// SPDX-FileCopyrightText: 2002-2024 PCSX2 Dev Team // SPDX-License-Identifier: GPL-3.0+ #ifdef VERTEX_SHADER layout(location = 0) in vec4 a_pos; layout(location = 1) in vec2 a_tex; layout(location = 0) out vec2 v_tex; void main() { gl_Position = vec4(a_pos.x, -a_pos.y, a_pos.z, a_pos.w); v_tex = a_tex; } #endif #ifdef FRAGMENT_SHADER layout(location = 0) in vec2 v_tex; #if defined(ps_convert_rgba8_16bits) || defined(ps_convert_float32_32bits) layout(location = 0) out uint o_col0; #elif !defined(ps_datm1) && \ !defined(ps_datm0) && \ !defined(ps_datm1_rta_correction) && \ !defined(ps_datm0_rta_correction) && \ !defined(ps_convert_rgba8_float32) && \ !defined(ps_convert_rgba8_float24) && \ !defined(ps_convert_rgba8_float16) && \ !defined(ps_convert_rgb5a1_float16) && \ !defined(ps_convert_rgba8_float32_biln) && \ !defined(ps_convert_rgba8_float24_biln) && \ !defined(ps_convert_rgba8_float16_biln) && \ !defined(ps_convert_rgb5a1_float16_biln) && \ !defined(ps_depth_copy) layout(location = 0) out vec4 o_col0; #endif layout(set = 0, binding = 0) uniform sampler2D samp0; vec4 sample_c(vec2 uv) { return texture(samp0, uv); } #ifdef ps_copy void ps_copy() { o_col0 = sample_c(v_tex); } #endif #ifdef ps_depth_copy void ps_depth_copy() { gl_FragDepth = sample_c(v_tex).r; } #endif #ifdef ps_downsample_copy layout(push_constant) uniform cb10 { ivec2 ClampMin; int DownsampleFactor; int pad0; float Weight; vec3 pad1; }; void ps_downsample_copy() { ivec2 coord = max(ivec2(gl_FragCoord.xy) * DownsampleFactor, ClampMin); vec4 result = vec4(0); for (int yoff = 0; yoff < DownsampleFactor; yoff++) { for (int xoff = 0; xoff < DownsampleFactor; xoff++) result += texelFetch(samp0, coord + ivec2(xoff, yoff), 0); } o_col0 = result / Weight; } #endif #ifdef ps_filter_transparency void ps_filter_transparency() { vec4 c = sample_c(v_tex); o_col0 = vec4(c.rgb, 1.0); } #endif #ifdef ps_convert_rgba8_16bits // Need to be careful with precision here, it can break games like Spider-Man 3 and Dogs Life void ps_convert_rgba8_16bits() { uvec4 i = uvec4(sample_c(v_tex) * vec4(255.5f, 255.5f, 255.5f, 255.5f)); o_col0 = ((i.x & 0x00F8u) >> 3) | ((i.y & 0x00F8u) << 2) | ((i.z & 0x00f8u) << 7) | ((i.w & 0x80u) << 8); } #endif #ifdef ps_datm1 void ps_datm1() { if(sample_c(v_tex).a < (127.5f / 255.0f)) // >= 0x80 pass discard; } #endif #ifdef ps_datm0 void ps_datm0() { if((127.5f / 255.0f) < sample_c(v_tex).a) // < 0x80 pass (== 0x80 should not pass) discard; } #endif #ifdef ps_datm1_rta_correction void ps_datm1_rta_correction() { if(sample_c(v_tex).a < (254.5f / 255.0f)) // >= 0x80 pass discard; } #endif #ifdef ps_datm0_rta_correction void ps_datm0_rta_correction() { if((254.5f / 255.0f) < sample_c(v_tex).a) // < 0x80 pass (== 0x80 should not pass) discard; } #endif #ifdef ps_rta_correction void ps_rta_correction() { vec4 value = sample_c(v_tex); o_col0 = vec4(value.rgb, value.a / (128.25f / 255.0f)); } #endif #ifdef ps_rta_decorrection void ps_rta_decorrection() { vec4 value = sample_c(v_tex); o_col0 = vec4(value.rgb, value.a * (128.25f / 255.0f)); } #endif #ifdef ps_hdr_init void ps_hdr_init() { vec4 value = sample_c(v_tex); o_col0 = vec4(roundEven(value.rgb * 255.0f) / 65535.0f, value.a); } #endif #ifdef ps_hdr_resolve void ps_hdr_resolve() { vec4 value = sample_c(v_tex); o_col0 = vec4(vec3(uvec3(value.rgb * 65535.5f) & 255u) / 255.0f, value.a); } #endif #ifdef ps_convert_float32_32bits void ps_convert_float32_32bits() { // Convert a vec32 depth texture into a 32 bits UINT texture o_col0 = uint(exp2(32.0f) * sample_c(v_tex).r); } #endif #ifdef ps_convert_float32_rgba8 void ps_convert_float32_rgba8() { // Convert a vec32 depth texture into a RGBA color texture uint d = uint(sample_c(v_tex).r * exp2(32.0f)); o_col0 = vec4(uvec4((d & 0xFFu), ((d >> 8) & 0xFFu), ((d >> 16) & 0xFFu), (d >> 24))) / vec4(255.0); } #endif #ifdef ps_convert_float16_rgb5a1 void ps_convert_float16_rgb5a1() { // Convert a vec32 (only 16 lsb) depth into a RGB5A1 color texture uint d = uint(sample_c(v_tex).r * exp2(32.0f)); o_col0 = vec4(uvec4(d << 3, d >> 2, d >> 7, d >> 8) & uvec4(0xf8, 0xf8, 0xf8, 0x80)) / 255.0f; } #endif float rgba8_to_depth32(vec4 unorm) { uvec4 c = uvec4(unorm * vec4(255.5f)); return float(c.r | (c.g << 8) | (c.b << 16) | (c.a << 24)) * exp2(-32.0f); } float rgba8_to_depth24(vec4 unorm) { uvec3 c = uvec3(unorm.rgb * vec3(255.5f)); return float(c.r | (c.g << 8) | (c.b << 16)) * exp2(-32.0f); } float rgba8_to_depth16(vec4 unorm) { uvec2 c = uvec2(unorm.rg * vec2(255.5f)); return float(c.r | (c.g << 8)) * exp2(-32.0f); } float rgb5a1_to_depth16(vec4 unorm) { uvec4 c = uvec4(unorm * vec4(255.5f)); return float(((c.r & 0xF8u) >> 3) | ((c.g & 0xF8u) << 2) | ((c.b & 0xF8u) << 7) | ((c.a & 0x80u) << 8)) * exp2(-32.0f); } #ifdef ps_convert_float32_float24 void ps_convert_float32_float24() { // Truncates depth value to 24bits uint d = uint(sample_c(v_tex).r * exp2(32.0f)) & 0xFFFFFFu; gl_FragDepth = float(d) * exp2(-32.0f); } #endif #ifdef ps_convert_rgba8_float32 void ps_convert_rgba8_float32() { // Convert an RGBA texture into a float depth texture gl_FragDepth = rgba8_to_depth32(sample_c(v_tex)); } #endif #ifdef ps_convert_rgba8_float24 void ps_convert_rgba8_float24() { // Same as above but without the alpha channel (24 bits Z) // Convert an RGBA texture into a float depth texture gl_FragDepth = rgba8_to_depth24(sample_c(v_tex)); } #endif #ifdef ps_convert_rgba8_float16 void ps_convert_rgba8_float16() { // Same as above but without the A/B channels (16 bits Z) // Convert an RGBA texture into a float depth texture gl_FragDepth = rgba8_to_depth16(sample_c(v_tex)); } #endif #ifdef ps_convert_rgb5a1_float16 void ps_convert_rgb5a1_float16() { // Convert an RGB5A1 (saved as RGBA8) color to a 16 bit Z gl_FragDepth = rgb5a1_to_depth16(sample_c(v_tex)); } #endif #define SAMPLE_RGBA_DEPTH_BILN(CONVERT_FN) \ ivec2 dims = textureSize(samp0, 0); \ vec2 top_left_f = v_tex * vec2(dims) - 0.5f; \ ivec2 top_left = ivec2(floor(top_left_f)); \ ivec4 coords = clamp(ivec4(top_left, top_left + 1), ivec4(0), dims.xyxy - 1); \ vec2 mix_vals = fract(top_left_f); \ float depthTL = CONVERT_FN(texelFetch(samp0, coords.xy, 0)); \ float depthTR = CONVERT_FN(texelFetch(samp0, coords.zy, 0)); \ float depthBL = CONVERT_FN(texelFetch(samp0, coords.xw, 0)); \ float depthBR = CONVERT_FN(texelFetch(samp0, coords.zw, 0)); \ gl_FragDepth = mix(mix(depthTL, depthTR, mix_vals.x), mix(depthBL, depthBR, mix_vals.x), mix_vals.y); #ifdef ps_convert_rgba8_float32_biln void ps_convert_rgba8_float32_biln() { // Convert an RGBA texture into a float depth texture SAMPLE_RGBA_DEPTH_BILN(rgba8_to_depth32); } #endif #ifdef ps_convert_rgba8_float24_biln void ps_convert_rgba8_float24_biln() { // Same as above but without the alpha channel (24 bits Z) // Convert an RGBA texture into a float depth texture SAMPLE_RGBA_DEPTH_BILN(rgba8_to_depth24); } #endif #ifdef ps_convert_rgba8_float16_biln void ps_convert_rgba8_float16_biln() { // Same as above but without the A/B channels (16 bits Z) // Convert an RGBA texture into a float depth texture SAMPLE_RGBA_DEPTH_BILN(rgba8_to_depth16); } #endif #ifdef ps_convert_rgb5a1_float16_biln void ps_convert_rgb5a1_float16_biln() { // Convert an RGB5A1 (saved as RGBA8) color to a 16 bit Z SAMPLE_RGBA_DEPTH_BILN(rgb5a1_to_depth16); } #endif #ifdef ps_convert_rgba_8i layout(push_constant) uniform cb10 { uint SBW; uint DBW; uvec2 cb_pad1; float ScaleFactor; vec3 cb_pad2; }; void ps_convert_rgba_8i() { // Convert a RGBA texture into a 8 bits packed texture // Input column: 8x2 RGBA pixels // 0: 8 RGBA // 1: 8 RGBA // Output column: 16x4 Index pixels // 0: 8 R | 8 B // 1: 8 R | 8 B // 2: 8 G | 8 A // 3: 8 G | 8 A uvec2 pos = uvec2(gl_FragCoord.xy); // Collapse separate R G B A areas into their base pixel uvec2 block = (pos & ~uvec2(15u, 3u)) >> 1; uvec2 subblock = pos & uvec2(7u, 1u); uvec2 coord = block | subblock; // Compensate for potentially differing page pitch. uvec2 block_xy = coord / uvec2(64u, 32u); uint block_num = (block_xy.y * (DBW / 128u)) + block_xy.x; uvec2 block_offset = uvec2((block_num % (SBW / 64u)) * 64u, (block_num / (SBW / 64u)) * 32u); coord = (coord % uvec2(64u, 32u)) + block_offset; // Apply offset to cols 1 and 2 uint is_col23 = pos.y & 4u; uint is_col13 = pos.y & 2u; uint is_col12 = is_col23 ^ (is_col13 << 1); coord.x ^= is_col12; // If cols 1 or 2, flip bit 3 of x if (floor(ScaleFactor) != ScaleFactor) coord = uvec2(vec2(coord) * ScaleFactor); else coord *= uvec2(ScaleFactor); vec4 pixel = texelFetch(samp0, ivec2(coord), 0); vec2 sel0 = (pos.y & 2u) == 0u ? pixel.rb : pixel.ga; float sel1 = (pos.x & 8u) == 0u ? sel0.x : sel0.y; o_col0 = vec4(sel1); // Divide by something here? } #endif #ifdef ps_convert_clut_4 layout(push_constant) uniform cb10 { uvec2 offset; uint doffset; uint cb_pad1; float scale; vec3 cb_pad2; }; void ps_convert_clut_4() { // CLUT4 is easy, just two rows of 8x8. uint index = uint(gl_FragCoord.x) + doffset; uvec2 pos = uvec2(index % 8u, index / 8u); ivec2 final = ivec2(floor(vec2(offset + pos) * vec2(scale))); o_col0 = texelFetch(samp0, final, 0); } #endif #ifdef ps_convert_clut_8 layout(push_constant) uniform cb10 { uvec2 offset; uint doffset; uint cb_pad1; float scale; vec3 cb_pad2; }; void ps_convert_clut_8() { uint index = min(uint(gl_FragCoord.x) + doffset, 255u); // CLUT is arranged into 8 groups of 16x2, with the top-right and bottom-left quadrants swapped. // This can probably be done better.. uint subgroup = (index / 8u) % 4u; uvec2 pos; pos.x = (index % 8u) + ((subgroup >= 2u) ? 8u : 0u); pos.y = ((index / 32u) * 2u) + (subgroup % 2u); ivec2 final = ivec2(floor(vec2(offset + pos) * vec2(scale))); o_col0 = texelFetch(samp0, final, 0); } #endif #ifdef ps_yuv layout(push_constant) uniform cb10 { int EMODA; int EMODC; }; void ps_yuv() { vec4 i = sample_c(v_tex); vec4 o = vec4(0.0f); mat3 rgb2yuv; rgb2yuv[0] = vec3(0.587, -0.311, -0.419); rgb2yuv[1] = vec3(0.114, 0.500, -0.081); rgb2yuv[2] = vec3(0.299, -0.169, 0.500); vec3 yuv = rgb2yuv * i.gbr; float Y = float(0xDB)/255.0f * yuv.x + float(0x10)/255.0f; float Cr = float(0xE0)/255.0f * yuv.y + float(0x80)/255.0f; float Cb = float(0xE0)/255.0f * yuv.z + float(0x80)/255.0f; switch(EMODA) { case 0: o.a = i.a; break; case 1: o.a = Y; break; case 2: o.a = Y/2.0f; break; case 3: o.a = 0.0f; break; } switch(EMODC) { case 0: o.rgb = i.rgb; break; case 1: o.rgb = vec3(Y); break; case 2: o.rgb = vec3(Y, Cb, Cr); break; case 3: o.rgb = vec3(i.a); break; } o_col0 = o; } #endif #if defined(ps_stencil_image_init_0) || defined(ps_stencil_image_init_1) || defined(ps_stencil_image_init_2) || defined(ps_stencil_image_init_3) void main() { o_col0 = vec4(0x7FFFFFFF); #ifdef ps_stencil_image_init_0 if((127.5f / 255.0f) < sample_c(v_tex).a) // < 0x80 pass (== 0x80 should not pass) o_col0 = vec4(-1); #endif #ifdef ps_stencil_image_init_1 if(sample_c(v_tex).a < (127.5f / 255.0f)) // >= 0x80 pass o_col0 = vec4(-1); #endif #ifdef ps_stencil_image_init_2 if((254.5f / 255.0f) < sample_c(v_tex).a) // < 0x80 pass (== 0x80 should not pass) o_col0 = vec4(-1); #endif #ifdef ps_stencil_image_init_3 if(sample_c(v_tex).a < (254.5f / 255.0f)) // >= 0x80 pass o_col0 = vec4(-1); #endif } #endif #endif