GS:SW: Use unaligned loads to reduce constant size on AVX2

Allows more instructions to use 1-byte offsets
This commit is contained in:
TellowKrinkle 2024-10-07 00:18:33 -05:00
parent 0d434d69be
commit eb0b341e61
5 changed files with 100 additions and 78 deletions

View File

@ -207,10 +207,11 @@ void GSDrawScanline::CSetupPrim(const GSVertexSW* vertex, const u16* index, cons
constexpr int vlen = sizeof(VectorF) / sizeof(float); constexpr int vlen = sizeof(VectorF) / sizeof(float);
#if _M_SSE >= 0x501 #if _M_SSE >= 0x501
const GSVector8* shift = (GSVector8*)g_const_256b.m_shift; auto load_shift = [](int i) { return GSVector8::load<false>(&g_const_256b.m_shift[8 - i]); };
const GSVector4 step_shift = GSVector4::broadcast32(&shift[0]); const GSVector4 step_shift = GSVector4::broadcast32(&g_const_256b.m_shift[0]);
#else #else
const GSVector4* shift = (GSVector4*)g_const_128b.m_shift; static const GSVector4* shift = reinterpret_cast<const GSVector4*>(g_const_128b.m_shift);
auto load_shift = [](int i) { return shift[1 + i]; };
const GSVector4 step_shift = shift[0]; const GSVector4 step_shift = shift[0];
#endif #endif
@ -234,22 +235,23 @@ void GSDrawScanline::CSetupPrim(const GSVertexSW* vertex, const u16* index, cons
for (int i = 0; i < vlen; i++) for (int i = 0; i < vlen; i++)
{ {
local.d[i].f = VectorI(df * shift[1 + i]).xxzzlh(); local.d[i].f = VectorI(df * load_shift(i)).xxzzlh();
} }
} }
if (has_z && !sel.zequal) if (has_z && !sel.zequal)
{ {
const GSVector4 dz = GSVector4::broadcast64(&dscan.p.z);
const VectorF dzf(static_cast<float>(dscan.p.F64[1])); const VectorF dzf(static_cast<float>(dscan.p.F64[1]));
#if _M_SSE >= 0x501 #if _M_SSE >= 0x501
GSVector4::storel(&local.d8.p.z, dz.mul64(GSVector4::f32to64(shift))); double dz = dscan.p.F64[1] * g_const_256b.m_shift[0];
memcpy(&local.d8.p.z, &dz, sizeof(dz));
#else #else
const GSVector4 dz = GSVector4::broadcast64(&dscan.p.z);
local.d4.z = dz.mul64(GSVector4::f32to64(shift)); local.d4.z = dz.mul64(GSVector4::f32to64(shift));
#endif #endif
for (int i = 0; i < vlen; i++) for (int i = 0; i < vlen; i++)
{ {
local.d[i].z = dzf * shift[i + 1]; local.d[i].z = dzf * load_shift(i);
} }
} }
} }
@ -297,7 +299,7 @@ void GSDrawScanline::CSetupPrim(const GSVertexSW* vertex, const u16* index, cons
for (int i = 0; i < vlen; i++) for (int i = 0; i < vlen; i++)
{ {
VectorF v = dstq * shift[1 + i]; VectorF v = dstq * load_shift(i);
if (sel.fst) if (sel.fst)
{ {
@ -336,8 +338,8 @@ void GSDrawScanline::CSetupPrim(const GSVertexSW* vertex, const u16* index, cons
for (int i = 0; i < vlen; i++) for (int i = 0; i < vlen; i++)
{ {
VectorI r = VectorI(dr * shift[1 + i]).ps32(); VectorI r = VectorI(dr * load_shift(i)).ps32();
VectorI b = VectorI(db * shift[1 + i]).ps32(); VectorI b = VectorI(db * load_shift(i)).ps32();
local.d[i].rb = r.upl16(b); local.d[i].rb = r.upl16(b);
} }
@ -347,8 +349,8 @@ void GSDrawScanline::CSetupPrim(const GSVertexSW* vertex, const u16* index, cons
for (int i = 0; i < vlen; i++) for (int i = 0; i < vlen; i++)
{ {
VectorI g = VectorI(dg * shift[1 + i]).ps32(); VectorI g = VectorI(dg * load_shift(i)).ps32();
VectorI a = VectorI(da * shift[1 + i]).ps32(); VectorI a = VectorI(da * load_shift(i)).ps32();
local.d[i].ga = g.upl16(a); local.d[i].ga = g.upl16(a);
} }
@ -515,7 +517,7 @@ __ri void GSDrawScanline::CDrawScanline(int pixels, int left, int top, const GSV
steps = pixels + skip - vlen; steps = pixels + skip - vlen;
left -= skip; left -= skip;
#if _M_SSE >= 0x501 #if _M_SSE >= 0x501
test = GSVector8i::i8to32(g_const_256b.m_test[skip]) | GSVector8i::i8to32(g_const_256b.m_test[15 + (steps & (steps >> 31))]); test = GSVector8i::i8to32(&g_const_256b.m_test[16 - skip]) | GSVector8i::i8to32(&g_const_256b.m_test[0 - (steps & (steps >> 31))]);
#else #else
test = const_test[skip] | const_test[7 + (steps & (steps >> 31))]; test = const_test[skip] | const_test[7 + (steps & (steps >> 31))];
#endif #endif
@ -1756,7 +1758,7 @@ __ri void GSDrawScanline::CDrawScanline(int pixels, int left, int top, const GSV
if (!sel.notest) if (!sel.notest)
{ {
#if _M_SSE >= 0x501 #if _M_SSE >= 0x501
test = GSVector8i::i8to32(g_const_256b.m_test[15 + (steps & (steps >> 31))]); test = GSVector8i::i8to32(&g_const_256b.m_test[0 - (steps & (steps >> 31))]);
#else #else
test = const_test[7 + (steps & (steps >> 31))]; test = const_test[7 + (steps & (steps >> 31))];
#endif #endif

View File

@ -661,25 +661,29 @@ void GSDrawScanlineCodeGenerator::Init()
lea(a0.cvt32(), ptr[a0 + a1 - vecints]); lea(a0.cvt32(), ptr[a0 + a1 - vecints]);
// GSVector4i test = m_test[skip] | m_test[7 + (steps & (steps >> 31))];
mov(eax, a0.cvt32());
sar(eax, 31); // GH: 31 to extract the sign of the register
and_(eax, a0.cvt32());
if (isXmm)
shl(eax, 4); // * sizeof(m_test[0])
cdqe();
if (isXmm) if (isXmm)
{ {
// GSVector4i test = m_test[skip] | m_test[7 + (steps & (steps >> 31))];
mov(eax, a0.cvt32());
sar(eax, 31); // GH: 31 to extract the sign of the register
and_(eax, a0.cvt32());
shl(eax, 4); // * sizeof(m_test[0])
cdqe();
shl(a1.cvt32(), 4); // * sizeof(m_test[0]) shl(a1.cvt32(), 4); // * sizeof(m_test[0])
movdqa(_test, ptr[a1 + _m_const + offsetof(GSScanlineConstantData128B, m_test[0])]); movdqa(_test, ptr[a1 + _m_const + offsetof(GSScanlineConstantData128B, m_test[0])]);
por(_test, ptr[rax + _m_const + offsetof(GSScanlineConstantData128B, m_test[7])]); por(_test, ptr[rax + _m_const + offsetof(GSScanlineConstantData128B, m_test[7])]);
} }
else else
{ {
pmovsxbd(_test, ptr[a1 * 8 + _m_const + offsetof(GSScanlineConstantData256B, m_test[0])]); // GSVector8i test = loadu(&m_test[16 - skip]) | loadu(&m_test[steps >= 0 ? 0 : -steps]);
pmovsxbd(xym0, ptr[rax * 8 + _m_const + offsetof(GSScanlineConstantData256B, m_test[15])]); mov(eax, a1.cvt32());
neg(rax); // rax = -skip
pmovsxbd(_test, ptr[rax + _m_const + offsetof(GSScanlineConstantData256B, m_test[16])]);
xor_(t0.cvt32(), t0.cvt32());
mov(eax, a0.cvt32());
neg(eax); // eax = -steps
cmovs(eax, t0.cvt32()); // if (eax < 0) eax = 0
pmovsxbd(xym0, ptr[rax + _m_const + offsetof(GSScanlineConstantData256B, m_test[0])]);
por(_test, xym0); por(_test, xym0);
shl(a1.cvt32(), 5); // * sizeof(m_test[0]) shl(a1.cvt32(), 5); // * sizeof(m_test[0])
} }
@ -922,7 +926,7 @@ void GSDrawScanlineCodeGenerator::Init()
/// Inputs: a0=steps, t0=fza_offset /// Inputs: a0=steps, t0=fza_offset
/// Outputs[x86]: xym0=z xym2=s, xym3=t, xym4=q, xym5=rb, xym6=ga, xym7=test /// Outputs[x86]: xym0=z xym2=s, xym3=t, xym4=q, xym5=rb, xym6=ga, xym7=test
/// Destroys[x86]: all /// Destroys[x86]: all
/// Destroys[x64]: xym0, xym1, xym2, xym3 /// Destroys[x64]: xym0, xym1, xym2, xym3, t2
void GSDrawScanlineCodeGenerator::Step() void GSDrawScanlineCodeGenerator::Step()
{ {
// steps -= 4; // steps -= 4;
@ -1048,19 +1052,22 @@ void GSDrawScanlineCodeGenerator::Step()
if (!m_sel.notest) if (!m_sel.notest)
{ {
#if USING_XMM
// test = m_test[7 + (steps & (steps >> 31))]; // test = m_test[7 + (steps & (steps >> 31))];
mov(eax, a0.cvt32()); mov(eax, a0.cvt32());
sar(eax, 31); // GH: 31 to extract the sign of the register sar(eax, 31); // GH: 31 to extract the sign of the register
and_(eax, a0.cvt32()); and_(eax, a0.cvt32());
if (isXmm) shl(eax, 4);
shl(eax, 4);
cdqe(); cdqe();
#if USING_XMM
movdqa(_test, ptr[rax + _m_const + offsetof(GSScanlineConstantData128B, m_test[7])]); movdqa(_test, ptr[rax + _m_const + offsetof(GSScanlineConstantData128B, m_test[7])]);
#else #else
pmovsxbd(_test, ptr[rax * 8 + _m_const + offsetof(GSScanlineConstantData256B, m_test[15])]); // test = loadu(&m_test[steps >= 0 ? 0 : -steps]);
xor_(t2.cvt32(), t2.cvt32());
mov(eax, a0.cvt32());
neg(eax); // eax = -steps
cmovs(eax, t2.cvt32()); // if (eax < 0) eax = 0;
pmovsxbd(_test, ptr[rax + _m_const + offsetof(GSScanlineConstantData256B, m_test[0])]);
#endif #endif
} }
} }
@ -1655,29 +1662,54 @@ void GSDrawScanlineCodeGenerator::SampleTextureLOD()
pslld(xym4, 9); pslld(xym4, 9);
psrld(xym4, 9); psrld(xym4, 9);
auto log2_coeff = [this](int i) -> Address #if USING_YMM
auto load_log2_coeff = [this](const XYm& reg, int i)
{ {
ptr[_m_const + log2_coeff_offset(i)]; vbroadcastss(reg, ptr[_m_const + log2_coeff_offset(i)]);
}; };
auto log2_coeff = [this, &load_log2_coeff](int i)
{
load_log2_coeff(xym6, i);
return xym6;
};
#else
auto log2_coeff = [this](int i) -> Operand
{
return ptr[_m_const + log2_coeff_offset(i)];
};
auto load_log2_coeff = [this, &log2_coeff](const XYm& reg, int i)
{
movaps(reg, log2_coeff(i));
};
#endif
orps(xym4, log2_coeff(3)); load_log2_coeff(xym1, 3);
orps(xym4, xym1);
// xym4 = mant(q) | 1.0f // xym4 = mant(q) | 1.0f
if (hasFMA) if (hasFMA)
{ {
movaps(xym5, log2_coeff(0)); // c0 load_log2_coeff(xym5, 0); // c0
vfmadd213ps(xym5, xym4, log2_coeff(1)); // c0 * xym4 + c1 vfmadd213ps(xym5, xym4, log2_coeff(1)); // c0 * xym4 + c1
vfmadd213ps(xym5, xym4, log2_coeff(2)); // (c0 * xym4 + c1) * xym4 + c2 vfmadd213ps(xym5, xym4, log2_coeff(2)); // (c0 * xym4 + c1) * xym4 + c2
subps(xym4, log2_coeff(3)); // xym4 - 1.0f subps(xym4, xym1); // xym4 - 1.0f
vfmadd213ps(xym4, xym5, xym0); // ((c0 * xym4 + c1) * xym4 + c2) * (xym4 - 1.0f) + xym0 vfmadd213ps(xym4, xym5, xym0); // ((c0 * xym4 + c1) * xym4 + c2) * (xym4 - 1.0f) + xym0
} }
else else
{ {
THREEARG(mulps, xym5, xym4, log2_coeff(0)); if (hasAVX)
{
vmulps(xym5, xym4, log2_coeff(0));
}
else
{
load_log2_coeff(xym5, 0);
mulps(xym5, xym4);
}
addps(xym5, log2_coeff(1)); addps(xym5, log2_coeff(1));
mulps(xym5, xym4); mulps(xym5, xym4);
subps(xym4, log2_coeff(3)); subps(xym4, xym1);
addps(xym5, log2_coeff(2)); addps(xym5, log2_coeff(2));
mulps(xym4, xym5); mulps(xym4, xym5);
addps(xym4, xym0); addps(xym4, xym0);

View File

@ -204,10 +204,12 @@ public:
FORWARD_OO_OI(or_) FORWARD_OO_OI(or_)
FORWARD_OO_OI(sub) FORWARD_OO_OI(sub)
FORWARD_OO_OI(xor_) FORWARD_OO_OI(xor_)
FORWARD(2, BASE, cmovs, const Reg&, const Operand&)
FORWARD(2, BASE, lea, const Reg&, const Address&) FORWARD(2, BASE, lea, const Reg&, const Address&)
FORWARD(2, BASE, mov, const Operand&, size_t) FORWARD(2, BASE, mov, const Operand&, size_t)
FORWARD(2, BASE, mov, ARGS_OO) FORWARD(2, BASE, mov, ARGS_OO)
FORWARD(2, BASE, movzx, const Reg&, const Operand&) FORWARD(2, BASE, movzx, const Reg&, const Operand&)
FORWARD(1, BASE, neg, const Operand&)
FORWARD(1, BASE, not_, const Operand&) FORWARD(1, BASE, not_, const Operand&)
FORWARD(1, BASE, pop, const Operand&) FORWARD(1, BASE, pop, const Operand&)
FORWARD(1, BASE, push, const Operand&) FORWARD(1, BASE, push, const Operand&)
@ -243,6 +245,8 @@ public:
AFORWARD(2, minps, ARGS_XO) AFORWARD(2, minps, ARGS_XO)
SFORWARD(2, movaps, ARGS_XO) SFORWARD(2, movaps, ARGS_XO)
SFORWARD(2, movaps, const Address&, const Xmm&) SFORWARD(2, movaps, const Address&, const Xmm&)
SFORWARD(2, movups, ARGS_XO)
SFORWARD(2, movups, const Address&, const Xmm&)
SFORWARD(2, movd, const Address&, const Xmm&) SFORWARD(2, movd, const Address&, const Xmm&)
SFORWARD(2, movd, const Reg32&, const Xmm&) SFORWARD(2, movd, const Reg32&, const Xmm&)
SFORWARD(2, movd, const Xmm&, const Address&) SFORWARD(2, movd, const Xmm&, const Address&)

View File

@ -256,46 +256,25 @@ namespace GSScanlineConstantData
// Constant shared by all threads (to reduce cache miss) // Constant shared by all threads (to reduce cache miss)
struct alignas(64) GSScanlineConstantData256B struct alignas(64) GSScanlineConstantData256B
{ {
alignas(32) u8 m_test[16][8] = { // All AVX processors support unaligned access with little to no penalty as long as you don't cross a cache line.
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // Take advantage of that to store single vectors that we index with single-element alignment
{0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, alignas(32) u8 m_test[24] = {
{0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
{0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00, 0x00}, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
{0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x00}, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
{0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00},
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00},
{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00},
{0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
{0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
{0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, 0xff},
{0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff},
{0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff, 0xff},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xff},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
}; };
alignas(32) float m_shift[9][8] = { float m_log2_coef[4] = {};
{ 8.0f , 8.0f , 8.0f , 8.0f , 8.0f , 8.0f , 8.0f , 8.0f}, alignas(64) float m_shift[16] = {
{ 0.0f , 1.0f , 2.0f , 3.0f , 4.0f , 5.0f , 6.0f , 7.0f}, 8.0f, -7.0f, -6.0f, -5.0f, -4.0f, -3.0f, -2.0f, -1.0f,
{ -1.0f , 0.0f , 1.0f , 2.0f , 3.0f , 4.0f , 5.0f , 6.0f}, 0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f,
{ -2.0f , -1.0f , 0.0f , 1.0f , 2.0f , 3.0f , 4.0f , 5.0f},
{ -3.0f , -2.0f , -1.0f , 0.0f , 1.0f , 2.0f , 3.0f , 4.0f},
{ -4.0f , -3.0f , -2.0f , -1.0f , 0.0f , 1.0f , 2.0f , 3.0f},
{ -5.0f , -4.0f , -3.0f , -2.0f , -1.0f , 0.0f , 1.0f , 2.0f},
{ -6.0f , -5.0f , -4.0f , -3.0f , -2.0f , -1.0f , 0.0f , 1.0f},
{ -7.0f , -6.0f , -5.0f , -4.0f , -3.0f , -2.0f , -1.0f , 0.0f},
}; };
alignas(32) float m_log2_coef[4][8] = {};
constexpr GSScanlineConstantData256B() constexpr GSScanlineConstantData256B()
{ {
using namespace GSScanlineConstantData; using namespace GSScanlineConstantData;
for (size_t n = 0; n < std::size(log2_coef); ++n) for (size_t n = 0; n < std::size(log2_coef); ++n)
{ {
for (size_t i = 0; i < 8; ++i) m_log2_coef[n] = log2_coef[n];
{
m_log2_coef[n][i] = log2_coef[n];
}
} }
} }
}; };

View File

@ -110,7 +110,12 @@ void GSSetupPrimCodeGenerator::Generate()
for (int i = 0; i < (m_sel.notest ? 2 : many_regs ? 9 : 5); i++) for (int i = 0; i < (m_sel.notest ? 2 : many_regs ? 9 : 5); i++)
{ {
movaps(XYm(3 + i), ptr[rax + i * vecsize]); if (isXmm)
movaps(XYm(3 + i), ptr[rax + i * vecsize]);
else if (i == 0)
vbroadcastss(xym3, ptr[rax]);
else
movups(XYm(3 + i), ptr[rax + (9 - i) * sizeof(float)]);
} }
} }
@ -253,7 +258,7 @@ void GSSetupPrimCodeGenerator::Depth_YMM()
if (i < 4 || many_regs) if (i < 4 || many_regs)
vmulps(ymm0, Ymm(4 + i), ymm1); vmulps(ymm0, Ymm(4 + i), ymm1);
else else
vmulps(ymm0, ymm1, ptr[g_const_256b.m_shift[i + 1]]); vmulps(ymm0, ymm1, ptr[&g_const_256b.m_shift[8 - i]]);
cvttps2dq(ymm0, ymm0); cvttps2dq(ymm0, ymm0);
pshuflw(ymm0, ymm0, _MM_SHUFFLE(2, 2, 0, 0)); pshuflw(ymm0, ymm0, _MM_SHUFFLE(2, 2, 0, 0));
pshufhw(ymm0, ymm0, _MM_SHUFFLE(2, 2, 0, 0)); pshufhw(ymm0, ymm0, _MM_SHUFFLE(2, 2, 0, 0));
@ -281,7 +286,7 @@ void GSSetupPrimCodeGenerator::Depth_YMM()
if (i < 4 || many_regs) if (i < 4 || many_regs)
vmulps(ymm1, Ymm(4 + i), ymm0); vmulps(ymm1, Ymm(4 + i), ymm0);
else else
vmulps(ymm1, ymm0, ptr[g_const_256b.m_shift[i + 1]]); vmulps(ymm1, ymm0, ptr[&g_const_256b.m_shift[8 - i]]);
movaps(_rip_local_di(i, z), ymm1); movaps(_rip_local_di(i, z), ymm1);
} }
} }
@ -356,7 +361,7 @@ void GSSetupPrimCodeGenerator::Texture()
if (i < 4 || many_regs) if (i < 4 || many_regs)
THREEARG(mulps, xym2, XYm(4 + i), xym1); THREEARG(mulps, xym2, XYm(4 + i), xym1);
else else
vmulps(ymm2, ymm1, ptr[g_const_256b.m_shift[i + 1]]); vmulps(ymm2, ymm1, ptr[&g_const_256b.m_shift[8 - i]]);
if (m_sel.fst) if (m_sel.fst)
{ {
@ -424,7 +429,7 @@ void GSSetupPrimCodeGenerator::Color()
if (i < 4 || many_regs) if (i < 4 || many_regs)
THREEARG(mulps, xym0, XYm(4 + i), xym2); THREEARG(mulps, xym0, XYm(4 + i), xym2);
else else
vmulps(ymm0, ymm2, ptr[g_const_256b.m_shift[i + 1]]); vmulps(ymm0, ymm2, ptr[&g_const_256b.m_shift[8 - i]]);
cvttps2dq(xym0, xym0); cvttps2dq(xym0, xym0);
packssdw(xym0, xym0); packssdw(xym0, xym0);
@ -433,7 +438,7 @@ void GSSetupPrimCodeGenerator::Color()
if (i < 4 || many_regs) if (i < 4 || many_regs)
THREEARG(mulps, xym1, XYm(4 + i), xym3); THREEARG(mulps, xym1, XYm(4 + i), xym3);
else else
vmulps(ymm1, ymm3, ptr[g_const_256b.m_shift[i + 1]]); vmulps(ymm1, ymm3, ptr[&g_const_256b.m_shift[8 - i]]);
cvttps2dq(xym1, xym1); cvttps2dq(xym1, xym1);
packssdw(xym1, xym1); packssdw(xym1, xym1);
@ -460,7 +465,7 @@ void GSSetupPrimCodeGenerator::Color()
if (i < 4 || many_regs) if (i < 4 || many_regs)
THREEARG(mulps, xym0, XYm(4 + i), xym2); THREEARG(mulps, xym0, XYm(4 + i), xym2);
else else
vmulps(ymm0, ymm2, ptr[g_const_256b.m_shift[i + 1]]); vmulps(ymm0, ymm2, ptr[&g_const_256b.m_shift[8 - i]]);
cvttps2dq(xym0, xym0); cvttps2dq(xym0, xym0);
packssdw(xym0, xym0); packssdw(xym0, xym0);
@ -469,7 +474,7 @@ void GSSetupPrimCodeGenerator::Color()
if (i < 4 || many_regs) if (i < 4 || many_regs)
THREEARG(mulps, xym1, XYm(4 + i), xym3); THREEARG(mulps, xym1, XYm(4 + i), xym3);
else else
vmulps(ymm1, ymm3, ptr[g_const_256b.m_shift[i + 1]]); vmulps(ymm1, ymm3, ptr[&g_const_256b.m_shift[8 - i]]);
cvttps2dq(xym1, xym1); cvttps2dq(xym1, xym1);
packssdw(xym1, xym1); packssdw(xym1, xym1);