec2(VertexOffset.x, -VertexOffset.y); gl_Position.z *= exp2(-32.0f); // integer->float depth gl_Position.y = -gl_Position.y; #if VS_TME vec2 uv = a_uv - TextureOffset; vec2 st = a_st - TextureOffset; // Integer nomalized vsOut.ti.xy = uv * TextureScale; #if VS_FST // Integer integral vsOut.ti.zw = uv; #else // float for post-processing in some games vsOut.ti.zw = st / TextureScale; #endif // Float coords vsOut.t.xy = st; vsOut.t.w = a_q; #else vsOut.t = vec4(0.0f, 0.0f, 0.0f, 1.0f); vsOut.ti = vec4(0.0f); #endif #if VS_POINT_SIZE gl_PointSize = PointSize.x; #endif vsOut.c = vec4(a_c); vsOut.t.z = a_f.r; } #else // VS_EXPAND struct RawVertex { vec2 ST; uint RGBA; float Q; uint XY; uint Z; uint UV; uint FOG; }; layout(std140, set = 0, binding = 2) readonly buffer VertexBuffer { RawVertex vertex_buffer[]; }; struct ProcessedVertex { vec4 p; vec4 t; vec4 ti; vec4 c; }; ProcessedVertex load_vertex(uint index) { RawVertex rvtx = vertex_buffer[gl_BaseVertexARB + index]; vec2 a_st = rvtx.ST; uvec4 a_c = uvec4(bitfieldExtract(rvtx.RGBA, 0, 8), bitfieldExtract(rvtx.RGBA, 8, 8), bitfieldExtract(rvtx.RGBA, 16, 8), bitfieldExtract(rvtx.RGBA, 24, 8)); float a_q = rvtx.Q; uvec2 a_p = uvec2(bitfieldExtract(rvtx.XY, 0, 16), bitfieldExtract(rvtx.XY, 16, 16)); uint a_z = rvtx.Z; uvec2 a_uv = uvec2(bitfieldExtract(rvtx.UV, 0, 16), bitfieldExtract(rvtx.UV, 16, 16)); vec4 a_f = unpackUnorm4x8(rvtx.FOG); ProcessedVertex vtx; uint z = min(a_z, MaxDepth); vtx.p = vec4(a_p, float(z), 1.0f) - vec4(0.05f, 0.05f, 0, 0); vtx.p.xy = vtx.p.xy * vec2(VertexScale.x, -VertexScale.y) - vec2(VertexOffset.x, -VertexOffset.y); vtx.p.z *= exp2(-32.0f); // integer->float depth vtx.p.y = -vtx.p.y; #if VS_TME vec2 uv = a_uv - TextureOffset; vec2 st = a_st - TextureOffset; vtx.ti.xy = uv * TextureScale; #if VS_FST vtx.ti.zw = uv; #else vtx.ti.zw = st / TextureScale; #endif vtx.t.xy = st; vtx.t.w = a_q; #else vtx.t = vec4(0.0f, 0.0f, 0.0f, 1.0f); vtx.ti = vec4(0.0f); #endif vtx.c = a_c; vtx.t.z = a_f.r; return vtx; } void main() { ProcessedVertex vtx; uint vid = uint(gl_VertexIndex - gl_BaseVertexARB); #if VS_EXPAND == 1 // Point vtx = load_vertex(vid >> 2); vtx.p.x += ((vid & 1u) != 0u) ? PointSize.x : 0.0f; vtx.p.y += ((vid & 2u) != 0u) ? PointSize.y : 0.0f; #elif VS_EXPAND == 2 // Line uint vid_base = vid >> 2; bool is_bottom = (vid & 2u) != 0u; bool is_right = (vid & 1u) != 0u; #ifdef VS_PROVOKING_VERTEX_LAST uint vid_other = is_bottom ? vid_base - 1 : vid_base + 1; #else uint vid_other = is_bottom ? vid_base + 1 : vid_base - 1; #endif vtx = load_vertex(vid_base); ProcessedVertex other = load_vertex(vid_other); vec2 line_vector = normalize(vtx.p.xy - other.p.xy); vec2 line_normal = vec2(line_vector.y, -line_vector.x); vec2 line_width = (line_normal * PointSize) / 2; // line_normal is inverted for bottom point vec2 offset = ((uint(is_bottom) ^ uint(is_right)) != 0u) ? line_width : -line_width; vtx.p.xy += offset; // Lines will be run as (0 1 2) (1 2 3) // This means that both triangles will have a point based off the top line point as their first point // So we don't have to do anything for !IIP #elif VS_EXPAND == 3 // Sprite // Sprite points are always in pairs uint vid_base = vid >> 1; uint vid_lt = vid_base & ~1u; uint vid_rb = vid_base | 1u; ProcessedVertex lt = load_vertex(vid_lt); ProcessedVertex rb = load_vertex(vid_rb); vtx = rb; bool is_right = ((vid & 1u) != 0u); vtx.p.x = is_right ? lt.p.x : vtx.p.x; vtx.t.x = is_right ? lt.t.x : vtx.t.x; vtx.ti.xz = is_right ? lt.ti.xz : vtx.ti.xz; bool is_bottom = ((vid & 2u) != 0u); vtx.p.y = is_bottom ? lt.p.y : vtx.p.y; vtx.t.y = is_bottom ? lt.t.y : vtx.t.y; vtx.ti.yw = is_bottom ? lt.ti.yw : vtx.ti.yw; #endif gl_Position = vtx.p; vsOut.t = vtx.t; vsOut.ti = vtx.ti; vsOut.c = vtx.c; } #endif // VS_EXPAND #endif // VERTEX_SHADER #ifdef FRAGMENT_SHADER #define FMT_32 0 #define FMT_24 1 #define FMT_16 2 #define SHUFFLE_READ 1 #define SHUFFLE_WRITE 2 #define SHUFFLE_READWRITE 3 #ifndef VS_TME #define VS_TME 1 #define VS_FST 1 #endif #ifndef GS_IIP #define GS_IIP 0 #define GS_PRIM 3 #define GS_POINT 0 #define GS_LINE 0 #endif #ifndef PS_FST #define PS_FST 0 #define PS_WMS 0 #define PS_WMT 0 #define PS_ADJS 0 #define PS_ADJT 0 #define PS_FMT FMT_32 #define PS_AEM 0 #define PS_TFX 0 #define PS_TCC 1 #define PS_ATST 1 #define PS_AFAIL 0 #define PS_FOG 0 #define PS_BLEND_HW 0 #define PS_A_MASKED 0 #define PS_FBA 0 #define PS_FBMASK 0 #define PS_LTF 1 #define PS_TCOFFSETHACK 0 #define PS_SHUFFLE 0 #define PS_SHUFFLE_SAME 0 #define PS_PROCESS_BA 0 #define PS_PROCESS_RG 0 #define PS_SHUFFLE_ACROSS 0 #define PS_WRITE_RG 0 #define PS_READ16_SRC 0 #define PS_DST_FMT 0 #define PS_DEPTH_FMT 0 #define PS_PAL_FMT 0 #define PS_CHANNEL_FETCH 0 #define PS_TALES_OF_ABYSS_HLE 0 #define PS_URBAN_CHAOS_HLE 0 #define PS_HDR 0 #define PS_COLCLIP 0 #define PS_BLEND_A 0 #define PS_BLEND_B 0 #define PS_BLEND_C 0 #define PS_BLEND_D 0 #define PS_FIXED_ONE_A 0 #define PS_PABE 0 #define PS_DITHER 0 #define PS_DITHER_ADJUST 0 #define PS_ZCLAMP 0 #define PS_FEEDBACK_LOOP 0 #define PS_TEX_IS_FB 0 #endif #define SW_BLEND (PS_BLEND_A || PS_BLEND_B || PS_BLEND_D) #define SW_BLEND_NEEDS_RT (SW_BLEND && (PS_BLEND_A == 1 || PS_BLEND_B == 1 || PS_BLEND_C == 1 || PS_BLEND_D == 1)) #define SW_AD_TO_HW (PS_BLEND_C == 1 && PS_A_MASKED) #define PS_FEEDBACK_LOOP_IS_NEEDED (PS_TEX_IS_FB == 1 || PS_FBMASK || SW_BLEND_NEEDS_RT || SW_AD_TO_HW || (PS_DATE >= 5)) #define NEEDS_TEX (PS_TFX != 4) layout(std140, set = 0, binding = 1) uniform cb1 { vec3 FogColor; float AREF; vec4 WH; vec2 TA; float MaxDepthPS; float Af; uvec4 FbMask; vec4 HalfTexel; vec4 MinMax; vec4 LODParams; vec4 STRange; ivec4 ChannelShuffle; vec2 TC_OffsetHack; vec2 STScale; mat4 DitherMatrix; float ScaledScaleFactor; float RcpScaleFactor; }; layout(location = 0) in VSOutput { vec4 t; vec4 ti; #if PS_IIP != 0 vec4 c; #else flat vec4 c; #endif } vsIn; #if !PS_NO_COLOR && !PS_NO_COLOR1 layout(location = 0, index = 0) out vec4 o_col0; layout(location = 0, index = 1) out vec4 o_col1; #elif !PS_NO_COLOR layout(location = 0) out vec4 o_col0; #endif #if NEEDS_TEX layout(set = 1, binding = 0) uniform sampler2D Texture; layout(set = 1, binding = 1) uniform texture2D Palette; #endif #if PS_FEEDBACK_LOOP_IS_NEEDED #if defined(DISABLE_TEXTURE_BARRIER) || defined(HAS_FEEDBACK_LOOP_LAYOUT) layout(set = 1, binding = 2) uniform texture2D RtSampler; vec4 sample_from_rt() { return texelFetch(RtSampler, ivec2(gl_FragCoord.xy), 0); } #else layout(input_attachment_index = 0, set = 1, binding = 2) uniform subpassInput RtSampler; vec4 sample_from_rt() { return subpassLoad(RtSampler); } #endif #endif #if PS_DATE > 0 layout(set = 1, binding = 3) uniform texture2D PrimMinTexture; #endif #if NEEDS_TEX vec4 sample_c(vec2 uv) { #if PS_TEX_IS_FB return sample_from_rt(); #elif PS_REGION_RECT return texelFetch(Texture, ivec2(uv), 0); #else #if !PS_ADJS && !PS_ADJT uv *= STScale; #else #if PS_ADJS uv.x = (uv.x - STRange.x) * STRange.z; #else uv.x = uv.x * STScale.x; #endif #if PS_ADJT uv.y = (uv.y - STRange.y) * STRange.w; #else uv.y = uv.y * STScale.y; #endif #endif #if PS_AUTOMATIC_LOD == 1 return texture(Texture, uv); #elif PS_MANUAL_LOD == 1 // FIXME add LOD: K - ( LOG2(Q) * (1 << L)) float K = LODParams.x; float L = LODParams.y; float bias = LODParams.z; float max_lod = LODParams.w; float gs_lod = K - log2(abs(vsIn.t.w)) * L; // FIXME max useful ? //float lod = max(min(gs_lod, max_lod) - bias, 0.0f); float lod = min(gs_lod, max_lod) - bias; return textureLod(Texture, uv, lod); #else return textureLod(Texture, uv, 0); // No lod #endif #endif } vec4 sample_p(uint idx) { return texelFetch(Palette, ivec2(int(idx), 0), 0); } vec4 sample_p_norm(float u) { return sample_p(uint(u * 255.5f)); } vec4 clamp_wrap_uv(vec4 uv) { vec4 tex_size = WH.xyxy; #if PS_WMS == PS_WMT { #if PS_REGION_RECT == 1 && PS_WMS == 0 { uv = fract(uv); } #elif PS_REGION_RECT == 1 && PS_WMS == 1 { uv = clamp(uv, vec4(0.0f), vec4(1.0f)); } #elif PS_WMS == 2 { uv = clamp(uv, MinMax.xyxy, MinMax.zwzw); } #elif PS_WMS == 3 { #if PS_FST == 0 // wrap negative uv coords to avoid an off by one error that shifted // textures. Fixes Xenosaga's hair issue. uv = fract(uv); #endif uv = vec4((uvec4(uv * tex_size) & floatBitsToUint(MinMax.xyxy)) | floatBitsToUint(MinMax.zwzw)) / tex_size; } #endif } #else { #if PS_REGION_RECT == 1 && PS_WMS == 0 { uv.xz = fract(uv.xz); } #elif PS_REGION_RECT == 1 && PS_WMS == 1 { uv.xz = clamp(uv.xz, vec2(0.0f), vec2(1.0f)); } #elif PS_WMS == 2 { uv.xz = clamp(uv.xz, MinMax.xx, MinMax.zz); } #elif PS_WMS == 3 { #if PS_FST == 0 uv.xz = fract(uv.xz); #endif uv.xz = vec2((uvec2(uv.xz * tex_size.xx) & floatBitsToUint(MinMax.xx)) | floatBitsToUint(MinMax.zz)) / tex_size.xx; } #endif #if PS_REGION_RECT == 1 && PS_WMT == 0 { uv.yw = fract(uv.yw); } #elif PS_REGION_RECT == 1 && PS_WMT == 1 { uv.yw = clamp(uv.yw, vec2(0.0f), vec2(1.0f)); } #elif PS_WMT == 2 { uv.yw = clamp(uv.yw, MinMax.yy, MinMax.ww); } #elif PS_WMT == 3 { #if PS_FST == 0 uv.yw = fract(uv.yw); #endif uv.yw = vec2((uvec2(uv.yw * tex_size.yy) & floatBitsToUint(MinMax.yy)) | floatBitsToUint(MinMax.ww)) / tex_size.yy; } #endif } #endif #if PS_REGION_RECT == 1 // Normalized -> Integer Coordinates. uv = clamp(uv * WH.zwzw + STRange.xyxy, STRange.xyxy, STRange.zwzw); #endif return uv; } mat4 sample_4c(vec4 uv) { mat4 c; c[0] = sample_c(uv.xy); c[1] = sample_c(uv.zy); c[2] = sample_c(uv.xw); c[3] = sample_c(uv.zw); return c; } uvec4 sample_4_index(vec4 uv) { vec4 c; c.x = sample_c(uv.xy).a; c.y = sample_c(uv.zy).a; c.z = sample_c(uv.xw).a; c.w = sample_c(uv.zw).a; // Denormalize value #if PS_RTA_SRC_CORRECTION uvec4 i = uvec4(round(c * 128.25f)); #else uvec4 i = uvec4(c * 255.5f); #endif #if PS_PAL_FMT == 1 // 4HL return i & 0xFu; #elif PS_PAL_FMT == 2 // 4HH return i >> 4u; #else // 8 return i; #endif } mat4 sample_4p(uvec4 u) { mat4 c; c[0] = sample_p(u.x); c[1] = sample_p(u.y); c[2] = sample_p(u.z); c[3] = sample_p(u.w); return c; } int fetch_raw_depth(ivec2 xy) { #if PS_TEX_IS_FB vec4 col = sample_from_rt(); #else vec4 col = texelFetch(Texture, xy, 0); #endif return int(col.r * exp2(32.0f)); } vec4 fetch_raw_color(ivec2 xy) { #if PS_TEX_IS_FB return sample_from_rt(); #else return texelFetch(Texture, xy, 0); #endif } vec4 fetch_c(ivec2 uv) { #if PS_TEX_IS_FB return sample_from_rt(); #else return texelFetch(Texture, uv, 0); #endif } ////////////////////////////////////////////////////////////////////// // Depth sampling ////////////////////////////////////////////////////////////////////// ivec2 clamp_wrap_uv_depth(ivec2 uv) { ivec4 mask = floatBitsToInt(MinMax) << 4; #if (PS_WMS == PS_WMT) { #if (PS_WMS == 2) { uv = clamp(uv, mask.xy, mask.zw); } #elif (PS_WMS == 3) { uv = (uv & mask.xy) | mask.zw; } #endif } #else { #if (PS_WMS == 2) { uv.x = clamp(uv.x, mask.x, mask.z); } #elif (PS_WMS == 3) { uv.x = (uv.x & mask.x) | mask.z; } #endif #if (PS_WMT == 2) { uv.y = clamp(uv.y, mask.y, mask.w); } #elif (PS_WMT == 3) { uv.y = (uv.y & mask.y) | mask.w; } #endif } #endif return uv; } vec4 sample_depth(vec2 st, ivec2 pos) { vec2 uv_f = vec2(clamp_wrap_uv_depth(ivec2(st))) * vec2(ScaledScaleFactor); #if PS_REGION_RECT == 1 uv_f = clamp(uv_f + STRange.xy, STRange.xy, STRange.zw); #endif ivec2 uv = ivec2(uv_f); vec4 t = vec4(0.0f); #if (PS_TALES_OF_ABYSS_HLE == 1) { // Warning: UV can't be used in channel effect int depth = fetch_raw_depth(pos); // Convert msb based on the palette t = texelFetch(Palette, ivec2((depth >> 8) & 0xFF, 0), 0) * 255.0f; } #elif (PS_URBAN_CHAOS_HLE == 1) { // Depth buffer is read as a RGB5A1 texture. The game try to extract the green channel. // So it will do a first channel trick to extract lsb, value is right-shifted. // Then a new channel trick to extract msb which will shifted to the left. // OpenGL uses a vec32 format for the depth so it requires a couple of conversion. // To be faster both steps (msb&lsb) are done in a single pass. // Warning: UV can't be used in channel effect int depth = fetch_raw_depth(pos); // Convert lsb based on the palette t = texelFetch(Palette, ivec2(depth & 0xFF, 0), 0) * 255.0f; // Msb is easier float green = float(((depth >> 8) & 0xFF) * 36.0f); green = min(green, 255.0f); t.g += green; } #elif (PS_DEPTH_FMT == 1) { // Based on ps_convert_float32_rgba8 of convert // Convert a vec32 depth texture into a RGBA color texture uint d = uint(fetch_c(uv).r * exp2(32.0f)); t = vec4(uvec4((d & 0xFFu), ((d >> 8) & 0xFFu), ((d >> 16) & 0xFFu), (d >> 24))); } #elif (PS_DEPTH_FMT == 2) { // Based on ps_convert_float16_rgb5a1 of convert // Convert a vec32 (only 16 lsb) depth into a RGB5A1 color texture uint d = uint(fetch_c(uv).r * exp2(32.0f)); t = vec4(uvec4((d & 0x1Fu), ((d >> 5) & 0x1Fu), ((d >> 10) & 0x1Fu), (d >> 15) & 0x01u)) * vec4(8.0f, 8.0f, 8.0f, 128.0f); } #elif (PS_DEPTH_FMT == 3) { // Convert a RGBA/RGB5A1 color texture into a RGBA/RGB5A1 color texture t = fetch_c(uv) * 255.0f; } #endif #if (PS_AEM_FMT == FMT_24) { t.a = ((PS_AEM == 0) || any(bvec3(t.rgb))) ? 255.0f * TA.x : 0.0f; } #elif (PS_AEM_FMT == FMT_16) { t.a = t.a >= 128.0f ? 255.0f * TA.y : ((PS_AEM == 0) || any(bvec3(t.rgb))) ? 255.0f * TA.x : 0.0f; } #elif PS_PAL_FMT != 0 && !PS_TALES_OF_ABYSS_HLE && !PS_URBAN_CHAOS_HLE { t = trunc(sample_4p(uvec4(t.aaaa))[0] * 255.0f + 0.05f); } #endif return t; } ////////////////////////////////////////////////////////////////////// // Fetch a Single Channel ////////////////////////////////////////////////////////////////////// vec4 fetch_red(ivec2 xy) { vec4 rt; #if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2) int depth = (fetch_raw_depth(xy)) & 0xFF; rt = vec4(float(depth) / 255.0f); #else rt = fetch_raw_color(xy); #endif return sample_p_norm(rt.r) * 255.0f; } vec4 fetch_green(ivec2 xy) { vec4 rt; #if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2) int depth = (fetch_raw_depth(xy) >> 8) & 0xFF; rt = vec4(float(depth) / 255.0f); #else rt = fetch_raw_color(xy); #endif return sample_p_norm(rt.g) * 255.0f; } vec4 fetch_blue(ivec2 xy) { vec4 rt; #if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2) int depth = (fetch_raw_depth(xy) >> 16) & 0xFF; rt = vec4(float(depth) / 255.0f); #else rt = fetch_raw_color(xy); #endif return sample_p_norm(rt.b) * 255.0f; } vec4 fetch_alpha(ivec2 xy) { vec4 rt = fetch_raw_color(xy); return sample_p_norm(rt.a) * 255.0f; } vec4 fetch_rgb(ivec2 xy) { vec4 rt = fetch_raw_color(xy); vec4 c = vec4(sample_p_norm(rt.r).r, sample_p_norm(rt.g).g, sample_p_norm(rt.b).b, 1.0); return c * 255.0f; } vec4 fetch_gXbY(ivec2 xy) { #if (PS_DEPTH_FMT == 1) || (PS_DEPTH_FMT == 2) int depth = fetch_raw_depth(xy); int bg = (depth >> (8 + ChannelShuffle.w)) & 0xFF; return vec4(bg); #else ivec4 rt = ivec4(fetch_raw_color(xy) * 255.0); int green = (rt.g >> ChannelShuffle.w) & ChannelShuffle.z; int blue = (rt.b << ChannelShuffle.y) & ChannelShuffle.x; return vec4(float(green | blue)); #endif } vec4 sample_color(vec2 st) { #if PS_TCOFFSETHACK st += TC_OffsetHack.xy; #endif vec4 t; mat4 c; vec2 dd; #if PS_LTF == 0 && PS_AEM_FMT == FMT_32 && PS_PAL_FMT == 0 && PS_REGION_RECT == 0 && PS_WMS < 2 && PS_WMT < 2 { c[0] = sample_c(st); } #else { vec4 uv; #if PS_LTF { uv = st.xyxy + HalfTexel; dd = fract(uv.xy * WH.zw); #if PS_FST == 0 { dd = clamp(dd, vec2(0.0f), vec2(0.9999999f)); } #endif } #else { uv = st.xyxy; } #endif uv = clamp_wrap_uv(uv); #if PS_PAL_FMT != 0 c = sample_4p(sample_4_index(uv)); #else c = sample_4c(uv); #endif } #endif for (uint i = 0; i < 4; i++) { #if (PS_AEM_FMT == FMT_24) c[i].a = (PS_AEM == 0 || any(bvec3(c[i].rgb))) ? TA.x : 0.0f; #elif (PS_AEM_FMT == FMT_16) c[i].a = (c[i].a >= 0.5) ? TA.y : ((PS_AEM == 0 || any(bvec3(ivec3(c[i].rgb * 255.0f) & ivec3(0xF8)))) ? TA.x : 0.0f); #endif } #if PS_LTF { t = mix(mix(c[0], c[1], dd.x), mix(c[2], c[3], dd.x), dd.y); } #else { t = c[0]; } #endif #if PS_AEM_FMT == FMT_32 && PS_PAL_FMT == 0 && PS_RTA_SRC_CORRECTION t.a = t.a * (128.5f / 255.0f); #endif return trunc(t * 255.0f + 0.05f); } #endif // NEEDS_TEX vec4 tfx(vec4 T, vec4 C) { vec4 C_out; vec4 FxT = trunc((C * T) / 128.0f); #if (PS_TFX == 0) C_out = FxT; #elif (PS_TFX == 1) C_out = T; #elif (PS_TFX == 2) C_out.rgb = FxT.rgb + C.a; C_out.a = T.a + C.a; #elif (PS_TFX == 3) C_out.rgb = FxT.rgb + C.a; C_out.a = T.a; #else C_out = C; #endif #if (PS_TCC == 0) C_out.a = C.a; #endif #if (PS_TFX == 0) || (PS_TFX == 2) || (PS_TFX == 3) // Clamp only when it is useful C_out = min(C_out, 255.0f); #endif return C_out; } bool atst(vec4 C) { float a = C.a; #if (PS_ATST == 1) { return (a <= AREF); } #elif (PS_ATST == 2) { return (a >= AREF); } #elif (PS_ATST == 3) { return (abs(a - AREF) <= 0.5f); } #elif (PS_ATST == 4) { return (abs(a - AREF) >= 0.5f); } #else { // nothing to do return true; } #endif } vec4 fog(vec4 c, float f) { #if PS_FOG c.rgb = trunc(mix(FogColor, c.rgb, f)); #endif return c; } vec4 ps_color() { #if PS_FST == 0 vec2 st = vsIn.t.xy / vsIn.t.w; vec2 st_int = vsIn.ti.zw / vsIn.t.w; #else vec2 st = vsIn.ti.xy; vec2 st_int = vsIn.ti.zw; #endif #if !NEEDS_TEX vec4 T = vec4(0.0f); #elif PS_CHANNEL_FETCH == 1 vec4 T = fetch_red(ivec2(gl_FragCoord.xy)); #elif PS_CHANNEL_FETCH == 2 vec4 T = fetch_green(ivec2(gl_FragCoord.xy)); #elif PS_CHANNEL_FETCH == 3 vec4 T = fetch_blue(ivec2(gl_FragCoord.xy)); #elif PS_CHANNEL_FETCH == 4 vec4 T = fetch_alpha(ivec2(gl_FragCoord.xy)); #elif PS_CHANNEL_FETCH == 5 vec4 T = fetch_rgb(ivec2(gl_FragCoord.xy)); #elif PS_CHANNEL_FETCH == 6 vec4 T = fetch_gXbY(ivec2(gl_FragCoord.xy)); #elif PS_DEPTH_FMT > 0 vec4 T = sample_depth(st_int, ivec2(gl_FragCoord.xy)); #else vec4 T = sample_color(st); #endif #if PS_SHUFFLE && !PS_READ16_SRC && !PS_SHUFFLE_SAME uvec4 denorm_c_before = uvec4(T); #if (PS_PROCESS_BA & SHUFFLE_READ) T.r = float((denorm_c_before.b << 3) & 0xF8u); T.g = float(((denorm_c_before.b >> 2) & 0x38u) | ((denorm_c_before.a << 6) & 0xC0u)); T.b = float((denorm_c_before.a << 1) & 0xF8u); T.a = float(denorm_c_before.a & 0x80u); #else T.r = float((denorm_c_before.r << 3) & 0xF8u); T.g = float(((denorm_c_before.r >> 2) & 0x38) | ((denorm_c_before.g << 6) & 0xC0u)); T.b = float((denorm_c_before.g << 1) & 0xF8u); T.a = float(denorm_c_before.g & 0x80u); #endif T.a = ((T.a >= 127.5f) ? TA.y : ((PS_AEM == 0 || any(bvec3(ivec3(T.rgb) & ivec3(0xF8)))) ? TA.x : 0.0f)) * 255.0f; #endif vec4 C = tfx(T, vsIn.c); C = fog(C, vsIn.t.z); return C; } void ps_fbmask(inout vec4 C) { #if PS_FBMASK vec4 RT = trunc(sample_from_rt() * 255.0f + 0.1f); C = vec4((uvec4(C) & ~FbMask) | (uvec4(RT) & FbMask)); #endif } void ps_dither(inout vec3 C, float As) { #if PS_DITHER > 0 && PS_DITHER < 3 ivec2 fpos; #if PS_DITHER == 2 fpos = ivec2(gl_FragCoord.xy); #else fpos = ivec2(gl_FragCoord.xy * RcpScaleFactor); #endif float value = DitherMatrix[fpos.y & 3][fpos.x & 3]; // The idea here is we add on the dither amount adjusted by the alpha before it goes to the hw blend // so after the alpha blend the resulting value should be the same as (Cs - Cd) * As + Cd + Dither. #if PS_DITHER_ADJUST #if PS_BLEND_C == 2 float Alpha = Af; #else float Alpha = As; #endif value *= Alpha > 0.0f ? min(1.0f / Alpha, 1.0f) : 1.0f; #endif #if PS_ROUND_INV C -= value; #else C += value; #endif #endif } void ps_color_clamp_wrap(inout vec3 C) { // When dithering the bottom 3 bits become meaningless and cause lines in the picture // so we need to limit the color depth on dithered items #if SW_BLEND || (PS_DITHER > 0 && PS_DITHER < 3) || PS_FBMASK #if PS_DST_FMT == FMT_16 && PS_BLEND_MIX == 0 && PS_ROUND_INV C += 7.0f; // Need to round up, not down since the shader will invert #endif // Correct the Color value based on the output format #if PS_COLCLIP == 0 && PS_HDR == 0 // Standard Clamp C = clamp(C, vec3(0.0f), vec3(255.0f)); #endif // FIXME rouding of negative float? // compiler uses trunc but it might need floor // Warning: normally blending equation is mult(A, B) = A * B >> 7. GPU have the full accuracy // GS: Color = 1, Alpha = 255 => output 1 // GPU: Color = 1/255, Alpha = 255/255 * 255/128 => output 1.9921875 #if PS_DST_FMT == FMT_16 && PS_DITHER != 3 && (PS_BLEND_MIX == 0 || PS_DITHER > 0) // In 16 bits format, only 5 bits of colors are used. It impacts shadows computation of Castlevania C = vec3(ivec3(C) & ivec3(0xF8)); #elif PS_COLCLIP == 1 || PS_HDR == 1 C = vec3(ivec3(C) & ivec3(0xFF)); #endif #endif } void ps_blend(inout vec4 Color, inout vec4 As_rgba) { float As = As_rgba.a; #if SW_BLEND // PABE #if PS_PABE // As_rgba needed for accumulation blend to manipulate Cd // No blending so early exit if (As < 1.0f) { As_rgba.rgb = vec3(0.0f); return; } As_rgba.rgb = vec3(1.0f); #endif #if PS_FEEDBACK_LOOP_IS_NEEDED vec4 RT = sample_from_rt(); #else // Not used, but we define it to make the selection below simpler. vec4 RT = vec4(0.0f); #endif #if PS_RTA_CORRECTION float Ad = trunc(RT.a * 128.0f + 0.1f) / 128.0f; #else float Ad = trunc(RT.a * 255.0f + 0.1f) / 128.0f; #endif #if PS_SHUFFLE && PS_FEEDBACK_LOOP_IS_NEEDED uvec4 denorm_rt = uvec4(RT); #if (PS_PROCESS_BA & SHUFFLE_WRITE) RT.r = float((denorm_rt.b << 3) & 0xF8u); RT.g = float(((denorm_rt.b >> 2) & 0x38u) | ((denorm_rt.a << 6) & 0xC0u)); RT.b = float((denorm_rt.a << 1) & 0xF8u); RT.a = float(denorm_rt.a & 0x80u); #else RT.r = float((denorm_rt.r << 3) & 0xF8u); RT.g = float(((denorm_rt.r >> 2) & 0x38u) | ((denorm_rt.g << 6) & 0xC0u)); RT.b = float((denorm_rt.g << 1) & 0xF8u); RT.a = float(denorm_rt.g & 0x80u); #endif #endif // Let the compiler do its jobs ! vec3 Cd = trunc(RT.rgb * 255.0f + 0.1f); vec3 Cs = Color.rgb; #if PS_BLEND_A == 0 vec3 A = Cs; #elif PS_BLEND_A == 1 vec3 A = Cd; #else vec3 A = vec3(0.0f); #endif #if PS_BLEND_B == 0 vec3 B = Cs; #elif PS_BLEND_B == 1 vec3 B = Cd; #else vec3 B = vec3(0.0f); #endif #if PS_BLEND_C == 0 float C = As; #elif PS_BLEND_C == 1 float C = Ad; #else float C = Af; #endif #if PS_BLEND_D == 0 vec3 D = Cs; #elif PS_BLEND_D == 1 vec3 D = Cd; #else vec3 D = vec3(0.0f); #endif // As/Af clamp alpha for Blend mix // We shouldn't clamp blend mix with blend hw 1 as we want alpha higher float C_clamped = C; #if PS_BLEND_MIX > 0 && PS_BLEND_HW != 1 && PS_BLEND_HW != 2 C_clamped = min(C_clamped, 1.0f); #endif #if PS_BLEND_A == PS_BLEND_B Color.rgb = D; // In blend_mix, HW adds on some alpha factor * dst. // Truncating here wouldn't quite get the right result because it prevents the <1 bit here from combining with a <1 bit in dst to form a ≥1 amount that pushes over the truncation. // Instead, apply an offset to convert HW's round to a floor. // Since alpha is in 1/128 increments, subtracting (0.5 - 0.5/128 == 127/256) would get us what we want if GPUs blended in full precision. // But they don't. Details here: https://github.com/PCSX2/pcsx2/pull/6809#issuecomment-1211473399 // Based on the scripts at the above link, the ideal choice for Intel GPUs is 126/256, AMD 120/256. Nvidia is a lost cause. // 124/256 seems like a reasonable compromise, providing the correct answer 99.3% of the time on Intel (vs 99.6% for 126/256), and 97% of the time on AMD (vs 97.4% for 120/256). #elif PS_BLEND_MIX == 2 Color.rgb = ((A - B) * C_clamped + D) + (124.0f/256.0f); #elif PS_BLEND_MIX == 1 Color.rgb = ((A - B) * C_clamped + D) - (124.0f/256.0f); #else Color.rgb = trunc((A - B) * C + D); #endif #if PS_BLEND_HW == 1 // As or Af As_rgba.rgb = vec3(C); // Subtract 1 for alpha to compensate for the changed equation, // if c.rgb > 255.0f then we further need to adjust alpha accordingly, // we pick the lowest overflow from all colors because it's the safest, // we divide by 255 the color because we don't know Cd value, // changed alpha should only be done for hw blend. vec3 alpha_compensate = max(vec3(1.0f), Color.rgb / vec3(255.0f)); As_rgba.rgb -= alpha_compensate; #elif PS_BLEND_HW == 2 // Since we can't do Cd*(Aalpha + 1) - Cs*Alpha in hw blend // what we can do is adjust the Cs value that will be // subtracted, this way we can get a better result in hw blend. // Result is still wrong but less wrong than before. float division_alpha = 1.0f + C; Color.rgb /= vec3(division_alpha); #elif PS_BLEND_HW == 3 // As, Ad or Af clamped. As_rgba.rgb = vec3(C_clamped); // Cs*(Alpha + 1) might overflow, if it does then adjust alpha value // that is sent on second output to compensate. vec3 overflow_check = (Color.rgb - vec3(255.0f)) / 255.0f; vec3 alpha_compensate = max(vec3(0.0f), overflow_check); As_rgba.rgb -= alpha_compensate; #endif #else #if PS_BLEND_C == 2 vec3 Alpha = vec3(Af); #else vec3 Alpha = vec3(As); #endif #if PS_BLEND_HW == 1 // Needed for Cd * (As/Ad/F + 1) blending modes Color.rgb = vec3(255.0f); #elif PS_BLEND_HW == 2 // Cd*As,Cd*Ad or Cd*F Color.rgb = max(vec3(0.0f), (Alpha - vec3(1.0f))); Color.rgb *= vec3(255.0f); #elif PS_BLEND_HW == 3 && PS_RTA_CORRECTION == 0 // Needed for Cs*Ad, Cs*Ad + Cd, Cd - Cs*Ad // Multiply Color.rgb by (255/128) to compensate for wrong Ad/255 value when rgb are below 128. // When any color channel is higher than 128 then adjust the compensation automatically // to give us more accurate colors, otherwise they will be wrong. // The higher the value (>128) the lower the compensation will be. float max_color = max(max(Color.r, Color.g), Color.b); float color_compensate = 255.0f / max(128.0f, max_color); Color.rgb *= vec3(color_compensate); #elif PS_BLEND_HW == 4 // Needed for Cd * (1 - Ad) and Cd*(1 + Alpha). As_rgba.rgb = Alpha * vec3(128.0f / 255.0f); Color.rgb = vec3(127.5f); #elif PS_BLEND_HW == 5 // Needed for Cs*Alpha + Cd*(1 - Alpha). Alpha *= vec3(128.0f / 255.0f); As_rgba.rgb = (Alpha - vec3(0.5f)); Color.rgb = (Color.rgb * Alpha); #elif PS_BLEND_HW == 6 // Needed for Cd*Alpha + Cs*(1 - Alpha). Alpha *= vec3(128.0f / 255.0f); As_rgba.rgb = Alpha; Color.rgb *= (Alpha - vec3(0.5f)); #endif #endif } void main() { #if PS_SCANMSK & 2 // fail depth test on prohibited lines if ((int(gl_FragCoord.y) & 1) == (PS_SCANMSK & 1)) discard; #endif #if PS_DATE >= 5 #if PS_WRITE_RG == 1 // Pseudo 16 bits access. float rt_a = sample_from_rt().g; #else float rt_a = sample_from_rt().a; #endif #if (PS_DATE & 3) == 1 // DATM == 0: Pixel with alpha equal to 1 will failed #if PS_RTA_CORRECTION bool bad = (254.5f / 255.0f) < rt_a; #else bool bad = (127.5f / 255.0f) < rt_a; #endif #elif (PS_DATE & 3) == 2 // DATM == 1: Pixel with alpha equal to 0 will failed #if PS_RTA_CORRECTION bool bad = rt_a < (254.5f / 255.0f); #else bool bad = rt_a < (127.5f / 255.0f); #endif #endif if (bad) { discard; } #endif // PS_DATE >= 5 #if PS_DATE == 3 int stencil_ceil = int(texelFetch(PrimMinTexture, ivec2(gl_FragCoord.xy), 0).r); // Note gl_PrimitiveID == stencil_ceil will be the primitive that will update // the bad alpha value so we must keep it. if (gl_PrimitiveID > stencil_ceil) { discard; } #endif vec4 C = ps_color(); bool atst_pass = atst(C); #if PS_AFAIL == 0 // KEEP or ATST off if (!atst_pass) discard; #endif // Must be done before alpha correction // AA (Fixed one) will output a coverage of 1.0 as alpha #if PS_FIXED_ONE_A C.a = 128.0f; #endif #if SW_AD_TO_HW #if PS_RTA_CORRECTION vec4 RT = trunc(sample_from_rt() * 128.0f + 0.1f); #else vec4 RT = trunc(sample_from_rt() * 255.0f + 0.1f); #endif vec4 alpha_blend = vec4(RT.a / 128.0f); #else vec4 alpha_blend = vec4(C.a / 128.0f); #endif // Correct the ALPHA value based on the output format #if (PS_DST_FMT == FMT_16) float A_one = 128.0f; // alpha output will be 0x80 C.a = (PS_FBA != 0) ? A_one : step(128.0f, C.a) * A_one; #elif (PS_DST_FMT == FMT_32) && (PS_FBA != 0) if(C.a < 128.0f) C.a += 128.0f; #endif // Get first primitive that will write a failling alpha value #if PS_DATE == 1 // DATM == 0 // Pixel with alpha equal to 1 will failed (128-255) o_col0 = (C.a > 127.5f) ? vec4(gl_PrimitiveID) : vec4(0x7FFFFFFF); #elif PS_DATE == 2 // DATM == 1 // Pixel with alpha equal to 0 will failed (0-127) o_col0 = (C.a < 127.5f) ? vec4(gl_PrimitiveID) : vec4(0x7FFFFFFF); #else ps_blend(C, alpha_blend); #if PS_SHUFFLE #if !PS_READ16_SRC && !PS_SHUFFLE_SAME uvec4 denorm_c_after = uvec4(C); #if (PS_PROCESS_BA & SHUFFLE_READ) C.b = float(((denorm_c_after.r >> 3) & 0x1Fu) | ((denorm_c_after.g << 2) & 0xE0u)); C.a = float(((denorm_c_after.g >> 6) & 0x3u) | ((denorm_c_after.b >> 1) & 0x7Cu) | (denorm_c_after.a & 0x80u)); #else C.r = float(((denorm_c_after.r >> 3) & 0x1Fu) | ((denorm_c_after.g << 2) & 0xE0u)); C.g = float(((denorm_c_after.g >> 6) & 0x3u) | ((denorm_c_after.b >> 1) & 0x7Cu) | (denorm_c_after.a & 0x80u)); #endif #endif // Special case for 32bit input and 16bit output, shuffle used by The Godfather #if PS_SHUFFLE_SAME #if (PS_PROCESS_BA & SHUFFLE_READ) uvec4 denorm_c = uvec4(C); C = vec4(float((denorm_c.b & 0x7Fu) | (denorm_c.a & 0x80u))); #else C.ga = C.rg; #endif // Copy of a 16bit source in to this target #elif PS_READ16_SRC uvec4 denorm_c = uvec4(C); uvec2 denorm_TA = uvec2(vec2(TA.xy) * 255.0f + 0.5f); C.rb = vec2(float((denorm_c.r >> 3) | (((denorm_c.g >> 3) & 0x7u) << 5))); C.ga = vec2(float((denorm_c.g >> 6) | ((denorm_c.b >> 3) << 2) | (denorm_TA.x & 0x80u))); // Write RB part. Mask will take care of the correct destination #elif PS_SHUFFLE_ACROSS #if(PS_PROCESS_BA == SHUFFLE_READWRITE && PS_PROCESS_RG == SHUFFLE_READWRITE) C.rb = C.br; float g_temp = C.g; C.g = C.a; C.a = g_temp; #elif(PS_PROCESS_BA & SHUFFLE_READ) C.rb = C.bb; C.ga = C.aa; #else C.rb = C.rr; C.ga = C.gg; #endif // PS_PROCESS_BA #endif // PS_SHUFFLE_ACROSS #endif // PS_SHUFFLE ps_dither(C.rgb, alpha_blend.a); // Color clamp/wrap needs to be done after sw blending and dithering ps_color_clamp_wrap(C.rgb); ps_fbmask(C); #if PS_AFAIL == 3 // RGB_ONLY // Use alpha blend factor to determine whether to update A. alpha_blend.a = float(atst_pass); #endif #if !PS_NO_COLOR #if PS_RTA_CORRECTION o_col0.a = C.a / 128.0f; #else o_col0.a = C.a / 255.0f; #endif #if PS_HDR == 1 o_col0.rgb = vec3(C.rgb / 65535.0f); #else o_col0.rgb = C.rgb / 255.0f; #endif #if !PS_NO_COLOR1 o_col1 = alpha_blend; #endif #endif #if PS_ZCLAMP gl_FragDepth = min(gl_FragCoord.z, MaxDepthPS); #endif #endif // PS_DATE } #endif